mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
719 lines
25 KiB
C
719 lines
25 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include "sdkconfig.h"
|
|
#include "hal/adc_hal.h"
|
|
#include "hal/adc_hal_conf.h"
|
|
#include "hal/assert.h"
|
|
#include "soc/lldesc.h"
|
|
#include "soc/soc_caps.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
//ADC utilises I2S0 DMA on ESP32
|
|
#include "hal/i2s_hal.h"
|
|
#include "hal/i2s_ll.h"
|
|
#include "hal/i2s_types.h"
|
|
#include "soc/i2s_struct.h"
|
|
#endif
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
//ADC utilises SPI3 DMA on ESP32S2
|
|
#include "hal/spi_ll.h"
|
|
#include "soc/spi_struct.h"
|
|
#endif
|
|
|
|
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
/*---------------------------------------------------------------
|
|
Single Read
|
|
---------------------------------------------------------------*/
|
|
/**
|
|
* For chips without RTC controller, Digital controller is used to trigger an ADC single read.
|
|
*/
|
|
#include "esp_rom_sys.h"
|
|
|
|
typedef enum {
|
|
ADC_EVENT_ADC1_DONE = BIT(0),
|
|
ADC_EVENT_ADC2_DONE = BIT(1),
|
|
} adc_hal_event_t;
|
|
#endif //SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
|
|
/*---------------------------------------------------------------
|
|
Define all ADC DMA required operations here
|
|
---------------------------------------------------------------*/
|
|
#if SOC_GDMA_SUPPORTED
|
|
#define adc_dma_ll_rx_clear_intr(dev, chan, mask) gdma_ll_rx_clear_interrupt_status(dev, chan, mask)
|
|
#define adc_dma_ll_rx_enable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, true)
|
|
#define adc_dma_ll_rx_disable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, false)
|
|
#define adc_dma_ll_rx_reset_channel(dev, chan) gdma_ll_rx_reset_channel(dev, chan)
|
|
#define adc_dma_ll_rx_stop(dev, chan) gdma_ll_rx_stop(dev, chan)
|
|
#define adc_dma_ll_rx_start(dev, chan, addr) do { \
|
|
gdma_ll_rx_set_desc_addr(dev, chan, (uint32_t)addr); \
|
|
gdma_ll_rx_start(dev, chan); \
|
|
} while (0)
|
|
#define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
|
|
#define adc_ll_digi_reset(dev) adc_ll_digi_reset()
|
|
#define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
|
|
#define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
|
|
|
|
//ADC utilises SPI3 DMA on ESP32S2
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#define adc_dma_ll_rx_get_intr(dev, mask) spi_ll_get_intr(dev, mask)
|
|
#define adc_dma_ll_rx_clear_intr(dev, chan, mask) spi_ll_clear_intr(dev, mask)
|
|
#define adc_dma_ll_rx_enable_intr(dev, chan, mask) spi_ll_enable_intr(dev, mask)
|
|
#define adc_dma_ll_rx_disable_intr(dev, chan, mask) spi_ll_disable_intr(dev, mask)
|
|
#define adc_dma_ll_rx_reset_channel(dev, chan) spi_dma_ll_rx_reset(dev, chan)
|
|
#define adc_dma_ll_rx_stop(dev, chan) spi_dma_ll_rx_stop(dev, chan)
|
|
#define adc_dma_ll_rx_start(dev, chan, addr) spi_dma_ll_rx_start(dev, chan, addr)
|
|
#define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan)
|
|
#define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
|
|
#define adc_ll_digi_reset(dev) adc_ll_digi_reset()
|
|
#define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
|
