mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
369 lines
12 KiB
C
369 lines
12 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
|
|
/*----------------------------------------------------------------------------------------------------
|
|
* Abstraction layer for PSRAM. PSRAM device related registers and MMU/Cache related code shouls be
|
|
* abstracted to lower layers.
|
|
*
|
|
* When we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
|
|
*----------------------------------------------------------------------------------------------------*/
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "esp_log.h"
|
|
#include "esp_heap_caps_init.h"
|
|
#include "esp_private/spiram_private.h"
|
|
#include "esp32s3/spiram.h"
|
|
#include "spiram_psram.h"
|
|
#include "hal/mmu_hal.h"
|
|
#include "hal/cache_ll.h"
|
|
|
|
|
|
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
|
|
|
|
#define MMU_PAGE_SIZE 0x10000
|
|
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
|
|
|
|
#if CONFIG_SPIRAM_SPEED_40M
|
|
#define PSRAM_SPEED PSRAM_CACHE_S40M
|
|
#else //#if CONFIG_SPIRAM_SPEED_80M
|
|
#define PSRAM_SPEED PSRAM_CACHE_S80M
|
|
#endif
|
|
|
|
|
|
static const char *TAG = "spiram";
|
|
static bool s_spiram_inited;
|
|
|
|
//These variables are in bytes
|
|
static intptr_t s_allocable_vaddr_start;
|
|
static intptr_t s_allocable_vaddr_end;
|
|
static intptr_t s_mapped_vaddr_start;
|
|
static intptr_t s_mapped_vaddr_end;
|
|
|
|
|
|
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
extern uint8_t _ext_ram_bss_start;
|
|
extern uint8_t _ext_ram_bss_end;
|
|
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
|
|
|
|
static bool esp_spiram_test(uint32_t v_start, uint32_t size);
|
|
|
|
|
|
esp_err_t esp_spiram_init(void)
|
|
{
|
|
assert(!s_spiram_inited);
|
|
esp_err_t ret;
|
|
uint32_t psram_physical_size = 0;
|
|
ret = psram_enable(PSRAM_SPEED, PSRAM_MODE);
|
|
if (ret != ESP_OK) {
|
|
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out.");
|
|
#endif
|
|
return ret;
|
|
}
|
|
s_spiram_inited = true;
|
|
|
|
ret = psram_get_physical_size(&psram_physical_size);
|
|
assert(ret == ESP_OK);
|
|
|
|
#if (CONFIG_SPIRAM_SIZE != -1)
|
|
if (psram_physical_size != CONFIG_SPIRAM_SIZE) {
|
|
ESP_EARLY_LOGE(TAG, "Expected %dMB chip but found %dMB chip. Bailing out..", (CONFIG_SPIRAM_SIZE / 1024 / 1024), (psram_physical_size / 1024 / 1024));
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
#endif
|
|
ESP_EARLY_LOGI(TAG, "Found %dMB SPI RAM device", psram_physical_size / (1024 * 1024));
|
|
ESP_EARLY_LOGI(TAG, "Speed: %dMHz", CONFIG_SPIRAM_SPEED);
|
|
|
|
/**
|
|
* TODO IDF-4318
|
|
* Add these feature here:
|
|
* - Copy Flash text into PSRAM
|
|
* - Copy Flash rodata into PSRAM
|
|
*/
|
|
//----------------------------------Map the PSRAM physical range to MMU-----------------------------//
|
|
uint32_t vaddr_start = 0;
|
|
extern uint32_t _rodata_reserved_end;
|
|
uint32_t rodata_end_aligned = ALIGN_UP_BY((uint32_t)&_rodata_reserved_end, MMU_PAGE_SIZE);
|
|
vaddr_start = rodata_end_aligned;
|
|
ESP_EARLY_LOGV(TAG, "rodata_end_aligned is 0x%x bytes", rodata_end_aligned);
|
|
|
|
uint32_t psram_available_size = 0;
|
|
ret = psram_get_available_size(&psram_available_size);
|
|
assert(ret == ESP_OK);
|
|
|
|
if (vaddr_start + psram_available_size > DRAM0_CACHE_ADDRESS_HIGH) {
|
|
//Decide these logics when there's a real PSRAM with larger size
|
|
ESP_EARLY_LOGE(TAG, "Virtual address not enough for PSRAM!");
|
|
abort();
|
|
}
|
|
|
|
//On ESP32S3, MMU is shared for both of the cores. Note this when porting `spiram.c`
|
|
uint32_t actual_mapped_len = 0;
|
|
mmu_hal_map_region(0, MMU_TARGET_PSRAM0, vaddr_start, 0, psram_available_size, &actual_mapped_len);
|
|
ESP_EARLY_LOGV(TAG, "actual_mapped_len is 0x%x bytes", actual_mapped_len);
|
|
|
|
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, actual_mapped_len);
|
|
cache_ll_l1_enable_bus(0, bus_mask);
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
bus_mask = cache_ll_l1_get_bus(1, vaddr_start, actual_mapped_len);
|
|
cache_ll_l1_enable_bus(1, bus_mask);
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_MEMTEST
|
|
//After mapping, simple test SPIRAM first
|
|
