esp-idf/components/esp_adc/deprecated/esp32s3/esp_adc_cal_legacy.c
morris c0289ee6eb fix(drivers): fix typos found by codespell
codespell components/esp_driver*
2024-03-28 10:01:27 +08:00

187 lines
7.2 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "esp_types.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_check.h"
#include "hal/adc_types.h"
#include "esp_efuse_rtc_calib.h"
#include "hal/adc_types.h"
#include "driver/adc_types_legacy.h"
#include "esp_adc_cal_types_legacy.h"
#include "../esp_adc_cal_internal_legacy.h"
const static char LOG_TAG[] = "ADC_CALI";
/* ------------------------ Characterization Constants ---------------------- */
//coeff_a is actually a float number
//it is scaled to put them into uint32_t so that the headers do not have to be changed
static const int coeff_a_scaling = 1000000;
/**
* @note Error Calculation
* Coefficients for calculating the reading voltage error.
* Four sets of coefficients for atten0 ~ atten3 respectively.
*
* For each item, first element is the Coefficient, second element is the Multiple. (Coefficient / Multiple) is the real coefficient.
*
* @note {0,0} stands for unused item
* @note In case of the overflow, these coefficients are recorded as Absolute Value
* @note For atten0 ~ 2, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2); For atten3, error = (K0 * X^0) + (K1 * X^1) + (K2 * X^2) + (K3 * X^3) + (K4 * X^4);
* @note Above formula is rewritten from the original documentation, please note that the coefficients are re-ordered.
*/
const static uint64_t adc1_error_coef_atten[4][5][2] = {
{{27856531419538344, 1e16}, {50871540569528, 1e16}, {9798249589, 1e15}, {0, 0}, {0, 0}}, //ADC1 atten0
{{29831022915028695, 1e16}, {49393185868806, 1e16}, {101379430548, 1e16}, {0, 0}, {0, 0}}, //ADC1 atten1
{{23285545746296417, 1e16}, {147640181047414, 1e16}, {208385525314, 1e16}, {0, 0}, {0, 0}}, //ADC1 atten2
{{644403418269478, 1e15}, {644334888647536, 1e16}, {1297891447611, 1e16}, {70769718, 1e15}, {13515, 1e15}} //ADC1 atten3
};
const static uint64_t adc2_error_coef_atten[4][5][2] = {
{{25668651654328927, 1e16}, {1353548869615, 1e16}, {36615265189, 1e16}, {0, 0}, {0, 0}}, //ADC2 atten0
{{23690184690298404, 1e16}, {66319894226185, 1e16}, {118964995959, 1e16}, {0, 0}, {0, 0}}, //ADC2 atten1
{{9452499397020617, 1e16}, {200996773954387, 1e16}, {259011467956, 1e16}, {0, 0}, {0, 0}}, //ADC2 atten2
{{12247719764336924, 1e16}, {755717904943462, 1e16}, {1478791187119, 1e16}, {79672528, 1e15}, {15038, 1e15}} //ADC2 atten3
};
/**
* Term sign
*/
const static int32_t adc1_error_sign[4][5] = {
{-1, -1, 1, 0, 0}, //ADC1 atten0
{-1, -1, 1, 0, 0}, //ADC1 atten1
{-1, -1, 1, 0, 0}, //ADC1 atten2
{-1, -1, 1, -1, 1} //ADC1 atten3
};
const static int32_t adc2_error_sign[4][5] = {
{-1, 1, 1, 0, 0}, //ADC2 atten0
{-1, -1, 1, 0, 0}, //ADC2 atten1
{-1, -1, 1, 0, 0}, //ADC2 atten2
{ 1, -1, 1, -1, 1} //ADC2 atten3
};
/* -------------------- Characterization Helper Data Types ------------------ */
typedef struct {
uint32_t voltage;
uint32_t digi;
} adc_calib_data_ver1_t;
typedef struct {
char version_num;
adc_unit_t adc_num;
adc_atten_t atten_level;
union {
adc_calib_data_ver1_t ver1;
} ref_data;
} adc_calib_info_t;
//To get the reference point (Dout, Vin)
static esp_err_t get_reference_point(int version_num, adc_unit_t adc_num, adc_atten_t atten, adc_calib_info_t *calib_info)
{
assert(version_num == 1);
esp_err_t ret;
calib_info->version_num = version_num;
calib_info->adc_num = adc_num;
calib_info->atten_level = atten;
uint32_t voltage = 0;
uint32_t digi = 0;
ret = esp_efuse_rtc_calib_get_cal_voltage(version_num, adc_num, atten, &digi, &voltage);
assert(ret == ESP_OK);
calib_info->ref_data.ver1.voltage = voltage;
calib_info->ref_data.ver1.digi = digi;
return ret;
}
esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source)
{
if (source != ESP_ADC_CAL_VAL_EFUSE_TP_FIT) {
return ESP_ERR_NOT_SUPPORTED;
}
uint8_t adc_encoding_version = esp_efuse_rtc_calib_get_ver();
if (adc_encoding_version != 1) {
// current version only accepts encoding ver 1.