|
#define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
|
|
|
|
//ADC utilises I2S0 DMA on ESP32
|
|
#else //CONFIG_IDF_TARGET_ESP32
|
|
#define adc_dma_ll_rx_get_intr(dev, mask) ({i2s_ll_get_intr_status(dev) & mask;})
|
|
#define adc_dma_ll_rx_clear_intr(dev, chan, mask) i2s_ll_clear_intr_status(dev, mask)
|
|
#define adc_dma_ll_rx_enable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val |= mask;} while (0)
|
|
#define adc_dma_ll_rx_disable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val &= ~mask;} while (0)
|
|
#define adc_dma_ll_rx_reset_channel(dev, chan) i2s_ll_rx_reset_dma(dev)
|
|
#define adc_dma_ll_rx_stop(dev, chan) i2s_ll_rx_stop_link(dev)
|
|
#define adc_dma_ll_rx_start(dev, chan, address) do { \
|
|
((i2s_dev_t *)(dev))->in_link.addr = (uint32_t)(address); \
|
|
i2s_ll_enable_dma(dev, 1); \
|
|
((i2s_dev_t *)(dev))->in_link.start = 1; \
|
|
} while (0)
|
|
#define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) ({uint32_t addr; i2s_ll_rx_get_eof_des_addr(dev, &addr); addr;})
|
|
#define adc_ll_digi_dma_set_eof_num(dev, num) do {((i2s_dev_t *)(dev))->rx_eof_num = num;} while (0)
|
|
#define adc_ll_digi_reset(dev) do { \
|
|
i2s_ll_rx_reset(dev); \
|
|
i2s_ll_rx_reset_fifo(dev); \
|
|
} while (0)
|
|
#define adc_ll_digi_trigger_enable(dev) i2s_ll_rx_start(dev)
|
|
#define adc_ll_digi_trigger_disable(dev) i2s_ll_rx_stop(dev)
|
|
#define adc_ll_digi_dma_enable() adc_ll_digi_set_data_source(1) //Will this influence I2S0
|
|
#define adc_ll_digi_dma_disable() adc_ll_digi_set_data_source(0)
|
|
|
|
//ESP32 ADC uses the DMA through I2S. The I2S needs to be configured.
|
|
#define I2S_BASE_CLK (2*APB_CLK_FREQ)
|
|
#define SAMPLE_BITS 16
|
|
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 2
|
|
#define ADC_LL_CLKM_DIV_B_DEFAULT 0
|
|
#define ADC_LL_CLKM_DIV_A_DEFAULT 1
|
|
|
|
#endif
|
|
|
|
|
|
void adc_hal_init(void)
|
|
{
|
|
// Set internal FSM wait time, fixed value.
|
|
adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
|
|
SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
|
|
adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
|
|
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
|
|
adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
|
|
adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
|
|
adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
|
|
}
|
|
|
|
#if SOC_ADC_ARBITER_SUPPORTED
|
|
void adc_hal_arbiter_config(adc_arbiter_t *config)
|
|
{
|
|
adc_ll_set_arbiter_work_mode(config->mode);
|
|
adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
|
|
}
|
|
#endif // #if SOC_ADC_ARBITER_SUPPORTED
|
|
|
|
void adc_hal_digi_deinit(adc_hal_context_t *hal)
|
|
{
|
|
adc_ll_digi_trigger_disable(hal->dev);
|
|
adc_ll_digi_dma_disable();
|
|
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
|
|
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
|
|
adc_ll_digi_reset(hal->dev);
|
|
adc_ll_digi_controller_clk_disable();
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
Controller Setting
|
|
---------------------------------------------------------------*/
|
|
static adc_ll_controller_t get_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
|
|
{
|
|
if (unit == ADC_NUM_1) {
|
|