bool ext_ram_ok = esp_spiram_test(vaddr_start, psram_available_size);
|
|
if (!ext_ram_ok) {
|
|
ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
|
|
abort();
|
|
}
|
|
#endif //#if CONFIG_SPIRAM_MEMTEST
|
|
|
|
|
|
/*------------------------------------------------------------------------------
|
|
* After mapping, we DON'T care about the PSRAM PHYSICAL ADDRESSS ANYMORE!
|
|
*----------------------------------------------------------------------------*/
|
|
s_mapped_vaddr_start = vaddr_start;
|
|
s_mapped_vaddr_end = vaddr_start + psram_available_size;
|
|
s_allocable_vaddr_start = vaddr_start;
|
|
s_allocable_vaddr_end = vaddr_start + psram_available_size;
|
|
|
|
|
|
//------------------------------------Configure .bss in PSRAM-------------------------------------//
|
|
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
//should never be negative number
|
|
uint32_t ext_bss_size = ((intptr_t)&_ext_ram_bss_end - (intptr_t)&_ext_ram_bss_start);
|
|
ESP_EARLY_LOGV(TAG, "_ext_ram_bss_start is 0x%x, _ext_ram_bss_start is 0x%x, ext_bss_size is 0x%x bytes", &_ext_ram_bss_start, &_ext_ram_bss_end, ext_bss_size);
|
|
|
|
s_allocable_vaddr_start += ext_bss_size;
|
|
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
|
|
ESP_EARLY_LOGV(TAG, "s_allocable_vaddr_start is 0x%x, s_allocable_vaddr_end is 0x%x", s_allocable_vaddr_start, s_allocable_vaddr_end);
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**
|
|
* Add the PSRAM available region to heap allocator. Heap allocator knows the capabilities of this type of memory,
|
|
* so there's no need to explicitly specify them.
|
|
*/
|
|
esp_err_t esp_spiram_add_to_heapalloc(void)
|
|
{
|
|
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (s_allocable_vaddr_end - s_allocable_vaddr_start) / 1024);
|
|
return heap_caps_add_region(s_allocable_vaddr_start, s_allocable_vaddr_end);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_spiram_get_mapped_range(intptr_t *out_vstart, intptr_t *out_vend)
|
|
{
|
|
if (!out_vstart || !out_vend) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (!s_spiram_inited) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
*out_vstart = s_mapped_vaddr_start;
|
|
*out_vend = s_mapped_vaddr_end;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_spiram_get_alloced_range(intptr_t *out_vstart, intptr_t *out_vend)
|
|
{
|
|
if (!out_vstart || !out_vend) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (!s_spiram_inited) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
*out_vstart = s_allocable_vaddr_start;
|
|
*out_vend = s_allocable_vaddr_end;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_spiram_reserve_dma_pool(size_t size)
|
|
{
|
|
if (size == 0) {
|
|
return ESP_OK;
|
|
}
|
|
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size / 1024);
|
|
uint8_t *dma_heap = heap_caps_malloc(size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
|
|
if (!dma_heap) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
uint32_t caps[] = {MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
|
|
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap + size);
|
|
}
|
|
|
|
//TODO IDF-4318
|
|
// static uint32_t pages_for_flash = 0;
|
|
static uint32_t instruction_in_spiram = 0;
|
|
static uint32_t rodata_in_spiram = 0;
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
static int instr_flash2spiram_offs = 0;
|
|
static uint32_t instr_start_page = 0;
|
|
static uint32_t instr_end_page = 0;
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
static int rodata_flash2spiram_offs = 0;
|
|
static uint32_t rodata_start_page = 0;
|
|
static uint32_t rodata_end_page = 0;
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
|
|
static uint32_t page0_mapped = 0;
|
|
static uint32_t page0_page = INVALID_PHY_PAGE;
|
|
#endif
|
|
|
|
uint32_t esp_spiram_instruction_access_enabled(void)
|
|
{
|
|
return instruction_in_spiram;
|
|
}
|
|
|
|
uint32_t esp_spiram_rodata_access_enabled(void)
|
|
{
|
|
return rodata_in_spiram;
|
|
}
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
esp_err_t esp_spiram_enable_instruction_access(void)
|
|
{
|
|
//TODO IDF-4318, `pages_for_flash` will be overwritten, however it influences the psram size to be added to the heap allocator.
