esp-idf/components/esp_hw_support/mspi_timing_by_mspi_delay.c

887 lines
36 KiB
C

/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief
*
* This file contains configuration APIs doing MSPI timing tuning by MSPI delay
* This file will only be built, when `SOC_MEMSPI_TIMING_TUNING_BY_MSPI_DELAY == 1`
*/
#include <sys/param.h>
#include "sdkconfig.h"
#include "string.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_types.h"
#include "esp_log.h"
#include "soc/rtc.h"
#include "hal/mspi_timing_tuning_ll.h"
#include "hal/clk_tree_ll.h"
#include "hal/regi2c_ctrl_ll.h"
#include "esp_private/mspi_timing_config.h"
#include "mspi_timing_by_mspi_delay.h"
#include "bootloader_flash.h"
#include "esp32s3/rom/spi_flash.h"
#include "esp32s3/rom/opi_flash.h"
#if CONFIG_SPIRAM_TIMING_TUNING_POINT_VIA_TEMPERATURE_SENSOR
#include "mspi_timing_tuning_configs.h"
#include "freertos/FreeRTOS.h"
#include "esp_private/cache_utils.h"
#include "esp_private/sar_periph_ctrl.h"
#include "esp_private/startup_internal.h"
#endif // CONFIG_SPIRAM_TIMING_TUNING_POINT_VIA_TEMPERATURE_SENSOR
#define OPI_PSRAM_SYNC_READ 0x0000
#define OPI_PSRAM_SYNC_WRITE 0x8080
#define OCT_PSRAM_RD_DUMMY_NUM (2*(10-1))
#define OCT_PSRAM_WR_DUMMY_NUM (2*(5-1))
#define QPI_PSRAM_FAST_READ 0XEB
#define QPI_PSRAM_WRITE 0X38
#define QPI_PSRAM_FAST_READ_DUMMY 6
#define NOT_INIT_INT 127
/////////////////////////////////////////TIMING TUNING IS NEEDED//////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
#if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING
const static char *TAG = "MSPI Timing";
//If one of the FLASH / PSRAM or both of them need timing tuning, we should build following code
typedef enum {
PSRAM_CMD_QPI,
PSRAM_CMD_SPI,
} psram_cmd_mode_t;
static uint8_t s_rom_flash_extra_dummy[2] = {NOT_INIT_INT, NOT_INIT_INT};
#if CONFIG_SPIRAM_MODE_QUAD
static uint8_t s_psram_extra_dummy;
extern void psram_exec_cmd(int spi_num, psram_cmd_mode_t mode,
uint32_t cmd, int cmd_bit_len,
uint32_t addr, int addr_bit_len,
int dummy_bits,
uint8_t* mosi_data, int mosi_bit_len,
uint8_t* miso_data, int miso_bit_len,
uint32_t cs_mask,
bool is_write_erase_operation);
#endif
//-------------------------------------FLASH timing tuning register config-------------------------------------//
void mspi_timing_get_flash_tuning_configs(mspi_timing_config_t *config)
{
#if MSPI_TIMING_FLASH_DTR_MODE
#define FLASH_MODE DTR_MODE
#else //MSPI_TIMING_FLASH_STR_MODE
#define FLASH_MODE STR_MODE
#endif
#if CONFIG_ESPTOOLPY_FLASHFREQ_80M
*config = MSPI_TIMING_FLASH_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 80, FLASH_MODE);
#elif CONFIG_ESPTOOLPY_FLASHFREQ_120M
*config = MSPI_TIMING_FLASH_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 120, FLASH_MODE);
#else
assert(false && "should never reach here");
#endif
#undef FLASH_MODE
}
void mspi_timing_flash_init(uint32_t flash_freq_mhz)
{
mspi_timing_config_set_flash_clock(flash_freq_mhz, MSPI_TIMING_SPEED_MODE_NORMAL_PERF, true);
//Power on HCLK
mspi_timinng_ll_enable_flash_hclk(0);
}
static void s_set_flash_din_mode_num(uint8_t spi_num, uint8_t din_mode, uint8_t din_num)
{
mspi_timing_ll_set_flash_din_mode(spi_num, din_mode);
mspi_timing_ll_set_flash_din_num(spi_num, din_num);
}