switch (work_mode) {
|
|
#if SOC_ULP_SUPPORTED
|
|
case ADC_HAL_ULP_MODE:
|
|
return ADC_LL_CTRL_ULP;
|
|
#endif
|
|
case ADC_HAL_SINGLE_READ_MODE:
|
|
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
return ADC_LL_CTRL_DIG;
|
|
#elif SOC_ADC_RTC_CTRL_SUPPORTED
|
|
return ADC_LL_CTRL_RTC;
|
|
#endif
|
|
case ADC_HAL_CONTINUOUS_READ_MODE:
|
|
return ADC_LL_CTRL_DIG;
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
switch (work_mode) {
|
|
#if SOC_ULP_SUPPORTED
|
|
case ADC_HAL_ULP_MODE:
|
|
return ADC_LL_CTRL_ULP;
|
|
#endif
|
|
#if !SOC_ADC_ARBITER_SUPPORTED //No ADC2 arbiter on ESP32
|
|
case ADC_HAL_SINGLE_READ_MODE:
|
|
return ADC_LL_CTRL_RTC;
|
|
case ADC_HAL_CONTINUOUS_READ_MODE:
|
|
return ADC_LL_CTRL_DIG;
|
|
case ADC_HAL_PWDET_MODE:
|
|
return ADC_LL_CTRL_PWDET;
|
|
default:
|
|
abort();
|
|
#else
|
|
default:
|
|
return ADC_LL_CTRL_ARB;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
void adc_hal_set_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
|
|
{
|
|
adc_ll_controller_t ctrlr = get_controller(unit, work_mode);
|
|
adc_ll_set_controller(unit, ctrlr);
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
DMA read
|
|
---------------------------------------------------------------*/
|
|
static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
return ADC_LL_DIGI_CONV_ONLY_ADC1;
|
|
#endif
|
|
#if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
|
|
return ADC_LL_DIGI_CONV_ALTER_UNIT;
|
|
#elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
|
|
switch (convert_mode) {
|
|
case ADC_CONV_SINGLE_UNIT_1:
|
|
return ADC_LL_DIGI_CONV_ONLY_ADC1;
|
|
case ADC_CONV_SINGLE_UNIT_2:
|
|
return ADC_LL_DIGI_CONV_ONLY_ADC2;
|
|
case ADC_CONV_BOTH_UNIT:
|
|
return ADC_LL_DIGI_CONV_BOTH_UNIT;
|
|
case ADC_CONV_ALTER_UNIT:
|
|
return ADC_LL_DIGI_CONV_ALTER_UNIT;
|
|
default:
|
|
abort();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* For esp32s2 and later chips
|
|
* - Set ADC digital controller clock division factor. The clock is divided from `APLL` or `APB` clock.
|
|
* Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1).
|
|
* - Enable clock and select clock source for ADC digital controller.
|
|
* For esp32, use I2S clock
|
|
*/
|
|
static void adc_hal_digi_sample_freq_config(adc_hal_context_t *hal, uint32_t freq)
|
|
{
|
|
#if !CONFIG_IDF_TARGET_ESP32
|
|
uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / freq;
|
|
//set sample interval
|
|
adc_ll_digi_set_trigger_interval(interval);
|
|
//Here we set the clock divider factor to make the digital clock to 5M Hz
|
|
adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
|
|
adc_ll_digi_clk_sel(0); //use APB
|
|
#else
|
|
i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_D2CLK); /*!< Clock from PLL_D2_CLK(160M)*/
|
|
uint32_t bclk_div = 16;
|
|
uint32_t bclk = freq * 2;
|
|
uint32_t mclk = bclk * bclk_div;
|
|
uint32_t mclk_div = I2S_BASE_CLK / mclk;
|
|
i2s_hal_clock_cfg_t i2s_hal_clk_cfg = {
|
|
.sclk = I2S_BASE_CLK,
|
|
.bclk = bclk,
|
|
.bclk_div = bclk_div,
|
|
.mclk = mclk ,
|
|
.mclk_div = mclk_div,
|
|
};
|
|
i2s_ll_mclk_div_t mclk_set = {};
|
|
i2s_hal_mclk_div_decimal_cal(&i2s_hal_clk_cfg, &mclk_set);
|
|
i2s_ll_rx_set_clk(hal->dev, &mclk_set);
|
|
