Darian Leung 1af36a5b9d usb: Change API and refactor tests
This commit updates the USB Host Library API in the following wasy:
- usb_host_client_handle_t and usb_device_handle_t made into struct pointers
  to generate compiler warnings about conflicting handle types
- usb_host_client_config_t changed to future proof API for Synchronous Clients
- Added usb_host_lib_unblock()
- Added usb_host_device_addr_list_fill()
- Return of usb_host_device_free_all() updated to indicate whether there
  are still devices yet to be freed.
- Blockg APIs are now marked explicitly
- Fixed a bug in usb_host_transfer_submit_control() when checking the bEndpointAddress
  of a control transfer.

Tests are also refactored to move some common macros into shared headers

Closes https://github.com/espressif/esp-idf/issues/7786
2021-11-11 16:26:56 +08:00

1053 lines
41 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "hcd.h"
#include "usbh.h"
#include "usb/usb_helpers.h"
#include "usb/usb_types_ch9.h"
//Device action flags. LISTED IN THE ORDER THEY SHOULD BE HANDLED IN within usbh_process(). Some actions are mutually exclusive
#define DEV_FLAG_ACTION_PIPE_HALT_AND_FLUSH 0x01 //Halt all non-default pipes then flush them (called after a device gone is gone)
#define DEV_FLAG_ACTION_DEFAULT_PIPE_FLUSH 0x02 //Retire all URBS in the default pipe
#define DEV_FLAG_ACTION_DEFAULT_PIPE_DEQUEUE 0x04 //Dequeue all URBs from default pipe
#define DEV_FLAG_ACTION_DEFAULT_PIPE_CLEAR 0x08 //Move the default pipe to the active state
#define DEV_FLAG_ACTION_SEND_GONE_EVENT 0x10 //Send a USB_HOST_CLIENT_EVENT_DEV_GONE event
#define DEV_FLAG_ACTION_FREE 0x20 //Free the device object
#define DEV_FLAG_ACTION_PORT_DISABLE 0x40 //Request the hub driver to disable the port of the device
#define DEV_FLAG_ACTION_SEND_NEW 0x80 //Send a new device event
#define DEV_ENUM_TODO_FLAG_DEV_ADDR 0x01
#define DEV_ENUM_TODO_FLAG_DEV_DESC 0x02
#define DEV_ENUM_TODO_FLAG_CONFIG_DESC 0x04
#define EP_NUM_MIN 1
#define EP_NUM_MAX 16
typedef struct device_s device_t;
struct device_s {
//Dynamic members require a critical section
struct {
TAILQ_ENTRY(device_s) tailq_entry;
union {
struct {
uint32_t actions: 8;
uint32_t in_pending_list: 1;
uint32_t is_gone: 1;
uint32_t waiting_close: 1;
uint32_t waiting_port_disable: 1;
uint32_t waiting_free: 1;
uint32_t reserved19: 19;
};
uint32_t val;
} flags;
int num_ctrl_xfers_inflight;
usb_device_state_t state;
uint32_t ref_count;
} dynamic;
//Mux protected members must be protected by the USBH mux_lock when accessed
struct {
usb_config_desc_t *config_desc;
hcd_pipe_handle_t ep_in[EP_NUM_MAX - 1]; //IN EP owner contexts. -1 to exclude the default endpoint
hcd_pipe_handle_t ep_out[EP_NUM_MAX - 1]; //OUT EP owner contexts. -1 to exclude the default endpoint
} mux_protected;
//Constant members do no change after device allocation and enumeration thus do not require a critical section
struct {
hcd_pipe_handle_t default_pipe;
hcd_port_handle_t port_hdl;
uint8_t address;
usb_speed_t speed;
const usb_device_desc_t *desc;
uint32_t enum_todo_flags;
} constant;
};
typedef struct {
//Dynamic members require a critical section
struct {
TAILQ_HEAD(tailhead_devs, device_s) devs_idle_tailq; //Tailq of all enum and configured devices
TAILQ_HEAD(tailhead_devs_cb, device_s) devs_pending_tailq; //Tailq of devices that need to have their cb called
} dynamic;
//Mux protected members must be protected by the USBH mux_lock when accessed
struct {
uint8_t num_device; //Number of enumerated devices
} mux_protected;
//Constant members do no change after installation thus do not require a critical section
struct {
usb_notif_cb_t notif_cb;
void *notif_cb_arg;
usbh_hub_cb_t hub_cb;
void *hub_cb_arg;
usbh_event_cb_t event_cb;
void *event_cb_arg;
usbh_ctrl_xfer_cb_t ctrl_xfer_cb;
void *ctrl_xfer_cb_arg;
SemaphoreHandle_t mux_lock;
} constant;
} usbh_t;
static usbh_t *p_usbh_obj = NULL;
static portMUX_TYPE usbh_lock = portMUX_INITIALIZER_UNLOCKED;
const char *USBH_TAG = "USBH";
#define USBH_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&usbh_lock)