static uint32_t spi_timing_config_get_dummy(void)
{
mspi_timing_ll_flash_mode_t mode = mspi_timing_ll_get_flash_mode(0);
if (mode == MSPI_TIMING_LL_FLASH_OPI_MODE) {
abort();
}
#if CONFIG_SPI_FLASH_HPM_DC_ON
if (spi_flash_hpm_dummy_adjust()) { // HPM-DC is enabled
const spi_flash_hpm_dummy_conf_t *hpm_dummy = spi_flash_hpm_get_dummy();
switch (mode) {
case MSPI_TIMING_LL_FLASH_QIO_MODE:
return hpm_dummy->qio_dummy - 1;
case MSPI_TIMING_LL_FLASH_QUAD_MODE:
return hpm_dummy->qout_dummy - 1;
case MSPI_TIMING_LL_FLASH_DIO_MODE:
return hpm_dummy->dio_dummy - 1;
case MSPI_TIMING_LL_FLASH_DUAL_MODE:
return hpm_dummy->dout_dummy - 1;
case MSPI_TIMING_LL_FLASH_FAST_MODE:
return hpm_dummy->fastrd_dummy - 1;
case MSPI_TIMING_LL_FLASH_SLOW_MODE:
return 0;
default:
abort();
}
} else
#endif
{ // HPM-DC is not enabled
switch (mode) {
case MSPI_TIMING_LL_FLASH_QIO_MODE:
return SPI1_R_QIO_DUMMY_CYCLELEN;
case MSPI_TIMING_LL_FLASH_QUAD_MODE:
return SPI1_R_FAST_DUMMY_CYCLELEN;
case MSPI_TIMING_LL_FLASH_DIO_MODE:
return SPI1_R_DIO_DUMMY_CYCLELEN;
case MSPI_TIMING_LL_FLASH_DUAL_MODE:
return SPI1_R_FAST_DUMMY_CYCLELEN;
case MSPI_TIMING_LL_FLASH_FAST_MODE:
return SPI1_R_FAST_DUMMY_CYCLELEN;
case MSPI_TIMING_LL_FLASH_SLOW_MODE:
return 0;
default:
abort();
}
}
}
static void s_set_flash_extra_dummy(uint8_t spi_num, uint8_t extra_dummy)
{
if (bootloader_flash_is_octal_mode_enabled()) {
mspi_timing_ll_set_octal_flash_extra_dummy(spi_num, extra_dummy);
return;
}
/**
* HW workaround:
* The `SPI_MEM_TIMING_CALI_REG` register is only used for OPI on 728
* Here we only need to update this global variable for extra dummy. Since we use the ROM Flash API, which will set the dummy based on this.
* We only initialise the SPI0. And leave the SPI1 for flash driver to configure.
*/
if (s_rom_flash_extra_dummy[spi_num] == NOT_INIT_INT) {
s_rom_flash_extra_dummy[spi_num] = g_rom_spiflash_dummy_len_plus[spi_num];
}
g_rom_spiflash_dummy_len_plus[spi_num] = s_rom_flash_extra_dummy[spi_num] + extra_dummy;
// Only Quad Flash will run into this branch.
uint32_t dummy = spi_timing_config_get_dummy();
mspi_timing_ll_set_quad_flash_dummy(spi_num, dummy + g_rom_spiflash_dummy_len_plus[spi_num]);
}
void mspi_timing_config_flash_set_tuning_regs(const void *configs, uint8_t id)
{
const mspi_timing_tuning_param_t *params = &((mspi_timing_config_t *)configs)->tuning_config_table[id];
/**
* 1. SPI_MEM_DINx_MODE(1), SPI_MEM_DINx_NUM(1) are meaningless
* SPI0 and SPI1 share the SPI_MEM_DINx_MODE(0), SPI_MEM_DINx_NUM(0) for FLASH timing tuning
* 2. We use SPI1 to get the best Flash timing tuning (mode and num) config
*/
s_set_flash_din_mode_num(0, params->spi_din_mode, params->spi_din_num);
s_set_flash_extra_dummy(1, params->extra_dummy_len);
}
//-------------------------------------------FLASH Read/Write------------------------------------------//
void mspi_timing_config_flash_read_data(uint8_t *buf, uint32_t addr, uint32_t len)
{
if (bootloader_flash_is_octal_mode_enabled()) {
// note that in spi_flash_read API, there is a wait-idle stage, since flash can only be read in idle state.
// but after we change the timing settings, we might not read correct idle status via RDSR.
// so, here we should use a read API that won't check idle status.
