mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
416 lines
12 KiB
C
416 lines
12 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <freertos/FreeRTOS.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_log.h"
|
|
#include "hal/mmu_ll.h"
|
|
#include "soc/mmu.h"
|
|
|
|
#include "esp_private/esp_mmu_map_private.h"
|
|
#include "esp_mmu_map.h"
|
|
#if CONFIG_SPIRAM
|
|
#include "esp_private/esp_psram_extram.h"
|
|
#include "esp_private/mmu_psram_flash.h"
|
|
#endif
|
|
|
|
#include "esp_private/cache_utils.h"
|
|
#include "spi_flash_mmap.h"
|
|
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#include "esp32c3/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32H4
|
|
#include "esp32h4/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C2
|
|
#include "esp32c2/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C6
|
|
#include "esp32c6/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
#include "esp32h2/rom/cache.h"
|
|
#endif
|
|
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
extern int _instruction_reserved_start;
|
|
extern int _instruction_reserved_end;
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
extern int _rodata_reserved_start;
|
|
extern int _rodata_reserved_end;
|
|
#endif
|
|
|
|
#if !CONFIG_SPI_FLASH_ROM_IMPL
|
|
|
|
|
|
typedef struct mmap_block_t {
|
|
uint32_t *vaddr_list;
|
|
int list_num;
|
|
} mmap_block_t;
|
|
|
|
|
|
esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
|
|
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
mmu_mem_caps_t caps = 0;
|
|
void *ptr = NULL;
|
|
mmap_block_t *block = NULL;
|
|
uint32_t *vaddr_list = NULL;
|
|
|
|
block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
|
|
if (!block) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto err;
|
|
}
|
|
|
|
vaddr_list = heap_caps_calloc(1, 1 * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
|
|
if (!vaddr_list) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto err;
|
|
}
|
|
|
|
block->vaddr_list = vaddr_list;
|
|
|
|
if (memory == SPI_FLASH_MMAP_INST) {
|
|
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
|
|
} else {
|
|
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
|
|
}
|
|
ret = esp_mmu_map(src_addr, size, MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
|
|
if (ret == ESP_OK) {
|
|
vaddr_list[0] = (uint32_t)ptr;
|
|
block->list_num = 1;
|
|
|
|
} else if (ret == ESP_ERR_INVALID_STATE) {
|
|
/**
|
|
* paddr region is mapped already,
|
|
* to keep `flash_mmap.c` original behaviour, we consider this as a valid behaviour.
|
|
* Set `list_num` to 0 so we don't need to call `esp_mmu_unmap` to this one, as `esp_mmu_map`
|
|
* doesn't really create a new handle.
|
|
*/
|
|
block->list_num = 0;
|
|
} else {
|
|
goto err;
|
|
}
|
|
|
|
*out_ptr = ptr;
|
|
*out_handle = (uint32_t)block;
|
|
|
|
return ESP_OK;
|
|
|
|
err:
|
|
if (vaddr_list) {
|
|
free(vaddr_list);
|
|
}
|
|
if (block) {
|
|
free(block);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int s_find_non_contiguous_block_nums(const int *pages, int page_count)
|
|
{
|
|
int nums = 1;
|
|
int last_end = pages[0] + 1;
|
|
|
|
for (int i = 1; i < page_count; i++) {
|
|
if (pages[i] != last_end) {
|
|
nums++;
|
|
}
|
|
last_end = pages[i] + 1;
|
|
}
|
|
return nums;
|
|
}
|
|
|
|
static void s_merge_contiguous_pages(const int *pages, uint32_t page_count, int block_nums, int (*out_blocks)[2])
|
|
{
|
|
uint32_t last_end = pages[0] + 1;
|
|
int new_array_id = 0;
|
|
out_blocks[new_array_id][0] = pages[0];
|
|
out_blocks[new_array_id][1] = 1;
|
|
|
|
for (int i = 1; i < page_count; i++) {
|
|
|
|
if (pages[i] != last_end) {