i2s_ll_rx_set_bck_div_num(hal->dev, i2s_hal_clk_cfg.bclk_div);
|
|
#endif
|
|
}
|
|
|
|
void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
|
|
{
|
|
#if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
|
|
//Only one pattern table, this variable is for readability
|
|
const int pattern_both = 0;
|
|
|
|
adc_ll_digi_clear_pattern_table(pattern_both);
|
|
adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len);
|
|
for (int i = 0; i < cfg->adc_pattern_len; i++) {
|
|
adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]);
|
|
}
|
|
|
|
#elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
|
|
uint32_t adc1_pattern_idx = 0;
|
|
uint32_t adc2_pattern_idx = 0;
|
|
|
|
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
|
|
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
|
|
|
|
for (int i = 0; i < cfg->adc_pattern_len; i++) {
|
|
if (cfg->adc_pattern[i].unit == ADC_NUM_1) {
|
|
adc_ll_digi_set_pattern_table(ADC_NUM_1, adc1_pattern_idx, cfg->adc_pattern[i]);
|
|
adc1_pattern_idx++;
|
|
} else if (cfg->adc_pattern[i].unit == ADC_NUM_2) {
|
|
adc_ll_digi_set_pattern_table(ADC_NUM_2, adc2_pattern_idx, cfg->adc_pattern[i]);
|
|
adc2_pattern_idx++;
|
|
} else {
|
|
abort();
|
|
}
|
|
}
|
|
adc_ll_digi_set_pattern_table_len(ADC_NUM_1, adc1_pattern_idx);
|
|
adc_ll_digi_set_pattern_table_len(ADC_NUM_2, adc2_pattern_idx);
|
|
|
|
#endif
|
|
|
|
if (cfg->conv_limit_en) {
|
|
adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num);
|
|
adc_ll_digi_convert_limit_enable();
|
|
} else {
|
|
adc_ll_digi_convert_limit_disable();
|
|
}
|
|
|
|
adc_ll_digi_set_convert_mode(get_convert_mode(cfg->conv_mode));
|
|
|
|
//clock and sample frequency
|
|
adc_hal_digi_sample_freq_config(hal, cfg->sample_freq_hz);
|
|
}
|
|
|
|
void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
|
|
{
|
|
hal->desc_dummy_head.next = hal->rx_desc;
|
|
hal->dev = config->dev;
|
|
hal->eof_desc_num = config->eof_desc_num;
|
|
hal->eof_step = config->eof_step;
|
|
hal->dma_chan = config->dma_chan;
|
|
hal->eof_num = config->eof_num;
|
|
}
|
|
|
|
void adc_hal_digi_init(adc_hal_context_t *hal)
|
|
{
|
|
adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
|
|
adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
|
|
adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
|
|
i2s_ll_rx_enable_mono_mode(hal->dev, 1);
|
|
i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
|
|
i2s_ll_enable_builtin_adc(hal->dev, 1);
|
|
#endif
|
|
#if CONFIG_IDF_TARGET_ESP32C3
|
|
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
|
|
#endif
|
|
}
|
|
|
|
static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t per_eof_size, uint32_t eof_step, uint32_t eof_num)
|
|
{
|
|
HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
|
|
HAL_ASSERT((per_eof_size % 4) == 0);
|
|
uint32_t n = 0;
|
|
dma_descriptor_t *desc_head = desc;
|
|
|
|
while (eof_num--) {
|
|
uint32_t eof_size = per_eof_size;
|
|
|
|
for (int i = 0; i < eof_step; i++) {
|
|
uint32_t this_len = eof_size;
|
|
if (this_len > DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) {
|
|
this_len = DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
|
|
}
|
|
|
|
desc[n] = (dma_descriptor_t) {
|
|
.dw0.size = this_len,
|
|