mspi_timing_ll_clear_fifo(1);
esp_rom_opiflash_read_raw(addr, buf, len);
} else {
esp_rom_spiflash_read(addr, (uint32_t *)buf, len);
}
}
//-------------------------------------PSRAM timing tuning register config-------------------------------------//
void mspi_timing_get_psram_tuning_configs(mspi_timing_config_t *config)
{
#if MSPI_TIMING_PSRAM_DTR_MODE
#define PSRAM_MODE DTR_MODE
#else //MSPI_TIMING_PSRAM_STR_MODE
#define PSRAM_MODE STR_MODE
#endif
#if CONFIG_SPIRAM_SPEED_80M
*config = MSPI_TIMING_PSRAM_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 80, PSRAM_MODE);
#elif CONFIG_SPIRAM_SPEED_120M
*config = MSPI_TIMING_PSRAM_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 120, PSRAM_MODE);
#else
assert(false && "should never reach here");
#endif
#undef PSRAM_MODE
}
void mspi_timing_psram_init(uint32_t psram_freq_mhz)
{
mspi_timing_config_set_flash_clock(psram_freq_mhz, MSPI_TIMING_SPEED_MODE_NORMAL_PERF, true);
//Power on HCLK
mspi_timinng_ll_enable_psram_hclk(0);
}
static void s_set_psram_din_mode_num(uint8_t spi_num, uint8_t din_mode, uint8_t din_num)
{
mspi_timing_ll_set_psram_din_mode(spi_num, din_mode);
mspi_timing_ll_set_psram_din_num(spi_num, din_num);
}
static void s_set_psram_extra_dummy(uint8_t spi_num, uint8_t extra_dummy)
{
#if CONFIG_SPIRAM_MODE_OCT
mspi_timing_ll_set_octal_psram_extra_dummy(spi_num, extra_dummy);
#elif CONFIG_SPIRAM_MODE_QUAD
//HW workaround: Use normal dummy register to set extra dummy, the calibration dedicated extra dummy register doesn't work for quad mode
mspi_timing_ll_set_quad_psram_dummy(spi_num, (QPI_PSRAM_FAST_READ_DUMMY + extra_dummy - 1));
#endif
}
void mspi_timing_config_psram_set_tuning_regs(const void *configs, uint8_t id)
{
const mspi_timing_tuning_param_t *params = &((mspi_timing_config_t *)configs)->tuning_config_table[id];
/**
* 1. SPI_MEM_SPI_SMEM_DINx_MODE(1), SPI_MEM_SPI_SMEM_DINx_NUM(1) are meaningless
* SPI0 and SPI1 share the SPI_MEM_SPI_SMEM_DINx_MODE(0), SPI_MEM_SPI_SMEM_DINx_NUM(0) for PSRAM timing tuning
* 2. We use SPI1 to get the best PSRAM timing tuning (mode and num) config
*/
s_set_psram_din_mode_num(0, params->spi_din_mode, params->spi_din_num);
#if CONFIG_SPIRAM_MODE_OCT
//On 728, for SPI1, flash and psram share the extra dummy register
s_set_flash_extra_dummy(1, params->extra_dummy_len);
#elif CONFIG_SPIRAM_MODE_QUAD
//Update this `s_psram_extra_dummy`, the `s_psram_read_data` will set dummy according to this `s_psram_extra_dummy`
s_psram_extra_dummy = params->extra_dummy_len;
mspi_timing_ll_set_quad_flash_dummy(1, params->extra_dummy_len - 1);
#endif
}
//-------------------------------------------PSRAM Read/Write------------------------------------------//
static void s_psram_write_data(uint8_t *buf, uint32_t addr, uint32_t len)
{
#if CONFIG_SPIRAM_MODE_OCT
esp_rom_opiflash_exec_cmd(1, ESP_ROM_SPIFLASH_OPI_DTR_MODE,
OPI_PSRAM_SYNC_WRITE, 16,
addr, 32,
OCT_PSRAM_WR_DUMMY_NUM,
buf, len * 8,
NULL, 0,
BIT(1),
false);
#elif CONFIG_SPIRAM_MODE_QUAD
psram_exec_cmd(1, 0,
QPI_PSRAM_WRITE, 8,
addr, 24,
0,
buf, len * 8,
NULL, 0,
SPI_MEM_CS1_DIS_M,
false);
#endif
}
static void s_psram_read_data(uint8_t *buf, uint32_t addr, uint32_t len)
{
#if CONFIG_SPIRAM_MODE_OCT
mspi_timing_ll_clear_fifo(1);
esp_rom_opiflash_exec_cmd(1, ESP_ROM_SPIFLASH_OPI_DTR_MODE,
OPI_PSRAM_SYNC_READ, 16,
addr, 32,
OCT_PSRAM_RD_DUMMY_NUM,
NULL, 0,
buf, len * 8,
BIT(1),
false);
#elif CONFIG_SPIRAM_MODE_QUAD
psram_exec_cmd(1, 0,
QPI_PSRAM_FAST_READ, 8,
addr, 24,
QPI_PSRAM_FAST_READ_DUMMY + s_psram_extra_dummy,
NULL, 0,
buf, len * 8,
SPI_MEM_CS1_DIS_M,
false);
#endif
}
static void s_psram_execution(uint8_t *buf, uint32_t addr, uint32_t len, bool is_read)
{
while (len) {
uint32_t length = MIN(len, 32);
if (is_read) {
s_psram_read_data(buf, addr, length);
} else {
s_psram_write_data(buf, addr, length);
}
addr += length;
buf += length;
len -= length;
}
}
void mspi_timing_config_psram_prepare_reference_data(uint8_t *buf, uint32_t len)
{
assert((len == MSPI_TIMING_TEST_DATA_LEN) && (len % 4 == 0));
for (int i=0; i < len/4; i++) {
((uint32_t *)buf)[i] = 0xa5ff005a;
}
}
void mspi_timing_config_psram_write_data(uint8_t *buf, uint32_t addr, uint32_t len)
{
s_psram_execution(buf, addr, len, false);
}
void mspi_timing_config_psram_read_data(uint8_t *buf, uint32_t addr, uint32_t len)
{
s_psram_execution(buf, addr, len, true);