return ESP_ERR_INVALID_VERSION;
}
return ESP_OK;
}
/*
* Get an expected linear relationship btwn Vin and Dout
*/
static void calculate_characterization_coefficients(const adc_calib_info_t *parsed_data, esp_adc_cal_characteristics_t *chars)
{
chars->coeff_a = coeff_a_scaling * parsed_data->ref_data.ver1.voltage / parsed_data->ref_data.ver1.digi;
chars->coeff_b = 0;
ESP_LOGV(LOG_TAG, "Calib V1, Cal Voltage = %" PRId32 ", Digi out = %" PRId32 ", Coef_a = %" PRId32, parsed_data->ref_data.ver1.voltage, parsed_data->ref_data.ver1.digi, chars->coeff_a);
}
esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
adc_atten_t atten,
adc_bits_width_t bit_width,
uint32_t default_vref,
esp_adc_cal_characteristics_t *chars)
{
(void) default_vref;
// Check parameters
ESP_RETURN_ON_FALSE(adc_num == ADC_UNIT_1 || adc_num == ADC_UNIT_2, ESP_ADC_CAL_VAL_NOT_SUPPORTED, LOG_TAG, "Invalid unit num");
ESP_RETURN_ON_FALSE(chars != NULL, ESP_ADC_CAL_VAL_NOT_SUPPORTED, LOG_TAG, "Invalid characteristic");
ESP_RETURN_ON_FALSE(atten < SOC_ADC_ATTEN_NUM, ESP_ADC_CAL_VAL_NOT_SUPPORTED, LOG_TAG, "Invalid attenuation");
int version_num = esp_efuse_rtc_calib_get_ver();
ESP_RETURN_ON_FALSE(version_num == 1, ESP_ADC_CAL_VAL_NOT_SUPPORTED, LOG_TAG, "No calibration efuse burnt");
memset(chars, 0, sizeof(esp_adc_cal_characteristics_t));
adc_calib_info_t calib_info = {0};
// make sure adc is calibrated.
get_reference_point(version_num, adc_num, atten, &calib_info);
calculate_characterization_coefficients(&calib_info, chars);
// Initialize remaining fields
chars->adc_num = adc_num;
chars->atten = atten;
chars->bit_width = bit_width;
return ESP_ADC_CAL_VAL_EFUSE_TP_FIT;
}
uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
{
assert(chars != NULL);
//ADC reading won't exceed 4096. Otherwise the raw reading result is wrong, the next calculation will overflow.
assert(adc_reading < 4096);
uint32_t voltage = 0;
int32_t error = 0;
uint64_t v_cali_1 = 0;
//raw * gradient * 1000000
v_cali_1 = (uint64_t)adc_reading * chars->coeff_a;
//convert to real number
v_cali_1 = v_cali_1 / coeff_a_scaling;
ESP_LOGV(LOG_TAG, "v_cali_1 is %llu", v_cali_1);
//Curve Fitting error correction
esp_adc_error_calc_param_t param = {
.v_cali_input = v_cali_1,
.term_num = (chars->atten == 3) ? 5 : 3,
.coeff = (chars->adc_num == ADC_UNIT_1) ? &adc1_error_coef_atten :&adc2_error_coef_atten,
.sign = (chars->adc_num == ADC_UNIT_1) ? &adc1_error_sign :&adc2_error_sign,
};
error = esp_adc_cal_get_reading_error(&param, chars->atten);
voltage = (int32_t)v_cali_1 - error;
return voltage;
}