#define USBH_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&usbh_lock)
#define USBH_ENTER_CRITICAL() portENTER_CRITICAL(&usbh_lock)
#define USBH_EXIT_CRITICAL() portEXIT_CRITICAL(&usbh_lock)
#define USBH_ENTER_CRITICAL_SAFE() portENTER_CRITICAL_SAFE(&usbh_lock)
#define USBH_EXIT_CRITICAL_SAFE() portEXIT_CRITICAL_SAFE(&usbh_lock)
#define USBH_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define USBH_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
USBH_EXIT_CRITICAL(); \
return ret_val; \
} \
})
// --------------------------------------------------- Allocation ------------------------------------------------------
static esp_err_t device_alloc(hcd_port_handle_t port_hdl, usb_speed_t speed, device_t **dev_obj_ret)
{
esp_err_t ret;
device_t *dev_obj = heap_caps_calloc(1, sizeof(device_t), MALLOC_CAP_DEFAULT);
usb_device_desc_t *dev_desc = heap_caps_calloc(1, sizeof(usb_device_desc_t), MALLOC_CAP_DEFAULT);
if (dev_obj == NULL || dev_desc == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
//Allocate default pipe. We set the pipe callback to NULL for now
hcd_pipe_config_t pipe_config = {
.callback = NULL,
.callback_arg = NULL,
.context = (void *)dev_obj,
.ep_desc = NULL, //No endpoint descriptor means we're allocating a default pipe
.dev_speed = speed,
.dev_addr = 0,
};
hcd_pipe_handle_t default_pipe_hdl;
ret = hcd_pipe_alloc(port_hdl, &pipe_config, &default_pipe_hdl);
if (ret != ESP_OK) {
goto err;
}
//Initialize device object
dev_obj->dynamic.state = USB_DEVICE_STATE_DEFAULT;
dev_obj->constant.default_pipe = default_pipe_hdl;
dev_obj->constant.port_hdl = port_hdl;
//Note: dev_obj->constant.address is assigned later during enumeration
dev_obj->constant.speed = speed;
dev_obj->constant.desc = dev_desc;
dev_obj->constant.enum_todo_flags = (DEV_ENUM_TODO_FLAG_DEV_ADDR | DEV_ENUM_TODO_FLAG_DEV_DESC | DEV_ENUM_TODO_FLAG_CONFIG_DESC);
*dev_obj_ret = dev_obj;
ret = ESP_OK;
return ret;
err:
heap_caps_free(dev_desc);
heap_caps_free(dev_obj);
return ret;
}
static void device_free(device_t *dev_obj)
{
if (dev_obj == NULL) {
return;
}
//Configuration must be freed
assert(dev_obj->mux_protected.config_desc == NULL); //Sanity check. No need for mux
ESP_ERROR_CHECK(hcd_pipe_free(dev_obj->constant.default_pipe));
heap_caps_free((usb_device_desc_t *)dev_obj->constant.desc);
heap_caps_free(dev_obj);
}
// -------------------------------------------------- Event Related ----------------------------------------------------
static bool _dev_set_actions(device_t *dev_obj, uint32_t action_flags)
{
if (action_flags == 0) {
return false;
}
bool call_notif_cb;
//Check if device is already on the callback list
if (!dev_obj->dynamic.flags.in_pending_list) {
//Move device form idle device list to callback device list
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry);
dev_obj->dynamic.flags.actions |= action_flags;
dev_obj->dynamic.flags.in_pending_list = 1;
call_notif_cb = true;
} else {
call_notif_cb = false;
}
return call_notif_cb;
}
static bool default_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr)
{
uint32_t action_flags;
device_t *dev_obj = (device_t *)user_arg;
switch (pipe_event) {
case HCD_PIPE_EVENT_URB_DONE:
//A control transfer completed on the default pipe. We need to dequeue it
action_flags = DEV_FLAG_ACTION_DEFAULT_PIPE_DEQUEUE;
break;
case HCD_PIPE_EVENT_ERROR_XFER:
case HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL:
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
//The default pipe has encountered an error. We need to retire all URBs, dequeue them, then make the pipe active again
action_flags = DEV_FLAG_ACTION_DEFAULT_PIPE_FLUSH |
DEV_FLAG_ACTION_DEFAULT_PIPE_DEQUEUE |
DEV_FLAG_ACTION_DEFAULT_PIPE_CLEAR;
if (in_isr) {
ESP_EARLY_LOGE(USBH_TAG, "Dev %d EP 0 Error", dev_obj->constant.address);
} else {
ESP_LOGE(USBH_TAG, "Dev %d EP 0 Error", dev_obj->constant.address);
}
break;
case HCD_PIPE_EVENT_ERROR_STALL:
//The default pipe encountered a "protocol stall". We just need to dequeue URBs then make the pipe active again