}
/*-------------------------------------------------------------------------------------------------
* Best Timing Tuning Params Selection
*-------------------------------------------------------------------------------------------------*/
#if (MSPI_TIMING_FLASH_DTR_MODE || MSPI_TIMING_PSRAM_DTR_MODE) && (MSPI_TIMING_CORE_CLOCK_MHZ == 240)
static bool get_working_pll_freq(const uint8_t *reference_data, bool is_flash, uint32_t *out_max_freq, uint32_t *out_min_freq)
{
uint8_t read_data[MSPI_TIMING_TEST_DATA_LEN] = {0};
rtc_cpu_freq_config_t previous_config;
rtc_clk_cpu_freq_get_config(&previous_config);
uint32_t big_num = MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MAX * 2; //This number should be larger than MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MAX, for error handling
uint32_t max_freq = 0;
uint32_t min_freq = big_num;
soc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
for (int pll_mhz_tuning = MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MIN; pll_mhz_tuning <= MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MAX; pll_mhz_tuning += 8) {
//bbpll calibration start
regi2c_ctrl_ll_bbpll_calibration_start();
/**
* pll_mhz = xtal_mhz * (oc_div + 4) / (oc_ref_div + 1)
*/
clk_ll_bbpll_set_frequency_for_mspi_tuning(xtal_freq, pll_mhz_tuning, ((pll_mhz_tuning / 4) - 4), 9);
//wait calibration done
while(!regi2c_ctrl_ll_bbpll_calibration_is_done());
//bbpll calibration stop
regi2c_ctrl_ll_bbpll_calibration_stop();
memset(read_data, 0, MSPI_TIMING_TEST_DATA_LEN);
if (is_flash) {
mspi_timing_config_flash_read_data(read_data, MSPI_TIMING_FLASH_TEST_DATA_ADDR, MSPI_TIMING_TEST_DATA_LEN);
} else {
mspi_timing_config_psram_read_data(read_data, MSPI_TIMING_PSRAM_TEST_DATA_ADDR, MSPI_TIMING_TEST_DATA_LEN);
}
if (memcmp(read_data, reference_data, MSPI_TIMING_TEST_DATA_LEN) == 0) {
max_freq = MAX(pll_mhz_tuning, max_freq);
min_freq = MIN(pll_mhz_tuning, min_freq);
//Continue to find successful cases
continue;
}
if (max_freq != 0) {
//The first fail case after successful case(s) is the end
break;
}
//If no break, no successful case found, continue to find successful cases
}
//restore PLL config
clk_ll_bbpll_set_freq_mhz(previous_config.source_freq_mhz);
//bbpll calibration start
regi2c_ctrl_ll_bbpll_calibration_start();
//set pll
clk_ll_bbpll_set_config(previous_config.source_freq_mhz, xtal_freq);
//wait calibration done
while(!regi2c_ctrl_ll_bbpll_calibration_is_done());
//bbpll calibration stop
regi2c_ctrl_ll_bbpll_calibration_stop();
*out_max_freq = max_freq;
*out_min_freq = min_freq;
return (max_freq != 0);
}
#endif //Frequency Scanning
#if CONFIG_SPIRAM_TIMING_TUNING_POINT_VIA_TEMPERATURE_SENSOR
// These arrays store the frequency scan result of the timing points
int psram_pass_freq_min[MSPI_TIMING_CONFIG_NUM_MAX] = {0};
int psram_pass_freq_max[MSPI_TIMING_CONFIG_NUM_MAX] = {0};
#endif // CONFIG_SPIRAM_TIMING_TUNING_POINT_VIA_TEMPERATURE_SENSOR
static uint32_t s_select_best_tuning_config_dtr(const mspi_timing_config_t *configs, uint32_t consecutive_length, uint32_t end, const uint8_t *reference_data, bool is_flash)
{
#if (MSPI_TIMING_CORE_CLOCK_MHZ == 160)
//Core clock 160M DTR best point scheme
uint32_t best_point;
//Define these magic number in macros in `spi_timing_config.h`. TODO: IDF-3663
if (consecutive_length <= 2 || consecutive_length >= 6) {
//tuning is FAIL, select default point, and generate a warning
best_point = configs->default_config_id;
ESP_EARLY_LOGW(TAG, "tuning fail, best point is fallen back to index %"PRIu32"", best_point);
} else if (consecutive_length <= 4) {
//consecutive length : 3 or 4
best_point = end - 1;
ESP_EARLY_LOGD(TAG, "tuning success, best point is index %"PRIu32"", best_point);
} else {
//consecutive point list length equals 5
best_point = end - 2;
ESP_EARLY_LOGD(TAG, "tuning success, best point is index %"PRIu32"", best_point);
}
return best_point;
#elif (MSPI_TIMING_CORE_CLOCK_MHZ == 240)
uint32_t best_point = 0;
uint32_t current_point = end + 1 - consecutive_length;
bool ret = false;
//This `max_freq` is the max pll frequency that per MSPI timing tuning config can work
uint32_t temp_max_freq = 0;
uint32_t temp_min_freq = 0;
#if !CONFIG_SPIRAM_TIMING_TUNING_POINT_VIA_TEMPERATURE_SENSOR
uint32_t max_freq = 0;
for (; current_point <= end; current_point++) {
if (is_flash) {