.dw0.length = 0,
|
|
.dw0.suc_eof = 0,
|
|
.dw0.owner = 1,
|
|
.buffer = data_buf,
|
|
.next = &desc[n+1]
|
|
};
|
|
eof_size -= this_len;
|
|
data_buf += this_len;
|
|
n++;
|
|
}
|
|
}
|
|
desc[n-1].next = desc_head;
|
|
}
|
|
|
|
void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf)
|
|
{
|
|
//stop peripheral and DMA
|
|
adc_hal_digi_stop(hal);
|
|
|
|
//reset DMA
|
|
adc_dma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
|
|
//reset peripheral
|
|
adc_ll_digi_reset(hal->dev);
|
|
|
|
//reset the current descriptor address
|
|
hal->cur_desc_ptr = &hal->desc_dummy_head;
|
|
adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * SOC_ADC_DIGI_DATA_BYTES_PER_CONV, hal->eof_step, hal->eof_desc_num);
|
|
|
|
//start DMA
|
|
adc_dma_ll_rx_start(hal->dev, hal->dma_chan, (lldesc_t *)hal->rx_desc);
|
|
//connect DMA and peripheral
|
|
adc_ll_digi_dma_enable();
|
|
//start ADC
|
|
adc_ll_digi_trigger_enable(hal->dev);
|
|
}
|
|
|
|
#if !SOC_GDMA_SUPPORTED
|
|
intptr_t adc_hal_get_desc_addr(adc_hal_context_t *hal)
|
|
{
|
|
return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan);
|
|
}
|
|
|
|
bool adc_hal_check_event(adc_hal_context_t *hal, uint32_t mask)
|
|
{
|
|
return adc_dma_ll_rx_get_intr(hal->dev, mask);
|
|
}
|
|
#endif //#if !SOC_GDMA_SUPPORTED
|
|
|
|
adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, uint8_t **buffer, uint32_t *len)
|
|
{
|
|
HAL_ASSERT(hal->cur_desc_ptr);
|
|
|
|
if (!hal->cur_desc_ptr->next) {
|
|
return ADC_HAL_DMA_DESC_NULL;
|
|
}
|
|
|
|
if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
|
|
return ADC_HAL_DMA_DESC_WAITING;
|
|
}
|
|
|
|
uint8_t *buffer_start = NULL;
|
|
uint32_t eof_len = 0;
|
|
dma_descriptor_t *eof_desc = hal->cur_desc_ptr;
|
|
|
|
//Find the eof list start
|
|
eof_desc = eof_desc->next;
|
|
eof_desc->dw0.owner = 1;
|
|
buffer_start = eof_desc->buffer;
|
|
eof_len += eof_desc->dw0.length;
|
|
if ((intptr_t)eof_desc == eof_desc_addr) {
|
|
goto valid;
|
|
}
|
|
|
|
//Find the eof list end
|
|
for (int i = 1; i < hal->eof_step; i++) {
|
|
eof_desc = eof_desc->next;
|
|
eof_desc->dw0.owner = 1;
|
|
eof_len += eof_desc->dw0.length;
|
|
if ((intptr_t)eof_desc == eof_desc_addr) {
|
|
goto valid;
|
|
}
|
|
}
|
|
|
|
|
|
valid:
|
|
hal->cur_desc_ptr = eof_desc;
|
|
*buffer = buffer_start;
|
|
*len = eof_len;
|
|
|
|
return ADC_HAL_DMA_DESC_VALID;
|
|
}
|
|
|
|
void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
|
|
{
|
|
adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask);
|
|
}
|
|
|
|
void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
|
|
{
|
|
adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask);
|
|
}
|
|
|
|
void adc_hal_digi_stop(adc_hal_context_t *hal)
|
|
{
|
|
//stop ADC
|
|
adc_ll_digi_trigger_disable(hal->dev);
|
|
//stop DMA
|
|
adc_dma_ll_rx_stop(hal->dev, hal->dma_chan);
|
|
//disconnect DMA and peripheral
|
|
adc_ll_digi_dma_disable();
|
|
}
|
|
|
|
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
/*---------------------------------------------------------------
|
|
Single Read
|
|
---------------------------------------------------------------*/
|
|
/**
|
|
* For chips without RTC controller, Digital controller is used to trigger an ADC single read.