action_flags = DEV_FLAG_ACTION_DEFAULT_PIPE_DEQUEUE | DEV_FLAG_ACTION_DEFAULT_PIPE_CLEAR;
if (in_isr) {
ESP_EARLY_LOGE(USBH_TAG, "Dev %d EP 0 STALL", dev_obj->constant.address);
} else {
ESP_LOGE(USBH_TAG, "Dev %d EP 0 STALL", dev_obj->constant.address);
}
break;
default:
action_flags = 0;
break;
}
USBH_ENTER_CRITICAL_SAFE();
bool call_notif_cb = _dev_set_actions(dev_obj, action_flags);
USBH_EXIT_CRITICAL_SAFE();
bool yield = false;
if (call_notif_cb) {
yield = p_usbh_obj->constant.notif_cb(USB_NOTIF_SOURCE_USBH, in_isr, p_usbh_obj->constant.notif_cb_arg);
}
return yield;
}
static void handle_pipe_halt_and_flush(device_t *dev_obj)
{
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
//Halt then flush all non-default IN pipes
for (int i = 0; i < (EP_NUM_MAX - 1); i++) {
if (dev_obj->mux_protected.ep_in[i] != NULL) {
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.ep_in[i], HCD_PIPE_CMD_HALT));
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.ep_in[i], HCD_PIPE_CMD_FLUSH));
}
if (dev_obj->mux_protected.ep_out[i] != NULL) {
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.ep_out[i], HCD_PIPE_CMD_HALT));
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.ep_out[i], HCD_PIPE_CMD_FLUSH));
}
}
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
}
static bool handle_dev_free(device_t *dev_obj)
{
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
USBH_ENTER_CRITICAL();
//Remove the device object for it's containing list
if (dev_obj->dynamic.flags.in_pending_list) {
dev_obj->dynamic.flags.in_pending_list = 0;
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry);
} else {
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry);
}
USBH_EXIT_CRITICAL();
p_usbh_obj->mux_protected.num_device--;
bool all_free = (p_usbh_obj->mux_protected.num_device == 0);
heap_caps_free(dev_obj->mux_protected.config_desc);
dev_obj->mux_protected.config_desc = NULL;
device_free(dev_obj);
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return all_free;
}
// ------------------------------------------------- USBH Functions ----------------------------------------------------
esp_err_t usbh_install(const usbh_config_t *usbh_config)
{
USBH_CHECK(usbh_config != NULL, ESP_ERR_INVALID_ARG);
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(p_usbh_obj == NULL, ESP_ERR_INVALID_STATE);
USBH_EXIT_CRITICAL();
esp_err_t ret;
usbh_t *usbh_obj = heap_caps_calloc(1, sizeof(usbh_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t mux_lock = xSemaphoreCreateMutex();
if (usbh_obj == NULL || mux_lock == NULL) {
ret = ESP_ERR_NO_MEM;
goto alloc_err;
}
//Install HCD
ret = hcd_install(&usbh_config->hcd_config);
if (ret != ESP_OK) {
goto hcd_install_err;
}
//Initialize usbh object
TAILQ_INIT(&usbh_obj->dynamic.devs_idle_tailq);
TAILQ_INIT(&usbh_obj->dynamic.devs_pending_tailq);
usbh_obj->constant.notif_cb = usbh_config->notif_cb;
usbh_obj->constant.notif_cb_arg = usbh_config->notif_cb_arg;
usbh_obj->constant.event_cb = usbh_config->event_cb;
usbh_obj->constant.event_cb_arg = usbh_config->event_cb_arg;
usbh_obj->constant.ctrl_xfer_cb = usbh_config->ctrl_xfer_cb;
usbh_obj->constant.ctrl_xfer_cb_arg = usbh_config->ctrl_xfer_cb_arg;
usbh_obj->constant.mux_lock = mux_lock;
//Assign usbh object pointer
USBH_ENTER_CRITICAL();
if (p_usbh_obj != NULL) {
USBH_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
p_usbh_obj = usbh_obj;
USBH_EXIT_CRITICAL();
ret = ESP_OK;
return ret;
assign_err:
ESP_ERROR_CHECK(hcd_uninstall());
hcd_install_err:
alloc_err:
if (mux_lock != NULL) {
vSemaphoreDelete(mux_lock);
}
heap_caps_free(usbh_obj);
return ret;
}
esp_err_t usbh_uninstall(void)
{
//Check that USBH is in a state to be uninstalled
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE);
usbh_t *usbh_obj = p_usbh_obj;
USBH_EXIT_CRITICAL();
esp_err_t ret;
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(usbh_obj->constant.mux_lock, portMAX_DELAY);
if (p_usbh_obj->mux_protected.num_device > 0) {
//There are still devices allocated. Can't uninstall right now.