mspi_timing_config_flash_set_tuning_regs(configs, current_point);
} else {
mspi_timing_config_psram_set_tuning_regs(configs, current_point);
}
ret = get_working_pll_freq(reference_data, is_flash, &temp_max_freq, &temp_min_freq);
if (ret && temp_min_freq <= MSPI_TIMING_PLL_FREQ_SCAN_THRESH_MHZ_LOW && temp_max_freq >= MSPI_TIMING_PLL_FREQ_SCAN_THRESH_MHZ_HIGH && temp_max_freq > max_freq) {
max_freq = temp_max_freq;
best_point = current_point;
}
ESP_EARLY_LOGD(TAG, "sample point %" PRIu32 ", max pll is %" PRIu32 " mhz, min pll is %" PRIu32, current_point, temp_max_freq, temp_min_freq);
}
if (max_freq == 0) {
ESP_EARLY_LOGW(TAG, "freq scan tuning fail, best point is fallen back to index %" PRIu32, end + 1 - consecutive_length);
best_point = end + 1 - consecutive_length;
} else {
ESP_EARLY_LOGD(TAG, "freq scan success, max pll is %" PRIu32 "mhz, best point is index %" PRIu32, max_freq, best_point);
}
#else
uint32_t freq_diff_min = 0xffffffff;
for (; current_point <= end; current_point++) {
if (is_flash) {
mspi_timing_config_flash_set_tuning_regs(configs, current_point);
} else {
mspi_timing_config_psram_set_tuning_regs(configs, current_point);
}
ret = get_working_pll_freq(reference_data, is_flash, &temp_max_freq, &temp_min_freq);
if (ret == true) {
if (temp_min_freq == MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MIN) {
// divided by 4 for mspi clk frequency
psram_pass_freq_min[current_point] = (temp_max_freq - MSPI_TIMING_PLL_FREQ_SCAN_WIDTH_MHZ) / 4; // use MSPI_TIMING_PLL_FREQ_SCAN_WIDTH_MHZ to calculate the real frequency
psram_pass_freq_max[current_point] = temp_max_freq / 4;
} else if (temp_max_freq == MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MAX) {
psram_pass_freq_min[current_point] = temp_min_freq / 4;
psram_pass_freq_max[current_point] = (temp_min_freq + MSPI_TIMING_PLL_FREQ_SCAN_WIDTH_MHZ) / 4; // use MSPI_TIMING_PLL_FREQ_SCAN_WIDTH_MHZ to calculate the real frequency
} else {
psram_pass_freq_min[current_point] = temp_min_freq / 4;
psram_pass_freq_max[current_point] = temp_max_freq / 4;
}
ESP_EARLY_LOGD(TAG, "sample point %" PRIu32 ", max pll is %" PRIu32 " mhz, min pll is %" PRIu32 " mhz, max spi is %" PRIu32 " mhz, min spi is %" PRIu32 " mhz", current_point, temp_max_freq, temp_min_freq, psram_pass_freq_max[current_point], psram_pass_freq_min[current_point]);
// calculate the difference to psram_pass_freq and 120MHz
int temp_min_freq_diff = abs(120 - psram_pass_freq_min[current_point]);
int temp_max_freq_diff = abs(psram_pass_freq_max[current_point] - 120);
if (abs(temp_min_freq_diff - temp_max_freq_diff) < freq_diff_min) {
freq_diff_min = abs(temp_min_freq_diff - temp_max_freq_diff);
best_point = current_point;
}
}
}
if (freq_diff_min == 0xffffffff) {
ESP_EARLY_LOGW(TAG, "freq scan tuning fail, best point is fallen back to index %" PRIu32, end + 1 - consecutive_length);
best_point = end + 1 - consecutive_length;
} else {
ESP_EARLY_LOGD(TAG, "freq scan success, best point is index %" PRIu32, best_point);
}
#endif
return best_point;
#else
//won't reach here
abort();
#endif
}
static uint32_t s_select_best_tuning_config_str(const mspi_timing_config_t *configs, uint32_t consecutive_length, uint32_t end)
{
#if (MSPI_TIMING_CORE_CLOCK_MHZ == 120 || MSPI_TIMING_CORE_CLOCK_MHZ == 240)
//STR best point scheme
uint32_t best_point;
if (consecutive_length <= 2|| consecutive_length >= 5) {
//tuning is FAIL, select default point, and generate a warning
best_point = configs->default_config_id;
ESP_EARLY_LOGW(TAG, "tuning fail, best point is fallen back to index %"PRIu32"", best_point);
} else {
//consecutive length : 3 or 4
best_point = end - consecutive_length / 2;
ESP_EARLY_LOGD(TAG, "tuning success, best point is index %"PRIu32"", best_point);
}
return best_point;
#else
//won't reach here
abort();
#endif
}
static uint32_t s_select_best_tuning_config(const mspi_timing_config_t *configs, uint32_t consecutive_length, uint32_t end, const uint8_t *reference_data, bool is_ddr, bool is_flash)
{
uint32_t best_point = 0;
if (is_ddr) {
best_point = s_select_best_tuning_config_dtr(configs, consecutive_length, end, reference_data, is_flash);
} else {
best_point = s_select_best_tuning_config_str(configs, consecutive_length, end);
}
return best_point;
}
uint32_t mspi_timing_flash_select_best_tuning_config(const void *configs, uint32_t consecutive_length, uint32_t end, const uint8_t *reference_data, bool is_ddr)
