esp-idf/components/esp_system/port/soc/esp32p4/clk.c
nilesh.kale f6a7fb13cd feat: re enables tests on p4
This commit re-enables mbedtls and hal/crypto testapos on p4.
2024-03-05 17:48:05 +08:00

274 lines
11 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_clk_internal.h"
#include "esp32p4/rom/ets_sys.h"
#include "esp32p4/rom/uart.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/i2s_reg.h"
#include "soc/hp_sys_clkrst_reg.h"
#include "esp_cpu.h"
#include "hal/wdt_hal.h"
#include "esp_private/esp_modem_clock.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
#include "esp_private/esp_pmu.h"
#include "esp_rom_uart.h"
#include "esp_rom_sys.h"
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
* Larger values increase startup delay. Smaller values may cause false positive
* detection (i.e. oscillator runs for a few cycles and then stops).
*/
#define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES
#define MHZ (1000000)
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src);
static const char *TAG = "clk";
__attribute__((weak)) void esp_clk_init(void)
{
#if SOC_PMU_SUPPORTED
pmu_init();
#endif //SOC_PMU_SUPPORTED
assert(rtc_clk_xtal_freq_get() == SOC_XTAL_FREQ_40M);
rtc_clk_8m_enable(true);
rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST);
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
// Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec).
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec).
wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT();
uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
//Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
#if defined(CONFIG_RTC_CLK_SRC_EXT_CRYS)
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
#elif defined(CONFIG_RTC_CLK_SRC_INT_RC32K)
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC32K);
#else
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC_SLOW);
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// After changing a frequency WDT timeout needs to be set for new frequency.
stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
rtc_cpu_freq_config_t old_config, new_config;
rtc_clk_cpu_freq_get_config(&old_config);
const uint32_t old_freq_mhz = old_config.freq_mhz;
const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ;
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
assert(res);
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
esp_rom_output_tx_wait_idle(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM);
if (res) {
rtc_clk_cpu_freq_set_config(&new_config);
}
// Re calculate the ccount to make time calculation correct.
esp_cpu_set_cycle_count((uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz);
// Set crypto clock (`clk_sec`) to use 240M PLL clock
REG_SET_FIELD(HP_SYS_CLKRST_PERI_CLK_CTRL25_REG, HP_SYS_CLKRST_REG_CRYPTO_CLK_SRC_SEL, 0x2);
}
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src)
{
uint32_t cal_val = 0;
/* number of times to repeat 32k XTAL calibration
* before giving up and switching to the internal RC
*/
int retry_32k_xtal = 3;
do {
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
rtc_cal_sel_t cal_sel = 0;
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
rtc_clk_32k_enable(true);
cal_sel = RTC_CAL_32K_XTAL;
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(cal_sel, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0) {
if (retry_32k_xtal-- > 0) {
continue;
}
ESP_EARLY_LOGW(TAG, "32 kHz clock not found, switching to internal 150 kHz oscillator");
rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
}
}
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) {
rtc_clk_rc32k_enable(true);
}
rtc_clk_slow_src_set(rtc_slow_clk_src);
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
* Improve calibration routine to wait until the frequency is stable.
*/
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t)(cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
esp_clk_slowclk_cal_set(cal_val);
}
void rtc_clk_select_rtc_slow_clk(void)
{
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
}
/* This function is not exposed as an API at this point.
* All peripheral clocks are default enabled after chip is powered on.
* This function disables some peripheral clocks when cpu starts.
* These peripheral clocks are enabled when the peripherals are initialized
* and disabled when they are de-initialized.
*/
__attribute__((weak)) void esp_perip_clk_init(void)
{
ESP_EARLY_LOGW(TAG, "esp_perip_clk_init() has not been implemented yet");
#if 0 // TODO: IDF-5658
uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0;
uint32_t common_perip_clk1 = 0;
soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
/* For reason that only reset CPU, do not disable the clocks
* that have been enabled before reset.
*/
if (rst_reason == RESET_REASON_CPU0_MWDT0 || rst_reason == RESET_REASON_CPU0_SW ||
rst_reason == RESET_REASON_CPU0_RTC_WDT || rst_reason == RESET_REASON_CPU0_MWDT1) {
common_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN0_REG);
hwcrypto_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN1_REG);
wifi_bt_sdio_clk = ~READ_PERI_REG(SYSTEM_WIFI_CLK_EN_REG);
} else {
common_perip_clk = SYSTEM_WDG_CLK_EN |
SYSTEM_I2S0_CLK_EN |
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_LEDC_CLK_EN |
SYSTEM_TIMERGROUP1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_TWAI_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN;
common_perip_clk1 = 0;
hwcrypto_perip_clk = SYSTEM_CRYPTO_AES_CLK_EN |
SYSTEM_CRYPTO_SHA_CLK_EN |
SYSTEM_CRYPTO_RSA_CLK_EN;
wifi_bt_sdio_clk = SYSTEM_WIFI_CLK_WIFI_EN |
SYSTEM_WIFI_CLK_BT_EN_M |
SYSTEM_WIFI_CLK_UNUSED_BIT5 |
SYSTEM_WIFI_CLK_UNUSED_BIT12;
}
//Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state.
common_perip_clk |= SYSTEM_I2S0_CLK_EN |
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_UHCI1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_I2C_EXT1_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN;
common_perip_clk1 = 0;
/* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock,
* the current is not reduced when disable I2S clock.
*/
// TOCK(check replacement)
// REG_SET_FIELD(I2S_CLKM_CONF_REG(0), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
// REG_SET_FIELD(I2S_CLKM_CONF_REG(1), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
/* Disable some peripheral clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN0_REG, common_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG, common_perip_clk);
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, common_perip_clk1);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, common_perip_clk1);
/* Disable hardware crypto clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, hwcrypto_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, hwcrypto_perip_clk);
/* Disable WiFi/BT/SDIO clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_EN);
/* Set WiFi light sleep clock source to RTC slow clock */
REG_SET_FIELD(SYSTEM_BT_LPCK_DIV_INT_REG, SYSTEM_BT_LPCK_DIV_NUM, 0);
CLEAR_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_XTAL32K | SYSTEM_LPCLK_SEL_XTAL | SYSTEM_LPCLK_SEL_8M | SYSTEM_LPCLK_SEL_RTC_SLOW);
SET_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_RTC_SLOW);
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
#endif
}