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//Check again if we can uninstall
USBH_ENTER_CRITICAL();
assert(p_usbh_obj == usbh_obj);
p_usbh_obj = NULL;
USBH_EXIT_CRITICAL();
xSemaphoreGive(usbh_obj->constant.mux_lock);
//Uninstall HCD, free resources
ESP_ERROR_CHECK(hcd_uninstall());
vSemaphoreDelete(usbh_obj->constant.mux_lock);
heap_caps_free(usbh_obj);
ret = ESP_OK;
return ret;
exit:
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return ret;
}
esp_err_t usbh_process(void)
{
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE);
//Keep clearing devices with events
while (!TAILQ_EMPTY(&p_usbh_obj->dynamic.devs_pending_tailq)){
//Move the device back into the idle device list,
device_t *dev_obj = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_pending_tailq);
TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry);
//Clear the device's flags
uint32_t action_flags = dev_obj->dynamic.flags.actions;
dev_obj->dynamic.flags.actions = 0;
dev_obj->dynamic.flags.in_pending_list = 0;
/* ---------------------------------------------------------------------
Exit critical section to handle device action flags in their listed order
--------------------------------------------------------------------- */
USBH_EXIT_CRITICAL();
ESP_LOGD(USBH_TAG, "Processing actions 0x%x", action_flags);
//Sanity check. If the device is being freed, there must not be any other action flags set
assert(!(action_flags & DEV_FLAG_ACTION_FREE) || action_flags == DEV_FLAG_ACTION_FREE);
if (action_flags & DEV_FLAG_ACTION_PIPE_HALT_AND_FLUSH) {
handle_pipe_halt_and_flush(dev_obj);
}
if (action_flags & DEV_FLAG_ACTION_DEFAULT_PIPE_FLUSH) {
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_HALT));
ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_FLUSH));
}
if (action_flags & DEV_FLAG_ACTION_DEFAULT_PIPE_DEQUEUE) {
//Empty URBs from default pipe and trigger a control transfer callback
ESP_LOGD(USBH_TAG, "Default pipe device %d", dev_obj->constant.address);
int num_urbs = 0;
urb_t *urb = hcd_urb_dequeue(dev_obj->constant.default_pipe);
while (urb != NULL) {
num_urbs++;
p_usbh_obj->constant.ctrl_xfer_cb((usb_device_handle_t)dev_obj, urb, p_usbh_obj->constant.ctrl_xfer_cb_arg);
urb = hcd_urb_dequeue(dev_obj->constant.default_pipe);
}
USBH_ENTER_CRITICAL();
dev_obj->dynamic.num_ctrl_xfers_inflight -= num_urbs;
USBH_EXIT_CRITICAL();
}
if (action_flags & DEV_FLAG_ACTION_DEFAULT_PIPE_CLEAR) {
//We allow the pipe command to fail just in case the pipe becomes invalid mid command
hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_CLEAR);
}
if (action_flags & DEV_FLAG_ACTION_SEND_GONE_EVENT) {
//Flush the default pipe. Then do an event gone
ESP_LOGE(USBH_TAG, "Device %d gone", dev_obj->constant.address);
p_usbh_obj->constant.event_cb((usb_device_handle_t)dev_obj, USBH_EVENT_DEV_GONE, p_usbh_obj->constant.event_cb_arg);
}
/*
Note: We make these action flags mutually exclusive in case they happen in rapid succession. They are handled
in the order of precedence
For example
- New device event is requested followed immediately by a disconnection
- Port disable requested followed immediately by a disconnection
*/
if (action_flags & DEV_FLAG_ACTION_FREE) {
ESP_LOGD(USBH_TAG, "Freeing device %d", dev_obj->constant.address);
if (handle_dev_free(dev_obj)) {
ESP_LOGD(USBH_TAG, "Device all free");
p_usbh_obj->constant.event_cb((usb_device_handle_t)NULL, USBH_EVENT_DEV_ALL_FREE, p_usbh_obj->constant.event_cb_arg);
}
} else if (action_flags & DEV_FLAG_ACTION_PORT_DISABLE) {
//Request that the HUB disables this device's port
ESP_LOGD(USBH_TAG, "Disable device port %d", dev_obj->constant.address);
p_usbh_obj->constant.hub_cb(dev_obj->constant.port_hdl, USBH_HUB_EVENT_DISABLE_PORT, p_usbh_obj->constant.hub_cb_arg);
} else if (action_flags & DEV_FLAG_ACTION_SEND_NEW) {
ESP_LOGD(USBH_TAG, "New device %d", dev_obj->constant.address);
p_usbh_obj->constant.event_cb((usb_device_handle_t)dev_obj, USBH_EVENT_DEV_NEW, p_usbh_obj->constant.event_cb_arg);
}
USBH_ENTER_CRITICAL();
/* ---------------------------------------------------------------------
Re-enter critical sections. All device action flags should have been handled.