{
const mspi_timing_config_t *timing_configs = (const mspi_timing_config_t *)configs;
uint32_t best_point = s_select_best_tuning_config(timing_configs, consecutive_length, end, reference_data, is_ddr, true);
ESP_EARLY_LOGI(TAG, "Flash timing tuning index: %"PRIu32"", best_point);
return best_point;
}
uint32_t mspi_timing_psram_select_best_tuning_config(const void *configs, uint32_t consecutive_length, uint32_t end, const uint8_t *reference_data, bool is_ddr)
{
const mspi_timing_config_t *timing_configs = (const mspi_timing_config_t *)configs;
uint32_t best_point = s_select_best_tuning_config(timing_configs, consecutive_length, end, reference_data, is_ddr, false);
ESP_EARLY_LOGI(TAG, "PSRAM timing tuning index: %"PRIu32"", best_point);
return best_point;
}
static mspi_timing_tuning_param_t s_flash_best_timing_tuning_config;
static mspi_timing_tuning_param_t s_psram_best_timing_tuning_config;
void mspi_timing_flash_set_best_tuning_config(const void *configs, uint8_t best_id)
{
s_flash_best_timing_tuning_config = ((const mspi_timing_config_t *)configs)->tuning_config_table[best_id];
}
void mspi_timing_psram_set_best_tuning_config(const void *configs, uint8_t best_id)
{
s_psram_best_timing_tuning_config = ((const mspi_timing_config_t *)configs)->tuning_config_table[best_id];
}
/*-------------------------------------------------------------------------------------------------
* Best Timing Tuning Params Clear / Set
*-------------------------------------------------------------------------------------------------*/
void mspi_timing_flash_config_clear_tuning_regs(bool control_both_mspi)
{
s_set_flash_din_mode_num(0, 0, 0); //SPI0 and SPI1 share the registers for flash din mode and num setting, so we only set SPI0's reg
s_set_flash_extra_dummy(0, 0);
//Won't touch SPI1 registers if not control_both_mspi
if (control_both_mspi) {
s_set_flash_extra_dummy(1, 0);
}
}
void mspi_timing_flash_config_set_tuning_regs(bool control_both_mspi)
{
//SPI0 and SPI1 share the registers for flash din mode and num setting, so we only set SPI0's reg
s_set_flash_din_mode_num(0, s_flash_best_timing_tuning_config.spi_din_mode, s_flash_best_timing_tuning_config.spi_din_num);
s_set_flash_extra_dummy(0, s_flash_best_timing_tuning_config.extra_dummy_len);
if (control_both_mspi) {
s_set_flash_extra_dummy(1, s_flash_best_timing_tuning_config.extra_dummy_len);
} else {
//Won't touch SPI1 registers
}
}
void mspi_timing_psram_config_clear_tuning_regs(bool control_both_mspi)
{
(void)control_both_mspi; //for compatibility
s_set_psram_din_mode_num(0, 0, 0);
s_set_psram_extra_dummy(0, 0);
}
void mspi_timing_psram_config_set_tuning_regs(bool control_both_mspi)
{
(void)control_both_mspi; //for compatibility
s_set_psram_din_mode_num(0, s_psram_best_timing_tuning_config.spi_din_mode, s_psram_best_timing_tuning_config.spi_din_num);
s_set_psram_extra_dummy(0, s_psram_best_timing_tuning_config.extra_dummy_len);
}
#endif //#if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING
/*-------------------------------------------------------------------------------------------------
* To let upper lay (spi_flash_timing_tuning.c) to know the necessary timing registers
*-------------------------------------------------------------------------------------------------*/
/**
* Get the SPI1 Flash CS timing setting. The setup time and hold time are both realistic cycles.
* @note On ESP32-S3, SPI0/1 share the Flash CS timing registers. Therefore, we should not change these values.
* @note This function inform `spi_flash_timing_tuning.c` (driver layer) of the cycle,
* and other component (esp_flash driver) should get these cycle and configure the registers accordingly.
*/
void mspi_timing_config_get_cs_timing(uint8_t *setup_time, uint32_t *hold_time)
{
*setup_time = mspi_timing_ll_get_cs_setup_val(0);
*hold_time = mspi_timing_ll_get_cs_hold_val(0);
/**
* The logic here is, if setup_en / hold_en is false, then we return the realistic cycle number,
* which is 0. If true, then the realistic cycle number is (reg_value + 1)
*/
if (mspi_timing_ll_is_cs_setup_enabled(0)) {
*setup_time += 1;
} else {
*setup_time = 0;
}
if (mspi_timing_ll_is_cs_hold_enabled(0)) {
*hold_time += 1;
} else {
*hold_time = 0;
}
}
/**
* Get the SPI1 Flash clock setting.