|
|
*/
|
|
|
|
//--------------------INTR-------------------------------//
|
|
static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
|
|
{
|
|
adc_ll_intr_t intr_mask = 0;
|
|
if (event & ADC_EVENT_ADC1_DONE) {
|
|
intr_mask |= ADC_LL_INTR_ADC1_DONE;
|
|
}
|
|
if (event & ADC_EVENT_ADC2_DONE) {
|
|
intr_mask |= ADC_LL_INTR_ADC2_DONE;
|
|
}
|
|
return intr_mask;
|
|
}
|
|
|
|
static void adc_hal_intr_clear(adc_hal_event_t event)
|
|
{
|
|
adc_ll_intr_clear(get_event_intr(event));
|
|
}
|
|
|
|
static bool adc_hal_intr_get_raw(adc_hal_event_t event)
|
|
{
|
|
return adc_ll_intr_get_raw(get_event_intr(event));
|
|
}
|
|
|
|
|
|
//--------------------Single Read-------------------------------//
|
|
static void adc_hal_onetime_start(void)
|
|
{
|
|
adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
|
|
adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
|
|
/**
|
|
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
|
|
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
|
|
* clock cycle.
|
|
*
|
|
* This limitation will be removed in hardware future versions.
|
|
*
|
|
*/
|
|
uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
|
|
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
|
|
uint32_t delay = (1000 * 1000) / digi_clk + 1;
|
|
//3 ADC digital controller clock cycle
|
|
delay = delay * 3;
|
|
//This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
|
|
if (digi_clk >= APB_CLK_FREQ/8) {
|
|
delay = 0;
|
|
}
|
|
|
|
adc_ll_onetime_start(false);
|
|
esp_rom_delay_us(delay);
|
|
adc_ll_onetime_start(true);
|
|
|
|
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
|
|
}
|
|
|
|
static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
|
|
{
|
|
if (adc_n == ADC_NUM_1) {
|
|
*out_raw = adc_ll_adc1_read();
|
|
} else if (adc_n == ADC_NUM_2) {
|
|
*out_raw = adc_ll_adc2_read();
|
|
if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
|
|
{
|
|
esp_err_t ret;
|
|
adc_hal_event_t event;
|
|
|
|
if (adc_n == ADC_NUM_1) {
|
|
event = ADC_EVENT_ADC1_DONE;
|
|
} else {
|
|
event = ADC_EVENT_ADC2_DONE;
|
|
}
|
|
|
|
adc_hal_intr_clear(event);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
|
|
adc_ll_onetime_sample_enable(adc_n, true);
|
|
adc_ll_onetime_set_channel(adc_n, channel);
|
|
|
|
//Trigger single read.
|
|
adc_hal_onetime_start();
|
|
while (!adc_hal_intr_get_raw(event));
|
|
ret = adc_hal_single_read(adc_n, out_raw);
|
|
//HW workaround: when enabling periph clock, this should be false
|
|
adc_ll_onetime_sample_enable(adc_n, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#else // #if SOC_ADC_RTC_CTRL_SUPPORTED
|
|
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
|
|
{
|
|
adc_ll_rtc_enable_channel(adc_n, channel);
|
|
adc_ll_rtc_start_convert(adc_n, channel);
|
|
while (adc_ll_rtc_convert_is_done(adc_n) != true);
|
|
*out_raw = adc_ll_rtc_get_convert_value(adc_n);
|
|
|
|
if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
|
|
|
|
/*---------------------------------------------------------------
|
|
ADC calibration setting
|
|
---------------------------------------------------------------*/
|
|
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
|
|
void adc_hal_calibration_init(adc_ll_num_t adc_n)
|
|
{
|
|
adc_ll_calibration_init(adc_n);
|
|
}
|
|
|
|
static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
|
|
|
|
void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
|
|
{
|
|
if (param != s_previous_init_code[adc_n]) {
|
|
adc_ll_set_calibration_param(adc_n, param);
|
|
s_previous_init_code[adc_n] = param;
|
|
}
|
|
}
|
|
|
|
#if SOC_ADC_RTC_CTRL_SUPPORTED
|
|
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
|
|
{
|
|
adc_hal_set_controller(adc_n, ADC_HAL_SINGLE_READ_MODE); //Set controller