--------------------------------------------------------------------- */
}
USBH_EXIT_CRITICAL();
return ESP_OK;
}
// ------------------------------------------------ Device Functions ---------------------------------------------------
// --------------------- Device Pool -----------------------
esp_err_t usbh_dev_addr_list_fill(int list_len, uint8_t *dev_addr_list, int *num_dev_ret)
{
USBH_CHECK(dev_addr_list != NULL && num_dev_ret != NULL, ESP_ERR_INVALID_ARG);
USBH_ENTER_CRITICAL();
int num_filled = 0;
device_t *dev_obj;
//Fill list with devices from idle tailq
TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) {
if (num_filled < list_len) {
dev_addr_list[num_filled] = dev_obj->constant.address;
num_filled++;
} else {
break;
}
}
//Fill list with devices from pending tailq
TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_pending_tailq, dynamic.tailq_entry) {
if (num_filled < list_len) {
dev_addr_list[num_filled] = dev_obj->constant.address;
num_filled++;
} else {
break;
}
}
USBH_EXIT_CRITICAL();
//Write back number of devices filled
*num_dev_ret = num_filled;
return ESP_OK;
}
esp_err_t usbh_dev_open(uint8_t dev_addr, usb_device_handle_t *dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
USBH_ENTER_CRITICAL();
//Go through the device lists to find the device with the specified address
device_t *found_dev_obj = NULL;
device_t *dev_obj;
TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) {
if (dev_obj->constant.address == dev_addr) {
found_dev_obj = dev_obj;
goto exit;
}
}
TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) {
if (dev_obj->constant.address == dev_addr) {
found_dev_obj = dev_obj;
goto exit;
}
}
exit:
if (found_dev_obj != NULL) {
//The device is not in a state to be referenced
if (dev_obj->dynamic.flags.is_gone || dev_obj->dynamic.flags.waiting_port_disable || dev_obj->dynamic.flags.waiting_free) {
ret = ESP_ERR_INVALID_STATE;
} else {
dev_obj->dynamic.ref_count++;
*dev_hdl = (usb_device_handle_t)found_dev_obj;
ret = ESP_OK;
}
} else {
ret = ESP_ERR_NOT_FOUND;
}
USBH_EXIT_CRITICAL();
return ret;
}
esp_err_t usbh_dev_close(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(dev_obj->dynamic.num_ctrl_xfers_inflight == 0, ESP_ERR_INVALID_STATE);
dev_obj->dynamic.ref_count--;
bool call_notif_cb = false;
if (dev_obj->dynamic.ref_count == 0) {
//Sanity check. This can only be set when ref count reaches 0
assert(!dev_obj->dynamic.flags.waiting_free);
if (dev_obj->dynamic.flags.is_gone) {
//Device is already gone so it's port is already disabled. Trigger the USBH process to free the device
dev_obj->dynamic.flags.waiting_free = 1;
call_notif_cb = _dev_set_actions(dev_obj, DEV_FLAG_ACTION_FREE);
} else if (dev_obj->dynamic.flags.waiting_close) {
//Device is still connected but is no longer needed. Trigger the USBH process to request device's port be disabled
dev_obj->dynamic.flags.waiting_port_disable = 1;
call_notif_cb = _dev_set_actions(dev_obj, DEV_FLAG_ACTION_PORT_DISABLE);
}
//Else, there's nothing to do. Leave the device allocated
}
USBH_EXIT_CRITICAL();
if (call_notif_cb) {
p_usbh_obj->constant.notif_cb(USB_NOTIF_SOURCE_USBH, false, p_usbh_obj->constant.notif_cb_arg);
}
return ESP_OK;
}
esp_err_t usbh_dev_mark_all_free(void)
{
USBH_ENTER_CRITICAL();
/*
Go through the device list and mark each device as waiting to be closed. If the device is not opened at all, we can
disable it immediately.
Note: We manually traverse the list because we need to add/remove items while traversing
*/
bool call_notif_cb = false;
bool wait_for_free = false;
for (int i = 0; i < 2; i++) {
device_t *dev_obj_cur;
device_t *dev_obj_next;
//Go through pending list first as it's more efficient
if (i == 0) {
dev_obj_cur = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_pending_tailq);
} else {
dev_obj_cur = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_idle_tailq);
}
while (dev_obj_cur != NULL) {
assert(!dev_obj_cur->dynamic.flags.waiting_close); //Sanity check
//Keep a copy of the next item first in case we remove the current item
dev_obj_next = TAILQ_NEXT(dev_obj_cur, dynamic.tailq_entry);
if (dev_obj_cur->dynamic.ref_count == 0 && !dev_obj_cur->dynamic.flags.is_gone) {
//Device is not opened as is not gone, so we can disable it now
dev_obj_cur->dynamic.flags.waiting_port_disable = 1;
call_notif_cb |= _dev_set_actions(dev_obj_cur, DEV_FLAG_ACTION_PORT_DISABLE);
} else {
//Device is still opened. Just mark it as waiting to be closed
