mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
5b54ae76d4
When ESP32-C2 is paired with a 26 MHz XTAL, the systimer tick frequency becomes equal to 26 / 2.5 = 10.4 MHz. Previously we always assumed that systimer tick frequency is integer (and 1 MHz * power of two, above that!). This commit introduces a new LL macro, SYSTIMER_LL_TICKS_PER_US_DIV. It should be set in such a way that: 1. SYSTIMER_LL_TICKS_PER_US / SYSTIMER_LL_TICKS_PER_US_DIV equals the actual systimer tick frequency, 2. and SYSTIMER_LL_TICKS_PER_US is integer. For ESP32-C2 this means that SYSTIMER_LL_TICKS_PER_US = 52 and SYSTIMER_LL_TICKS_PER_US_DIV = 5. This introduced two possible issues: 1. Overflow when multiplying systimer counter by 5 - Should not be an issue, since systimer counter is 52-bit, so counter * 5 is no more than 55-bit. 2. The code needs to perform: - divide by 5: when converting from microseconds to ticks - divide by 52: when converting from ticks to microseconds The latter potentially introduces a performance issue for the esp_timer_get_time function.
187 lines
7.1 KiB
C
187 lines
7.1 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/systimer_hal.h"
|
|
#include "hal/systimer_ll.h"
|
|
#include "hal/systimer_types.h"
|
|
#include "hal/clk_gate_ll.h"
|
|
#include "hal/assert.h"
|
|
|
|
void systimer_hal_init(systimer_hal_context_t *hal)
|
|
{
|
|
hal->dev = &SYSTIMER;
|
|
periph_ll_enable_clk_clear_rst(PERIPH_SYSTIMER_MODULE);
|
|
systimer_ll_enable_clock(hal->dev, true);
|
|
}
|
|
|
|
uint64_t systimer_hal_get_counter_value(systimer_hal_context_t *hal, uint32_t counter_id)
|
|
{
|
|
uint32_t lo, lo_start, hi;
|
|
/* Set the "update" bit and wait for acknowledgment */
|
|
systimer_ll_counter_snapshot(hal->dev, counter_id);
|
|
while (!systimer_ll_is_counter_value_valid(hal->dev, counter_id));
|
|
/* Read LO, HI, then LO again, check that LO returns the same value.
|
|
* This accounts for the case when an interrupt may happen between reading
|
|
* HI and LO values, and this function may get called from the ISR.
|
|
* In this case, the repeated read will return consistent values.
|
|
*/
|
|
lo_start = systimer_ll_get_counter_value_low(hal->dev, counter_id);
|
|
do {
|
|
lo = lo_start;
|
|
hi = systimer_ll_get_counter_value_high(hal->dev, counter_id);
|
|
lo_start = systimer_ll_get_counter_value_low(hal->dev, counter_id);
|
|
} while (lo_start != lo);
|
|
|
|
systimer_counter_value_t result = {
|
|
.lo = lo,
|
|
.hi = hi
|
|
};
|
|
|
|
return result.val;
|
|
}
|
|
|
|
uint64_t systimer_hal_get_time(systimer_hal_context_t *hal, uint32_t counter_id)
|
|
{
|
|
return systimer_hal_get_counter_value(hal, counter_id) * SYSTIMER_LL_TICKS_PER_US_DIV / SYSTIMER_LL_TICKS_PER_US;
|
|
}
|
|
|
|
#if SOC_SYSTIMER_ALARM_MISS_COMPENSATE
|
|
void systimer_hal_set_alarm_target(systimer_hal_context_t *hal, uint32_t alarm_id, uint64_t target)
|
|
{
|
|
systimer_counter_value_t alarm = {
|
|
.val = target * SYSTIMER_LL_TICKS_PER_US / SYSTIMER_LL_TICKS_PER_US_DIV
|
|
};
|
|
systimer_ll_enable_alarm(hal->dev, alarm_id, false);
|
|
systimer_ll_set_alarm_target(hal->dev, alarm_id, alarm.val);
|
|
systimer_ll_apply_alarm_value(hal->dev, alarm_id);
|
|
systimer_ll_enable_alarm(hal->dev, alarm_id, true);
|
|
}
|
|
|
|
#else // SOC_SYSTIMER_ALARM_MISS_COMPENSATE
|
|
|
|
_Static_assert(SYSTIMER_LL_TICKS_PER_US_DIV == 1, "SYSTIMER_LL_TICKS_PER_US_DIV > 1 && !SOC_SYSTIMER_ALARM_MISS_COMPENSATE hasn't been supported");
|
|
|
|
void systimer_hal_set_alarm_target(systimer_hal_context_t *hal, uint32_t alarm_id, uint64_t timestamp)
|
|
{
|
|
int64_t offset = SYSTIMER_LL_TICKS_PER_US * 2;
|
|
uint64_t now_time = systimer_hal_get_counter_value(hal, 0);
|
|
systimer_counter_value_t alarm = { .val = MAX(timestamp * SYSTIMER_LL_TICKS_PER_US, now_time + offset) };
|
|
do {
|
|
systimer_ll_enable_alarm(hal->dev, alarm_id, false);
|
|
systimer_ll_set_alarm_target(hal->dev, alarm_id, alarm.val);
|
|
systimer_ll_enable_alarm(hal->dev, alarm_id, true);
|
|
now_time = systimer_hal_get_counter_value(hal, 0);
|
|
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
|
|
if (delta <= 0 && !systimer_ll_is_alarm_int_fired(hal->dev, alarm_id)) {
|
|
// new alarm is less than the counter and the interrupt flag is not set
|
|
offset += -1 * delta + SYSTIMER_LL_TICKS_PER_US * 2;
|
|
alarm.val = now_time + offset;
|
|
} else {
|
|
// finish if either (alarm > counter) or the interrupt flag is already set.