|
|
|
|
/* Enable/disable internal connect GND (for calibration). */
|
|
if (internal_gnd) {
|
|
adc_ll_rtc_disable_channel(adc_n);
|
|
adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
|
|
} else {
|
|
adc_ll_rtc_enable_channel(adc_n, channel);
|
|
adc_ll_set_atten(adc_n, channel, atten);
|
|
}
|
|
}
|
|
|
|
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
|
|
{
|
|
adc_ll_rtc_start_convert(adc_n, channel);
|
|
while (adc_ll_rtc_convert_is_done(adc_n) != true);
|
|
return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
|
|
}
|
|
|
|
//For those RTC controller not supported chips, they use digital controller to do the single read. e.g.: esp32c3
|
|
#elif SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
|
|
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
|
|
{
|
|
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
|
|
/* Enable/disable internal connect GND (for calibration). */
|
|
if (internal_gnd) {
|
|
const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
|
|
adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
|
|
} else {
|
|
adc_ll_onetime_set_channel(adc_n, channel);
|
|
}
|
|
adc_ll_onetime_set_atten(atten);
|
|
adc_ll_onetime_sample_enable(adc_n, true);
|
|
}
|
|
|
|
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
|
|
{
|
|
adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
|
|
adc_ll_onetime_start(false);
|
|
esp_rom_delay_us(5);
|
|
adc_ll_onetime_start(true);
|
|
|
|
while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
|
|
|
|
uint32_t read_val = -1;
|
|
if (adc_n == ADC_NUM_1) {
|
|
read_val = adc_ll_adc1_read();
|
|
} else if (adc_n == ADC_NUM_2) {
|
|
read_val = adc_ll_adc2_read();
|
|
if (adc_ll_analysis_raw_data(adc_n, read_val)) {
|
|
return -1;
|
|
}
|
|
}
|
|
return read_val;
|
|
}
|
|
#endif //Do single read via DIGI controller or RTC controller
|
|
|
|
#define ADC_HAL_CAL_TIMES (10)
|
|
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
|
|
|
|
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
|
|
{
|
|
if (adc_n == ADC_NUM_2) {
|
|
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
|
adc_hal_arbiter_config(&config);
|
|
}
|
|
|
|
cal_setup(adc_n, channel, atten, internal_gnd);
|
|
|
|
adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
|
|
|
|
uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
|
|
uint32_t code_sum = 0;
|
|
uint32_t code_h = 0;
|
|
uint32_t code_l = 0;
|
|
uint32_t chk_code = 0;
|
|
|
|
for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
|
|
code_h = ADC_HAL_CAL_OFFSET_RANGE;
|
|
code_l = 0;
|
|
chk_code = (code_h + code_l) / 2;
|
|
adc_ll_set_calibration_param(adc_n, chk_code);
|
|
uint32_t self_cal = read_cal_channel(adc_n, channel);
|
|
while (code_h - code_l > 1) {
|
|
if (self_cal == 0) {
|
|
code_h = chk_code;
|
|
} else {
|
|
code_l = chk_code;
|
|
}
|
|
chk_code = (code_h + code_l) / 2;
|
|
adc_ll_set_calibration_param(adc_n, chk_code);
|
|
self_cal = read_cal_channel(adc_n, channel);
|
|
if ((code_h - code_l == 1)) {
|
|
chk_code += 1;
|
|
adc_ll_set_calibration_param(adc_n, chk_code);
|
|
self_cal = read_cal_channel(adc_n, channel);
|
|
}
|
|
}
|
|
code_list[rpt] = chk_code;
|
|
code_sum += chk_code;
|
|
}
|
|
|
|
code_l = code_list[0];
|
|
code_h = code_list[0];
|
|
for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
|
|
code_l = MIN(code_l, code_list[i]);
|
|
code_h = MAX(code_h, code_list[i]);
|
|
}
|
|
|
|
chk_code = code_h + code_l;
|
|
uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
|
|
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
|
|
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
|
|
|
|
adc_ll_calibration_finish(adc_n);
|
|
return ret;
|
|
}
|
|
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
|