dev_obj_cur->dynamic.flags.waiting_close = 1;
}
wait_for_free = true; //As long as there is still a device, we need to wait for an event indicating it is freed
dev_obj_cur = dev_obj_next;
}
}
USBH_EXIT_CRITICAL();
if (call_notif_cb) {
p_usbh_obj->constant.notif_cb(USB_NOTIF_SOURCE_USBH, false, p_usbh_obj->constant.notif_cb_arg);
}
return (wait_for_free) ? ESP_ERR_NOT_FINISHED : ESP_OK;
}
// ------------------- Single Device ----------------------
esp_err_t usbh_dev_get_addr(usb_device_handle_t dev_hdl, uint8_t *dev_addr)
{
USBH_CHECK(dev_hdl != NULL && dev_addr != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(dev_obj->constant.address > 0, ESP_ERR_INVALID_STATE);
*dev_addr = dev_obj->constant.address;
USBH_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t usbh_dev_get_info(usb_device_handle_t dev_hdl, usb_device_info_t *dev_info)
{
USBH_CHECK(dev_hdl != NULL && dev_info != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
esp_err_t ret;
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
//Device must be configured, or not attached (if it suddenly disconnected)
USBH_ENTER_CRITICAL();
if (!(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED || dev_obj->dynamic.state == USB_DEVICE_STATE_NOT_ATTACHED)) {
USBH_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//Critical section for the dynamic members
dev_info->speed = dev_obj->constant.speed;
dev_info->dev_addr = dev_obj->constant.address;
dev_info->bMaxPacketSize0 = dev_obj->constant.desc->bMaxPacketSize0;
USBH_EXIT_CRITICAL();
if (dev_obj->mux_protected.config_desc == NULL) {
dev_info->bConfigurationValue = 0;
} else {
dev_info->bConfigurationValue = dev_obj->mux_protected.config_desc->bConfigurationValue;
}
ret = ESP_OK;
exit:
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return ret;
}
esp_err_t usbh_dev_get_desc(usb_device_handle_t dev_hdl, const usb_device_desc_t **dev_desc_ret)
{
USBH_CHECK(dev_hdl != NULL && dev_desc_ret != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED, ESP_ERR_INVALID_STATE);
USBH_EXIT_CRITICAL();
*dev_desc_ret = dev_obj->constant.desc;
return ESP_OK;
}
esp_err_t usbh_dev_get_config_desc(usb_device_handle_t dev_hdl, const usb_config_desc_t **config_desc_ret)
{
USBH_CHECK(dev_hdl != NULL && config_desc_ret != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
esp_err_t ret;
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
//Device must be in the configured state
USBH_ENTER_CRITICAL();
if (dev_obj->dynamic.state != USB_DEVICE_STATE_CONFIGURED) {
USBH_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
USBH_EXIT_CRITICAL();
*config_desc_ret = dev_obj->mux_protected.config_desc;
ret = ESP_OK;
exit:
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return ret;
}
esp_err_t usbh_dev_submit_ctrl_urb(usb_device_handle_t dev_hdl, urb_t *urb)
{
USBH_CHECK(dev_hdl != NULL && urb != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED, ESP_ERR_INVALID_STATE);
//Increment the control transfer count first
dev_obj->dynamic.num_ctrl_xfers_inflight++;
USBH_EXIT_CRITICAL();
esp_err_t ret;
if (hcd_pipe_get_state(dev_obj->constant.default_pipe) != HCD_PIPE_STATE_ACTIVE) {
ret = ESP_ERR_INVALID_STATE;
goto hcd_err;
}
ret = hcd_urb_enqueue(dev_obj->constant.default_pipe, urb);
if (ret != ESP_OK) {
goto hcd_err;
}
ret = ESP_OK;
return ret;
hcd_err:
USBH_ENTER_CRITICAL();
dev_obj->dynamic.num_ctrl_xfers_inflight--;
USBH_EXIT_CRITICAL();
return ret;
}
// ----------------------------------------------- Interface Functions -------------------------------------------------
esp_err_t usbh_ep_alloc(usb_device_handle_t dev_hdl, usbh_ep_config_t *ep_config, hcd_pipe_handle_t *pipe_hdl_ret)
{
USBH_CHECK(dev_hdl != NULL && ep_config != NULL && pipe_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED, ESP_ERR_INVALID_STATE);
dev_obj->dynamic.ref_count++; //Increase the ref_count to keep the device alive while allocating the endpoint
USBH_EXIT_CRITICAL();
esp_err_t ret;
//Allocate HCD pipe
hcd_pipe_config_t pipe_config = {
.callback = ep_config->pipe_cb,
.callback_arg = ep_config->pipe_cb_arg,
.context = ep_config->context,
.ep_desc = ep_config->ep_desc,
.dev_speed = dev_obj->constant.speed,
.dev_addr = dev_obj->constant.address,
};
hcd_pipe_handle_t pipe_hdl;
ret = hcd_pipe_alloc(dev_obj->constant.port_hdl, &pipe_config, &pipe_hdl);
if (ret != ESP_OK) {
goto pipe_alloc_err;
}
bool is_in = ep_config->ep_desc->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