|
|
new_array_id += 1;
|
|
assert(new_array_id < block_nums);
|
|
out_blocks[new_array_id][0] = pages[i];
|
|
out_blocks[new_array_id][1] = 1;
|
|
} else {
|
|
out_blocks[new_array_id][1] += 1;
|
|
}
|
|
|
|
last_end = pages[i] + 1;
|
|
}
|
|
}
|
|
|
|
static void s_pages_to_bytes(int (*blocks)[2], int block_nums)
|
|
{
|
|
for (int i = 0; i < block_nums; i++) {
|
|
blocks[i][0] = blocks[i][0] * CONFIG_MMU_PAGE_SIZE;
|
|
blocks[i][1] = blocks[i][1] * CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
|
|
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
mmu_mem_caps_t caps = 0;
|
|
mmap_block_t *block = NULL;
|
|
uint32_t *vaddr_list = NULL;
|
|
int successful_cnt = 0;
|
|
|
|
int block_num = s_find_non_contiguous_block_nums(pages, page_count);
|
|
int paddr_blocks[block_num][2];
|
|
s_merge_contiguous_pages(pages, page_count, block_num, paddr_blocks);
|
|
s_pages_to_bytes(paddr_blocks, block_num);
|
|
|
|
block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
|
|
if (!block) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto err;
|
|
}
|
|
|
|
vaddr_list = heap_caps_calloc(1, block_num * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
|
|
if (!vaddr_list) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto err;
|
|
}
|
|
|
|
if (memory == SPI_FLASH_MMAP_INST) {
|
|
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
|
|
} else {
|
|
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
|
|
}
|
|
for (int i = 0; i < block_num; i++) {
|
|
void *ptr = NULL;
|
|
ret = esp_mmu_map(paddr_blocks[i][0], paddr_blocks[i][1], MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
|
|
if (ret == ESP_OK) {
|
|
vaddr_list[i] = (uint32_t)ptr;
|
|
successful_cnt++;
|
|
} else {
|
|
/**
|
|
* A note for `ret == ESP_ERR_INVALID_STATE`:
|
|
* If one of the `*pages` are mapped already, this means we can't find a
|
|
* consecutive vaddr block for these `*pages`
|
|
*/
|
|
goto err;
|
|
}
|
|
vaddr_list[i] = (uint32_t)ptr;
|
|
}
|
|
|
|
block->vaddr_list = vaddr_list;
|
|
block->list_num = successful_cnt;
|
|
|
|
/**
|
|
* We get a contiguous vaddr block, but may contain multiple esp_mmu handles.
|
|
* The first handle vaddr is the start address of this contiguous vaddr block.
|
|
*/
|
|
*out_ptr = (void *)vaddr_list[0];
|
|
*out_handle = (uint32_t)block;
|
|
|
|
return ESP_OK;
|
|
|
|
err:
|
|
for (int i = 0; i < successful_cnt; i++) {
|
|
esp_mmu_unmap((void *)vaddr_list[i]);
|
|
}
|
|
if (vaddr_list) {
|
|
free(vaddr_list);
|
|
}
|
|
if (block) {
|
|
free(block);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
void spi_flash_munmap(spi_flash_mmap_handle_t handle)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
mmap_block_t *block = (void *)handle;
|
|
|
|
for (int i = 0; i < block->list_num; i++) {
|
|
ret = esp_mmu_unmap((void *)block->vaddr_list[i]);
|
|
if (ret == ESP_ERR_NOT_FOUND) {
|
|
assert(0 && "invalid handle, or handle already unmapped");
|
|
}
|
|
}
|
|
|
|
free(block->vaddr_list);
|
|
free(block);
|
|
}
|
|
|
|
|
|
void spi_flash_mmap_dump(void)
|
|
{
|
|
esp_mmu_map_dump_mapped_blocks(stdout);
|
|
}
|
|
|
|
|
|
uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
|
|
{
|
|
mmu_mem_caps_t caps = 0;
|
|
if (memory == SPI_FLASH_MMAP_INST) {
|
|
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
|
|
} else {
|
|
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
|
|
}
|
|
|
|
size_t len = 0;
|
|
esp_mmu_map_get_max_consecutive_free_block_size(caps, MMU_TARGET_FLASH0, &len);
|
|
return len / CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
|
|
size_t spi_flash_cache2phys(const void *cached)