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
esp_err_t esp_spiram_enable_rodata_access(void)
|
|
{
|
|
//TODO IDF-4318, `pages_for_flash` will be overwritten, however it influences the psram size to be added to the heap allocator.
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
void instruction_flash_page_info_init(void)
|
|
{
|
|
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
|
|
|
|
instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START);
|
|
instr_start_page &= MMU_VALID_VAL_MASK;
|
|
instr_end_page = instr_start_page + instr_page_cnt - 1;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR instruction_flash_start_page_get(void)
|
|
{
|
|
return instr_start_page;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR instruction_flash_end_page_get(void)
|
|
{
|
|
return instr_end_page;
|
|
}
|
|
|
|
int IRAM_ATTR instruction_flash2spiram_offset(void)
|
|
{
|
|
return instr_flash2spiram_offs;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
void rodata_flash_page_info_init(void)
|
|
{
|
|
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - ((uint32_t)&_rodata_reserved_start & ~ (MMU_PAGE_SIZE - 1)) + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
|
|
|
|
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
|
|
rodata_start_page &= MMU_VALID_VAL_MASK;
|
|
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR rodata_flash_start_page_get(void)
|
|
{
|
|
return rodata_start_page;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR rodata_flash_end_page_get(void)
|
|
{
|
|
return rodata_end_page;
|
|
}
|
|
|
|
int IRAM_ATTR rodata_flash2spiram_offset(void)
|
|
{
|
|
return rodata_flash2spiram_offs;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first,
|
|
otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this.
|
|
*/
|
|
void IRAM_ATTR esp_spiram_writeback_cache(void)
|
|
{
|
|
extern void Cache_WriteBack_All(void);
|
|
Cache_WriteBack_All();
|
|
}
|
|
|
|
/**
|
|
* @brief If SPI RAM(PSRAM) has been initialized
|
|
*
|
|
* @return true SPI RAM has been initialized successfully
|
|
* @return false SPI RAM hasn't been initialized or initialized failed
|
|
*/
|
|
bool esp_spiram_is_initialized(void)
|
|
{
|
|
return s_spiram_inited;
|
|
}
|
|
|
|
uint8_t esp_spiram_get_cs_io(void)
|
|
{
|
|
return psram_get_cs_io();
|
|
}
|
|
|
|
/*
|
|
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
|
|
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
|
|
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
|
|
*/
|
|
static bool esp_spiram_test(uint32_t v_start, uint32_t size)
|
|
{
|
|
volatile int *spiram = (volatile int *)v_start;
|
|
|
|
size_t s = size;
|
|
size_t p;
|
|
int errct = 0;
|
|
int initial_err = -1;
|
|
|
|
for (p = 0; p < (s / sizeof(int)); p += 8) {
|
|
spiram[p] = p ^ 0xAAAAAAAA;
|
|
}
|
|
for (p = 0; p < (s / sizeof(int)); p += 8) {
|
|
if (spiram[p] != (p ^ 0xAAAAAAAA)) {
|
|
errct++;
|
|
if (errct == 1) {
|
|
initial_err = p * 4;
|
|
}
|
|
if (errct < 4) {
|
|
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA);
|
|
}
|
|
}
|
|
}
|
|
if (errct) {
|
|
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW);
|
|
return false;
|
|
} else {
|
|
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
|
|
return true;
|
|
}
|
|
}
|