mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
233 lines
7.4 KiB
C
233 lines
7.4 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include "esp_crypto_lock.h"
|
|
#include "bignum_impl.h"
|
|
#include "mbedtls/bignum.h"
|
|
#include "esp_private/esp_crypto_lock_internal.h"
|
|
|
|
#include "hal/mpi_hal.h"
|
|
#include "hal/mpi_ll.h"
|
|
|
|
void esp_mpi_enable_hardware_hw_op( void )
|
|
{
|
|
esp_crypto_mpi_lock_acquire();
|
|
|
|
/* Enable RSA hardware */
|
|
MPI_RCC_ATOMIC() {
|
|
mpi_ll_enable_bus_clock(true);
|
|
mpi_ll_reset_register();
|
|
}
|
|
|
|
mpi_hal_enable_hardware_hw_op();
|
|
}
|
|
|
|
|
|
void esp_mpi_disable_hardware_hw_op( void )
|
|
{
|
|
mpi_hal_disable_hardware_hw_op();
|
|
|
|
/* Disable RSA hardware */
|
|
MPI_RCC_ATOMIC() {
|
|
mpi_ll_enable_bus_clock(false);
|
|
}
|
|
|
|
esp_crypto_mpi_lock_release();
|
|
}
|
|
|
|
size_t esp_mpi_hardware_words(size_t words)
|
|
{
|
|
return mpi_hal_calc_hardware_words(words);
|
|
}
|
|
|
|
|
|
void esp_mpi_interrupt_enable(bool enable)
|
|
{
|
|
mpi_hal_interrupt_enable(enable);
|
|
}
|
|
|
|
|
|
void esp_mpi_interrupt_clear(void)
|
|
{
|
|
mpi_hal_clear_interrupt();
|
|
}
|
|
|
|
|
|
/* Z = (X * Y) mod M */
|
|
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
|
mpi_hal_set_mode((num_words / 16) - 1);
|
|
#else
|
|
mpi_hal_set_mode(num_words - 1);
|
|
#endif
|
|
|
|
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
|
|
|
#if !CONFIG_IDF_TARGET_ESP32
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
|
#endif
|
|
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_write_m_prime(Mprime);
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
mpi_hal_start_op(MPI_MULT);
|
|
mpi_hal_wait_op_complete();
|
|
/* execute second stage */
|
|
/* Load Y to X input memory block, rerun */
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_start_op(MPI_MULT);
|
|
#else
|
|
mpi_hal_start_op(MPI_MODMULT);
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
/* Z = X * Y */
|
|
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
|
{
|
|
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_Z, num_words * 4, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
|
/* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
|
|
This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
|
*/
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
mpi_hal_write_m_prime(0);
|
|
/* "mode" register loaded with number of 512-bit blocks in result,
|
|
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
|
|
*/
|
|
mpi_hal_set_mode(((num_words * 2) / 16) + 7);
|
|
#else
|
|
mpi_hal_set_mode(num_words * 2 - 1);
|
|
#endif
|
|
|
|
mpi_hal_start_op(MPI_MULT);
|
|
}
|
|
|
|
|
|
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
|
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
|
A or B are >2048 bits so can't use the standard multiplication method.
|
|
|
|
Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
|
|
|
|
This case is simpler than the general case modulo multiply of
|
|
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
|
|
|
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
|
* Mprime and Rinv are therefore predictable as follows:
|
|
isn't actually modulo anything.
|
|
Mprime 1
|
|
Rinv 1
|
|
|
|
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
|
*/
|
|
|
|
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
|
{
|
|
/* M = 2^num_words - 1, so block is entirely FF */
|
|
for (int i = 0; i < num_words; i++) {
|
|
mpi_hal_write_at_offset(MPI_PARAM_M, i * 4, UINT32_MAX);
|
|
}
|
|
|
|
/* Mprime = 1 */
|
|
mpi_hal_write_m_prime(1);
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
|
mpi_hal_set_mode((num_words / 16) - 1);
|
|
#else
|
|
mpi_hal_set_mode(num_words - 1);
|
|
#endif
|
|
|
|
/* Load X & Y */
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
|
#if !CONFIG_IDF_TARGET_ESP32
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
|
#endif
|
|
/* Rinv = 1, write first word */
|
|
mpi_hal_write_rinv(1);
|
|
|
|
/* Zero out rest of the Rinv words */
|
|
for (int i = 1; i < num_words; i++) {
|
|
mpi_hal_write_at_offset(MPI_PARAM_Z, i * 4, 0);
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
mpi_hal_start_op(MPI_MULT);
|
|
mpi_hal_wait_op_complete();
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_start_op(MPI_MULT);
|
|
#else
|
|
mpi_hal_start_op(MPI_MODMULT);
|
|
#endif
|
|
}
|
|
|
|
#ifdef ESP_MPI_USE_MONT_EXP
|
|
int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi_uint Mprime, size_t hw_words, bool again)
|
|
{
|
|
// Note Z may be the same pointer as X or Y
|
|
int ret = 0;
|
|
|
|
// montgomery mult prepare
|
|
if (again == false) {
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), hw_words);
|
|
mpi_hal_write_m_prime(Mprime);
|
|
mpi_hal_set_mode((hw_words / 16) - 1);
|
|
}
|
|
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), hw_words);
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), hw_words);
|
|
|
|
mpi_hal_start_op(MPI_MULT);
|
|
|
|
Z->MBEDTLS_PRIVATE(s) = 1; // The sign of Z will be = M->s (but M->s is always 1)
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
|
|
|
|
/* Read back the result */
|
|
mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), hw_words);
|
|
|
|
/* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
|
|
if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
|
|
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
|
|
}
|
|
cleanup:
|
|
return ret;
|
|
}
|
|
|
|
#else
|
|
/* Z = (X ^ Y) mod M
|
|
*/
|
|
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
|
{
|
|
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
|
mpi_hal_set_mode(num_words - 1);
|
|
|
|
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words);
|
|
mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words);
|
|
|
|
mpi_hal_write_m_prime(Mprime);
|
|
|
|
/* Enable acceleration options */
|
|
mpi_hal_enable_constant_time(false);
|
|
mpi_hal_enable_search(true);
|
|
mpi_hal_set_search_position(y_bits - 1);
|
|
|
|
/* Execute first stage montgomery multiplication */
|
|
mpi_hal_start_op(MPI_MODEXP);
|
|
|
|
mpi_hal_enable_search(false);
|
|
}
|
|
#endif //ESP_MPI_USE_MONT_EXP
|