* @note Similarly, this function inform `spi_flash_timing_tuning.c` (driver layer) of the clock setting,
* and other component (esp_flash driver) should get these and configure the registers accordingly.
*/
uint32_t mspi_timing_config_get_flash_clock_reg(void)
{
return mspi_timing_ll_get_clock_reg(1);
}
uint8_t mspi_timing_config_get_flash_extra_dummy(void)
{
#if MSPI_TIMING_FLASH_NEEDS_TUNING
return s_flash_best_timing_tuning_config.extra_dummy_len;
#else
return 0;
#endif
}
#if CONFIG_SPIRAM_TIMING_TUNING_POINT_VIA_TEMPERATURE_SENSOR
#define INTERVAL_IN_SECOND CONFIG_SPIRAM_TIMING_MEASURE_TEMPERATURE_INTERVAL_SECOND
// These arrays store the frequency scan result of the timing points
static int s_point_temp_range_min[MSPI_TIMING_CONFIG_NUM_MAX] = {0};
static int s_point_temp_range_max[MSPI_TIMING_CONFIG_NUM_MAX] = {0};
static uint32_t s_psram_best_point_idx = 0;
void mspi_timing_setting_temperature_adjustment_best_point(uint32_t best_point)
{
s_psram_best_point_idx = best_point;
}
static void mspi_timing_set_psram_point_idx(uint32_t point_idx)
{
mspi_timing_config_t timing_configs = {0};
s_psram_best_point_idx = point_idx;
mspi_timing_get_psram_tuning_configs(&timing_configs);
mspi_timing_psram_set_best_tuning_config(&timing_configs, point_idx);
mspi_timing_config_psram_set_tuning_regs(&timing_configs, point_idx);
}
static void set_timing_point(uint32_t point_idx)
{
// Disable cache in order that cache would not touch psram
spi_flash_disable_interrupts_caches_and_other_cpu();
mspi_timing_set_psram_point_idx(point_idx);
spi_flash_enable_interrupts_caches_and_other_cpu();
}
// A mean filter with window to make the temperature value smoother
static esp_err_t temperature_sensor_get_celsius_filtered(int16_t *temp_filtered)
{
const int filter_window_len = 7;
int16_t temp_arr[filter_window_len];
int16_t temp_sum = 0;
uint8_t temp_min_idx = 0;
uint8_t temp_max_idx = 0;
for (uint8_t idx = 0; idx < filter_window_len; idx++) {
temp_arr[idx] = temp_sensor_get_raw_value(NULL);
// record the index of the max and min temperature value
if (temp_arr[idx] > temp_arr[temp_max_idx]) temp_max_idx = idx;
if (temp_arr[idx] < temp_arr[temp_min_idx]) temp_min_idx = idx;
temp_sum += temp_arr[idx];
}
// remove the max and min temperature value
temp_sum -= temp_arr[temp_max_idx];
temp_sum -= temp_arr[temp_min_idx];
*temp_filtered = temp_sum / (filter_window_len - 2); // Don't calculate the temp_max and temp_min
return ESP_OK;
}
/**
* This task will:
* 1. Calculate temperature ranges of timing points
* 2. Monitor current temperature
* 3. Switch timing point if temperature is beyond the range
*/
void adjust_psram_timing_point_task(void *arg)
{
int16_t temp_refer = 0, temp_curr = 0;
(void)arg;
temperature_sensor_power_acquire();
temperature_sensor_get_celsius_filtered(&temp_refer); // get the refer temperature
int temperature_freq_radio = 5; // It means that the frequency will reduce by 1MHz when the temperature rises 5℃
const int temperature_safe_range = 5; // A temperature buffer zone to avoid switching timing points frequently
// make sure the frequency of current timing point is greater than freq_thres_max and less than freq_thres_min
const int freq_thres_max = 128; // threshold for maximum threshold frequency in specific temperature, should not change
const int freq_thres_min = 112; // threshold for minimum threshold frequency in specific temperature, should not change
int point_curr = s_psram_best_point_idx;
bool valid_point[MSPI_TIMING_CONFIG_NUM_MAX] = {false};
// 1. Get the delta of frequency we get at the specific temperature (freq_min) with the frequency min threshold (freq_diff = freq_thres_min - freq_min)
// 2. Convert frequency difference to temperature difference by radio (5), temperature_diff = freq_diff * radio
// 3. Calculate the range of temperature: temperature_thre_min = freq_min - temperature_diff
// Same for the temperature_thre_max.