uint8_t addr = ep_config->ep_desc->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK;
bool assigned = false;
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
if (is_in && dev_obj->mux_protected.ep_in[addr - 1] == NULL) { //Is an IN EP
dev_obj->mux_protected.ep_in[addr - 1] = pipe_hdl;
assigned = true;
} else {
dev_obj->mux_protected.ep_out[addr - 1] = pipe_hdl;
assigned = true;
}
//Restore ref_count
USBH_ENTER_CRITICAL();
dev_obj->dynamic.ref_count--;
USBH_EXIT_CRITICAL();
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
if (!assigned) {
ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
//Write back output
*pipe_hdl_ret = pipe_hdl;
ret = ESP_OK;
return ret;
assign_err:
ESP_ERROR_CHECK(hcd_pipe_free(pipe_hdl));
pipe_alloc_err:
return ret;
}
esp_err_t usbh_ep_free(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
esp_err_t ret;
bool is_in = bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
uint8_t addr = bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK;
hcd_pipe_handle_t pipe_hdl;
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
//Check if the EP was previously allocated. If so, set it to NULL
if (is_in) {
if (dev_obj->mux_protected.ep_in[addr - 1] != NULL) {
pipe_hdl = dev_obj->mux_protected.ep_in[addr - 1];
dev_obj->mux_protected.ep_in[addr - 1] = NULL;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
} else {
//EP must have been previously allocated
if (dev_obj->mux_protected.ep_out[addr - 1] != NULL) {
pipe_hdl = dev_obj->mux_protected.ep_out[addr - 1];
dev_obj->mux_protected.ep_out[addr - 1] = NULL;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
}
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
if (ret == ESP_OK) {
ESP_ERROR_CHECK(hcd_pipe_free(pipe_hdl));
}
return ret;
}
esp_err_t usbh_ep_get_context(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress, void **context_ret)
{
bool is_in = bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
uint8_t addr = bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK;
USBH_CHECK(dev_hdl != NULL &&
addr >= EP_NUM_MIN && //Control endpoints are owned by the USBH
addr <= EP_NUM_MAX &&
context_ret != NULL,
ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj = (device_t *)dev_hdl;
hcd_pipe_handle_t pipe_hdl;
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
//Get the endpoint's corresponding pipe
if (is_in) {
pipe_hdl = dev_obj->mux_protected.ep_in[addr - 1];
} else {
pipe_hdl = dev_obj->mux_protected.ep_out[addr - 1];
}
//Check if the EP was allocated to begin with
if (pipe_hdl == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
//Return the context of the pipe
void *context = hcd_pipe_get_context(pipe_hdl);
*context_ret = context;
ret = ESP_OK;
exit:
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
return ret;
}
// -------------------------------------------------- Hub Functions ----------------------------------------------------
// ------------------- Device Related ----------------------
esp_err_t usbh_hub_is_installed(usbh_hub_cb_t hub_callback, void *callback_arg)
{
USBH_CHECK(hub_callback != NULL, ESP_ERR_INVALID_ARG);
USBH_ENTER_CRITICAL();
//Check that USBH is already installed
USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE);
//Check that Hub has not be installed yet
USBH_CHECK_FROM_CRIT(p_usbh_obj->constant.hub_cb == NULL, ESP_ERR_INVALID_STATE);
p_usbh_obj->constant.hub_cb = hub_callback;
p_usbh_obj->constant.hub_cb_arg = callback_arg;
USBH_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t usbh_hub_add_dev(hcd_port_handle_t port_hdl, usb_speed_t dev_speed, usb_device_handle_t *new_dev_hdl, hcd_pipe_handle_t *default_pipe_hdl)
{
//Note: Parent device handle can be NULL if it's connected to the root hub
USBH_CHECK(new_dev_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
device_t *dev_obj;
ret = device_alloc(port_hdl, dev_speed, &dev_obj);
if (ret != ESP_OK) {
return ret;
}
//Write-back device handle
*new_dev_hdl = (usb_device_handle_t)dev_obj;
*default_pipe_hdl = dev_obj->constant.default_pipe;
ret = ESP_OK;
return ret;
}
esp_err_t usbh_hub_mark_dev_gone(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
dev_obj->dynamic.flags.is_gone = 1;
bool call_notif_cb;
//Check if the device can be freed now
if (dev_obj->dynamic.ref_count == 0) {
dev_obj->dynamic.flags.waiting_free = 1;
//Device is already waiting free so none of it's pipes will be in use. Can free immediately.