|
|
break;
|
|
}
|
|
} while (1);
|
|
}
|
|
#endif // SOC_SYSTIMER_ALARM_MISS_COMPENSATE
|
|
|
|
void systimer_hal_set_alarm_period(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t period)
|
|
{
|
|
systimer_ll_enable_alarm(hal->dev, alarm_id, false);
|
|
systimer_ll_set_alarm_period(hal->dev, alarm_id, period * SYSTIMER_LL_TICKS_PER_US / SYSTIMER_LL_TICKS_PER_US_DIV);
|
|
systimer_ll_apply_alarm_value(hal->dev, alarm_id);
|
|
systimer_ll_enable_alarm(hal->dev, alarm_id, true);
|
|
}
|
|
|
|
uint64_t systimer_hal_get_alarm_value(systimer_hal_context_t *hal, uint32_t alarm_id)
|
|
{
|
|
return systimer_ll_get_alarm_target(hal->dev, alarm_id);
|
|
}
|
|
|
|
void systimer_hal_enable_alarm_int(systimer_hal_context_t *hal, uint32_t alarm_id)
|
|
{
|
|
systimer_ll_enable_alarm_int(hal->dev, alarm_id, true);
|
|
}
|
|
|
|
void systimer_hal_counter_value_advance(systimer_hal_context_t *hal, uint32_t counter_id, int64_t time_us)
|
|
{
|
|
systimer_counter_value_t new_count = {
|
|
.val = systimer_hal_get_counter_value(hal, counter_id)
|
|
+ time_us * SYSTIMER_LL_TICKS_PER_US / SYSTIMER_LL_TICKS_PER_US_DIV
|
|
};
|
|
systimer_ll_set_counter_value(hal->dev, counter_id, new_count.val);
|
|
systimer_ll_apply_counter_value(hal->dev, counter_id);
|
|
}
|
|
|
|
void systimer_hal_enable_counter(systimer_hal_context_t *hal, uint32_t counter_id)
|
|
{
|
|
systimer_ll_enable_counter(hal->dev, counter_id, true);
|
|
}
|
|
|
|
void systimer_hal_select_alarm_mode(systimer_hal_context_t *hal, uint32_t alarm_id, systimer_alarm_mode_t mode)
|
|
{
|
|
switch (mode) {
|
|
case SYSTIMER_ALARM_MODE_ONESHOT:
|
|
systimer_ll_enable_alarm_oneshot(hal->dev, alarm_id);
|
|
break;
|
|
case SYSTIMER_ALARM_MODE_PERIOD:
|
|
systimer_ll_enable_alarm_period(hal->dev, alarm_id);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void systimer_hal_connect_alarm_counter(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t counter_id)
|
|
{
|
|
systimer_ll_connect_alarm_counter(hal->dev, alarm_id, counter_id);
|
|
}
|
|
|
|
void systimer_hal_counter_can_stall_by_cpu(systimer_hal_context_t *hal, uint32_t counter_id, uint32_t cpu_id, bool can)
|
|
{
|
|
systimer_ll_counter_can_stall_by_cpu(hal->dev, counter_id, cpu_id, can);
|
|
}
|
|
|
|
#if !SOC_SYSTIMER_HAS_FIXED_TICKS_PER_US
|
|
|
|
_Static_assert(SYSTIMER_LL_TICKS_PER_US_DIV == 1, "SYSTIMER_LL_TICKS_PER_US_DIV > 1 && !SOC_SYSTIMER_HAS_FIXED_TICKS_PER_US hasn't been supported");
|
|
|
|
void systimer_hal_set_steps_per_tick(systimer_hal_context_t *hal, int clock_source, uint32_t steps)
|
|
{
|
|
/* Configure the counter:
|
|
* - increment by 1 when running from PLL (80 ticks per microsecond),
|
|
* - increment by 2 when running from XTAL (40 ticks per microsecond).
|
|
* Note that if the APB frequency is derived from XTAL with divider != 1,
|
|
* XTAL_STEP needs to be adjusted accordingly. For example, if
|
|
* the APB frequency is XTAL/4 = 10 MHz, then XTAL_STEP should be set to 8.
|
|
* This is handled in systimer_hal_on_apb_freq_update function.
|
|
*/
|
|
switch (clock_source) {
|
|
case 0:
|
|
systimer_ll_set_step_for_xtal(hal->dev, steps);
|
|
break;
|
|
case 1:
|
|
systimer_ll_set_step_for_pll(hal->dev, steps);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void systimer_hal_on_apb_freq_update(systimer_hal_context_t *hal, uint32_t apb_ticks_per_us)
|
|
{
|
|
/* If this function was called when switching APB clock to PLL, don't need
|
|
* do anything: the SYSTIMER_TIMER_PLL_STEP is already correct.
|
|
* If this was called when switching APB clock to XTAL, need to adjust
|
|
* XTAL_STEP value accordingly.
|
|
*/
|
|
if (apb_ticks_per_us != SYSTIMER_LL_TICKS_PER_US) {
|
|
HAL_ASSERT((SYSTIMER_LL_TICKS_PER_US % apb_ticks_per_us) == 0 && "TICK_PER_US should be divisible by APB frequency (in MHz)");
|
|
systimer_ll_set_step_for_xtal(hal->dev, SYSTIMER_LL_TICKS_PER_US / apb_ticks_per_us);
|
|
}
|
|
}
|
|
#endif // !SOC_SYSTIMER_HAS_FIXED_TICKS_PER_US
|