// calculate temperature ranges of the every timing point
for (uint32_t point = 0; point < MSPI_TIMING_CONFIG_NUM_MAX; point++) {
if (psram_pass_freq_min[point] == 0 && psram_pass_freq_max[point] == 0) {
continue;
}
valid_point[point] = true;
uint32_t pass_freq_min = psram_pass_freq_min[point];
uint32_t pass_freq_max = psram_pass_freq_max[point];
if (pass_freq_max >= freq_thres_max) {
// frequency pass_freq_max greater than freq_thres_max, it will decrease to freq_thres_max until temperature rise to s_point_temp_range_max
s_point_temp_range_max[point] = temp_refer + (pass_freq_max - freq_thres_max) * temperature_freq_radio;
} else {
// frequency pass_freq_max less than freq_thres_max, it will increase to freq_thres_max until temperature drop to s_point_temp_range_max
s_point_temp_range_max[point] = temp_refer - (freq_thres_max - pass_freq_max) * temperature_freq_radio;
}
if (pass_freq_min <= freq_thres_min) {
// frequency pass_freq_min less than freq_thres_min, it will increase to freq_thres_min until temperature drop to s_point_temp_range_min
s_point_temp_range_min[point] = temp_refer - (freq_thres_min - pass_freq_min) * temperature_freq_radio;
} else {
// frequency pass_freq_min greater than freq_thres_min, it will decrease to freq_thres_min until temperature rise to s_point_temp_range_min
s_point_temp_range_min[point] = temp_refer + (pass_freq_min - freq_thres_min) * temperature_freq_radio;
}
}
for (uint32_t point = 0; point < MSPI_TIMING_CONFIG_NUM_MAX - 1; point++) {
if (valid_point[point] && valid_point[point + 1]) {
// check temperature intersection
if (s_point_temp_range_max[point] <= s_point_temp_range_min[point + 1]) {
ESP_EARLY_LOGE(TAG, "no temperature intersection of neighboring phase points");
abort();
}
}
}
while (1) {
vTaskDelay(INTERVAL_IN_SECOND * 1000 / portTICK_PERIOD_MS);
point_curr = s_psram_best_point_idx;
temperature_sensor_get_celsius_filtered(&temp_curr);
ESP_EARLY_LOGD(TAG, "Getting current temperature value is: %d", temp_curr);
// Switch timing point if temperature is beyond the range
if (s_point_temp_range_max[point_curr] == 0 && s_point_temp_range_min[point_curr] == 0) {
// The current timing point has no frequency scan result (psram_pass_freq_min and psram_pass_freq_min equal to 0),
// use the previous or next timing point's temperature range to decide what temperature to switch timing point.
// Use previous timing point's temperature range
if (point_curr - 1 >= 0) {
if (s_point_temp_range_max[point_curr - 1] != 0 && s_point_temp_range_min[point_curr - 1] != 0) {
if (temp_curr < (s_point_temp_range_max[point_curr - 1] - temperature_safe_range)) {
int point_next = point_curr - 1;
set_timing_point(point_next);
ESP_EARLY_LOGD(TAG, "PSRAM set timing point from %d to %ld\n", point_curr, point_next);
continue;
}
}
}
// Use next timing point's temperature range
if (point_curr + 1 < MSPI_TIMING_CONFIG_NUM_MAX) {
if (s_point_temp_range_max[point_curr + 1] != 0 && s_point_temp_range_min[point_curr + 1] != 0) {
if (temp_curr > s_point_temp_range_min[point_curr + 1] + temperature_safe_range) {
int point_next = point_curr + 1;
set_timing_point(point_next);
ESP_EARLY_LOGD(TAG, "PSRAM set timing point from %d to %ld\n", point_curr, point_next);
continue;
}
}
}
} else {
// Current temperature is greater than the range, switch to next timing point
if (point_curr + 1 < MSPI_TIMING_CONFIG_NUM_MAX) {
if (temp_curr > s_point_temp_range_max[point_curr]) {
int point_next = point_curr + 1;
set_timing_point(point_next);
ESP_EARLY_LOGD(TAG, "PSRAM set timing point from %d to %ld\n", point_curr, point_next);
continue;
}
}
// Current temperature is less than the range, switch to previous timing point
if (point_curr - 1 >= 0) {
if (temp_curr < s_point_temp_range_min[point_curr]) {
int point_next = point_curr - 1;
set_timing_point(point_next);
ESP_EARLY_LOGD(TAG, "PSRAM set timing point from %d to %ld\n", point_curr, point_next);
continue;
}
}
}
}
}
static esp_err_t psram_adjust_timing_point_via_tsens(void)
{
esp_rom_spiflash_chip_t *chip = &rom_spiflash_legacy_data->chip;
uint8_t vender_id = (chip->device_id >> 16) & 0xff;
if (vender_id == 0xC8 || vender_id == 0x20) {
xTaskCreatePinnedToCore(adjust_psram_timing_point_task, "adjust_psram_timing_point_task", 1024 * 5, NULL, configMAX_PRIORITIES - 2, NULL, 0);
} else {
ESP_EARLY_LOGE(TAG, "The flash model has not been verified support this feature, please contact espressif business support");
return ESP_ERR_NOT_SUPPORTED;
}
return ESP_OK;
}
ESP_SYSTEM_INIT_FN(psram_adjust_timing_point_via_temperature, SECONDARY, BIT(0), 240)
{
return psram_adjust_timing_point_via_tsens();
}
#endif //CONFIG_SPIRAM_TIMING_TUNING_POINT_VIA_TEMPERATURE_SENSOR