call_notif_cb = _dev_set_actions(dev_obj, DEV_FLAG_ACTION_FREE);
} else {
call_notif_cb = _dev_set_actions(dev_obj, DEV_FLAG_ACTION_PIPE_HALT_AND_FLUSH |
DEV_FLAG_ACTION_DEFAULT_PIPE_FLUSH |
DEV_FLAG_ACTION_DEFAULT_PIPE_DEQUEUE |
DEV_FLAG_ACTION_SEND_GONE_EVENT);
}
USBH_EXIT_CRITICAL();
if (call_notif_cb) {
p_usbh_obj->constant.notif_cb(USB_NOTIF_SOURCE_USBH, false, p_usbh_obj->constant.notif_cb_arg);
}
return ESP_OK;
}
esp_err_t usbh_hub_dev_port_disabled(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
assert(dev_obj->dynamic.ref_count == 0); //At this stage, the device should have been closed by all users
dev_obj->dynamic.flags.waiting_free = 1;
bool call_notif_cb = _dev_set_actions(dev_obj, DEV_FLAG_ACTION_FREE);
USBH_EXIT_CRITICAL();
if (call_notif_cb) {
ESP_LOGD(USBH_TAG, "Notif free");
p_usbh_obj->constant.notif_cb(USB_NOTIF_SOURCE_USBH, false, p_usbh_obj->constant.notif_cb_arg);
}
return ESP_OK;
}
// ----------------- Enumeration Related -------------------
esp_err_t usbh_hub_enum_fill_dev_addr(usb_device_handle_t dev_hdl, uint8_t dev_addr)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_ENTER_CRITICAL();
USBH_CHECK_FROM_CRIT(dev_obj->constant.enum_todo_flags & DEV_ENUM_TODO_FLAG_DEV_ADDR, ESP_ERR_INVALID_STATE);
dev_obj->dynamic.state = USB_DEVICE_STATE_ADDRESS;
USBH_EXIT_CRITICAL();
//We can modify the info members outside the critical section
dev_obj->constant.enum_todo_flags &= ~DEV_ENUM_TODO_FLAG_DEV_ADDR;
dev_obj->constant.address = dev_addr;
return ESP_OK;
}
esp_err_t usbh_hub_enum_fill_dev_desc(usb_device_handle_t dev_hdl, const usb_device_desc_t *device_desc)
{
USBH_CHECK(dev_hdl != NULL && device_desc != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
//We can modify the info members outside the critical section
USBH_CHECK(dev_obj->constant.enum_todo_flags & DEV_ENUM_TODO_FLAG_DEV_DESC, ESP_ERR_INVALID_STATE);
dev_obj->constant.enum_todo_flags &= ~DEV_ENUM_TODO_FLAG_DEV_DESC;
memcpy((usb_device_desc_t *)dev_obj->constant.desc, device_desc, sizeof(usb_device_desc_t));
return ESP_OK;
}
esp_err_t usbh_hub_enum_fill_config_desc(usb_device_handle_t dev_hdl, const usb_config_desc_t *config_desc_full)
{
USBH_CHECK(dev_hdl != NULL && config_desc_full != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
esp_err_t ret;
//Allocate memory to store the configuration descriptor
usb_config_desc_t *config_desc = heap_caps_malloc(config_desc_full->wTotalLength, MALLOC_CAP_DEFAULT); //Buffer to copy over full configuration descriptor (wTotalLength)
if (config_desc == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
//Copy the configuration descriptor
memcpy(config_desc, config_desc_full, config_desc_full->wTotalLength);
//Assign the config object to the device object
if (!(dev_obj->constant.enum_todo_flags & DEV_ENUM_TODO_FLAG_CONFIG_DESC)) {
ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
assert(dev_obj->mux_protected.config_desc == NULL);
dev_obj->mux_protected.config_desc = config_desc;
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
//We can modify the info members outside the critical section
dev_obj->constant.enum_todo_flags &= ~DEV_ENUM_TODO_FLAG_CONFIG_DESC;
ret = ESP_OK;
return ret;
assign_err:
heap_caps_free(config_desc);
err:
return ret;
}
esp_err_t usbh_hub_enum_done(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
USBH_CHECK(dev_obj->constant.enum_todo_flags == 0, ESP_ERR_INVALID_STATE); //All enumeration stages to be done
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
USBH_ENTER_CRITICAL();
dev_obj->dynamic.state = USB_DEVICE_STATE_CONFIGURED;
//Add the device to list of devices, then trigger a device event
TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry); //Add it to the idle device list first
bool call_notif_cb = _dev_set_actions(dev_obj, DEV_FLAG_ACTION_SEND_NEW);
USBH_EXIT_CRITICAL();
p_usbh_obj->mux_protected.num_device++;
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
//Update the default pipe callback
ESP_ERROR_CHECK(hcd_pipe_update_callback(dev_obj->constant.default_pipe, default_pipe_callback, (void *)dev_obj));
//Call the notification callback
if (call_notif_cb) {
p_usbh_obj->constant.notif_cb(USB_NOTIF_SOURCE_USBH, false, p_usbh_obj->constant.notif_cb_arg);
}
return ESP_OK;
}
esp_err_t usbh_hub_enum_failed(usb_device_handle_t dev_hdl)
{
USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG);
device_t *dev_obj = (device_t *)dev_hdl;
//We need to take the mux_lock to access mux_protected members
xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY);
usb_config_desc_t *config_desc = dev_obj->mux_protected.config_desc;
dev_obj->mux_protected.config_desc = NULL;
xSemaphoreGive(p_usbh_obj->constant.mux_lock);
if (config_desc) {
heap_caps_free(config_desc);
}
device_free(dev_obj);
return ESP_OK;
}