|
|
{
|
|
if (cached == NULL) {
|
|
return SPI_FLASH_CACHE2PHYS_FAIL;
|
|
}
|
|
|
|
esp_err_t ret = ESP_FAIL;
|
|
uint32_t paddr = 0;
|
|
mmu_target_t target = 0;
|
|
|
|
ret = esp_mmu_vaddr_to_paddr((void *)cached, &paddr, &target);
|
|
if (ret != ESP_OK) {
|
|
return SPI_FLASH_CACHE2PHYS_FAIL;
|
|
}
|
|
|
|
int offset = 0;
|
|
#if CONFIG_SPIRAM_RODATA
|
|
if ((uint32_t)cached >= (uint32_t)&_rodata_reserved_start && (uint32_t)cached <= (uint32_t)&_rodata_reserved_end) {
|
|
offset = rodata_flash2spiram_offset();
|
|
}
|
|
#endif
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
if ((uint32_t)cached >= (uint32_t)&_instruction_reserved_start && (uint32_t)cached <= (uint32_t)&_instruction_reserved_end) {
|
|
offset = instruction_flash2spiram_offset();
|
|
}
|
|
#endif
|
|
|
|
return paddr + offset * CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
|
|
const void * spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
void *ptr = NULL;
|
|
mmu_target_t target = MMU_TARGET_FLASH0;
|
|
|
|
__attribute__((unused)) uint32_t phys_page = phys_offs / CONFIG_MMU_PAGE_SIZE;
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
|
|
target = MMU_TARGET_PSRAM0;
|
|
phys_offs -= instruction_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
|
|
target = MMU_TARGET_PSRAM0;
|
|
phys_offs -= rodata_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
#endif
|
|
|
|
mmu_vaddr_t type = (memory == SPI_FLASH_MMAP_DATA) ? MMU_VADDR_DATA : MMU_VADDR_INSTRUCTION;
|
|
ret = esp_mmu_paddr_to_vaddr(phys_offs, target, type, &ptr);
|
|
if (ret == ESP_ERR_NOT_FOUND) {
|
|
return NULL;
|
|
}
|
|
assert(ret == ESP_OK);
|
|
return (const void *)ptr;
|
|
}
|
|
|
|
|
|
static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
|
|
{
|
|
int start[2], end[2];
|
|
|
|
*out_ptr = NULL;
|
|
|
|
/* SPI_FLASH_MMAP_DATA */
|
|
start[0] = SOC_MMU_DROM0_PAGES_START;
|
|
end[0] = SOC_MMU_DROM0_PAGES_END;
|
|
|
|
/* SPI_FLASH_MMAP_INST */
|
|
start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
|
|
end[1] = SOC_MMU_IROM0_PAGES_END;
|
|
|
|
for (int j = 0; j < 2; j++) {
|
|
for (int i = start[j]; i < end[j]; i++) {
|
|
uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
|
|
if (entry_pro == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
|
|
#if !CONFIG_IDF_TARGET_ESP32
|
|
if (j == 0) { /* SPI_FLASH_MMAP_DATA */
|
|
*out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
|
|
} else { /* SPI_FLASH_MMAP_INST */
|
|
*out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
|
|
IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
|
|
{
|
|
bool ret = false;
|
|
/* align start_addr & length to full MMU pages */
|
|
uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
|
|
length += (start_addr - page_start_addr);
|
|
length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
|
|
for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
|
|
uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
|
|
// TODO: IDF-4969
|
|
if (page >= 256) {
|
|
return false; /* invalid address */
|
|
}
|
|
|
|
const void *vaddr = NULL;
|
|
if (is_page_mapped_in_cache(page, &vaddr)) {
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#if CONFIG_SPIRAM
|
|
esp_psram_extram_writeback_cache();
|
|
#endif
|
|
Cache_Flush(0);
|
|
#ifndef CONFIG_FREERTOS_UNICORE
|
|
Cache_Flush(1);
|
|
#endif
|
|
return true;
|
|
#else // CONFIG_IDF_TARGET_ESP32
|
|
if (vaddr != NULL) {
|
|
Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
|
|
ret = true;
|
|
}
|
|
#endif // CONFIG_IDF_TARGET_ESP32
|
|
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
#endif //!CONFIG_SPI_FLASH_ROM_IMPL
|