// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "esp_attr.h" #include "esp_log.h" #include "rom/cache.h" #include "rom/ets_sys.h" #include "rom/spi_flash.h" #include "rom/crc.h" #include "rom/rtc.h" #include "soc/soc.h" #include "soc/cpu.h" #include "soc/dport_reg.h" #include "soc/io_mux_reg.h" #include "soc/efuse_reg.h" #include "soc/rtc_cntl_reg.h" #include "soc/timer_group_reg.h" #include "sdkconfig.h" #include "esp_image_format.h" #include "esp_secure_boot.h" #include "bootloader_flash.h" #include "bootloader_config.h" extern int _bss_start; extern int _bss_end; static const char* TAG = "boot"; /* We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized, flash cache is down and the app CPU is in reset. We do have a stack, so we can do the initialization in C. */ // TODO: make a nice header file for ROM functions instead of adding externs all over the place extern void Cache_Flush(int); void bootloader_main(); static void unpack_load_app(const esp_partition_pos_t *app_node); void print_flash_info(const esp_image_header_t* pfhdr); void IRAM_ATTR set_cache_and_start_app(uint32_t drom_addr, uint32_t drom_load_addr, uint32_t drom_size, uint32_t irom_addr, uint32_t irom_load_addr, uint32_t irom_size, uint32_t entry_addr); static void update_flash_config(const esp_image_header_t* pfhdr); void IRAM_ATTR call_start_cpu0() { cpu_configure_region_protection(); //Clear bss memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start)); /* completely reset MMU for both CPUs (in case serial bootloader was running) */ Cache_Read_Disable(0); Cache_Read_Disable(1); Cache_Flush(0); Cache_Flush(1); mmu_init(0); REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); mmu_init(1); REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); /* (above steps probably unnecessary for most serial bootloader usage, all that's absolutely needed is that we unmask DROM0 cache on the following two lines - normal ROM boot exits with DROM0 cache unmasked, but serial bootloader exits with it masked. However can't hurt to be thorough and reset everything.) The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are necessary to work around a hardware bug. */ REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0); REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0); bootloader_main(); } /** * @function : load_partition_table * @description: Parse partition table, get useful data such as location of * OTA info sector, factory app sector, and test app sector. * * @inputs: bs bootloader state structure used to save the data * addr address of partition table in flash * @return: return true, if the partition table is loaded (and MD5 checksum is valid) * */ bool load_partition_table(bootloader_state_t* bs, uint32_t addr) { esp_err_t err; const esp_partition_info_t *partitions; const int PARTITION_TABLE_SIZE = 0x1000; const int MAX_PARTITIONS = PARTITION_TABLE_SIZE / sizeof(esp_partition_info_t); char *partition_usage; ESP_LOGI(TAG, "Partition Table:"); ESP_LOGI(TAG, "## Label Usage Type ST Offset Length"); if(esp_secure_boot_enabled()) { err = esp_secure_boot_verify_signature(addr, 0x1000); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to verify partition table signature."); return false; } } partitions = bootloader_mmap(addr, 0x1000); if (!partitions) { ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", addr, 0x1000); return false; } ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", addr, (intptr_t)partitions); for(int i = 0; i < MAX_PARTITIONS; i++) { const esp_partition_info_t *partition = &partitions[i]; ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition); ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype); partition_usage = "unknown"; if (partition->magic != ESP_PARTITION_MAGIC) { /* invalid partition definition indicates end-of-table */ break; } /* valid partition table */ switch(partition->type) { case PART_TYPE_APP: /* app partition */ switch(partition->subtype) { case PART_SUBTYPE_FACTORY: /* factory binary */ bs->factory = partition->pos; partition_usage = "factory app"; break; case PART_SUBTYPE_TEST: /* test binary */ bs->test = partition->pos; partition_usage = "test app"; break; default: /* OTA binary */ if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) { bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos; ++bs->app_count; partition_usage = "OTA app"; } else { partition_usage = "Unknown app"; } break; } break; /* PART_TYPE_APP */ case PART_TYPE_DATA: /* data partition */ switch(partition->subtype) { case PART_SUBTYPE_DATA_OTA: /* ota data */ bs->ota_info = partition->pos; partition_usage = "OTA data"; break; case PART_SUBTYPE_DATA_RF: partition_usage = "RF data"; break; case PART_SUBTYPE_DATA_WIFI: partition_usage = "WiFi data"; break; default: partition_usage = "Unknown data"; break; } break; /* PARTITION_USAGE_DATA */ default: /* other partition type */ break; } /* print partition type info */ ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage, partition->type, partition->subtype, partition->pos.offset, partition->pos.size); } bootloader_unmap(partitions); ESP_LOGI(TAG,"End of partition table"); return true; } static uint32_t ota_select_crc(const esp_ota_select_entry_t *s) { return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4); } static bool ota_select_valid(const esp_ota_select_entry_t *s) { return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s); } /** * @function : bootloader_main * @description: entry function of 2nd bootloader * * @inputs: void */ void bootloader_main() { ESP_LOGI(TAG, "Espressif ESP32 2nd stage bootloader v. %s", BOOT_VERSION); esp_err_t err; esp_image_header_t fhdr; bootloader_state_t bs; SpiFlashOpResult spiRet1,spiRet2; esp_ota_select_entry_t sa,sb; const esp_ota_select_entry_t *ota_select_map; memset(&bs, 0, sizeof(bs)); ESP_LOGI(TAG, "compile time " __TIME__ ); /* disable watch dog here */ REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN ); REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN ); SPIUnlock(); if(esp_image_load_header(0x1000, &fhdr) != ESP_OK) { ESP_LOGE(TAG, "failed to load bootloader header!"); return; } print_flash_info(&fhdr); update_flash_config(&fhdr); if (!load_partition_table(&bs, ESP_PARTITION_TABLE_ADDR)) { ESP_LOGE(TAG, "load partition table error!"); return; } esp_partition_pos_t load_part_pos; if (bs.ota_info.offset != 0) { // check if partition table has OTA info partition //ESP_LOGE("OTA info sector handling is not implemented"); if (bs.ota_info.size < 2 * sizeof(esp_ota_select_entry_t)) { ESP_LOGE(TAG, "ERROR: ota_info partition size %d is too small (minimum %d bytes)", bs.ota_info.size, sizeof(esp_ota_select_entry_t)); return; } ota_select_map = bootloader_mmap(bs.ota_info.offset, bs.ota_info.size); if (!ota_select_map) { ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs.ota_info.offset, bs.ota_info.size); return; } sa = ota_select_map[0]; sb = ota_select_map[1]; bootloader_unmap(ota_select_map); if(sa.ota_seq == 0xFFFFFFFF && sb.ota_seq == 0xFFFFFFFF) { // init status flash load_part_pos = bs.ota[0]; sa.ota_seq = 0x01; sa.crc = ota_select_crc(&sa); sb.ota_seq = 0x00; sb.crc = ota_select_crc(&sb); Cache_Read_Disable(0); spiRet1 = SPIEraseSector(bs.ota_info.offset/0x1000); spiRet2 = SPIEraseSector(bs.ota_info.offset/0x1000+1); if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) { ESP_LOGE(TAG, SPI_ERROR_LOG); return; } spiRet1 = SPIWrite(bs.ota_info.offset,(uint32_t *)&sa,sizeof(esp_ota_select_entry_t)); spiRet2 = SPIWrite(bs.ota_info.offset + 0x1000,(uint32_t *)&sb,sizeof(esp_ota_select_entry_t)); if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) { ESP_LOGE(TAG, SPI_ERROR_LOG); return; } Cache_Read_Enable(0); //TODO:write data in ota info } else { if(ota_select_valid(&sa) && ota_select_valid(&sb)) { load_part_pos = bs.ota[(((sa.ota_seq > sb.ota_seq)?sa.ota_seq:sb.ota_seq) - 1)%bs.app_count]; }else if(ota_select_valid(&sa)) { load_part_pos = bs.ota[(sa.ota_seq - 1) % bs.app_count]; }else if(ota_select_valid(&sb)) { load_part_pos = bs.ota[(sb.ota_seq - 1) % bs.app_count]; }else { ESP_LOGE(TAG, "ota data partition info error"); return; } } } else if (bs.factory.offset != 0) { // otherwise, look for factory app partition load_part_pos = bs.factory; } else if (bs.test.offset != 0) { // otherwise, look for test app parition load_part_pos = bs.test; } else { // nothing to load, bail out ESP_LOGE(TAG, "nothing to load"); return; } ESP_LOGI(TAG, "Loading app partition at offset %08x", load_part_pos); if(fhdr.secure_boot_flag == 0x01) { /* Generate secure digest from this bootloader to protect future modifications */ err = esp_secure_boot_permanently_enable(); if (err != ESP_OK){ ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err); /* Allow booting to continue, as the failure is probably due to user-configured EFUSEs for testing... */ } } if(fhdr.encrypt_flag == 0x01) { /* encrypt flash */ if (false == flash_encrypt(&bs)) { ESP_LOGE(TAG, "flash encrypt failed"); return; } } // copy sections to RAM, set up caches, and start application unpack_load_app(&load_part_pos); } static void unpack_load_app(const esp_partition_pos_t* partition) { esp_err_t err; esp_image_header_t image_header; uint32_t image_length; if (esp_secure_boot_enabled()) { /* TODO: verify the app image as part of OTA boot decision, so can have fallbacks */ err = esp_image_basic_verify(partition->offset, &image_length); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to verify app image @ 0x%x (%d)", partition->offset, err); return; } err = esp_secure_boot_verify_signature(partition->offset, image_length); if (err != ESP_OK) { ESP_LOGE(TAG, "App image @ 0x%x failed signature verification (%d)", partition->offset, err); return; } } if (esp_image_load_header(partition->offset, &image_header) != ESP_OK) { ESP_LOGE(TAG, "Failed to load app image header @ 0x%x", partition->offset); return; } uint32_t drom_addr = 0; uint32_t drom_load_addr = 0; uint32_t drom_size = 0; uint32_t irom_addr = 0; uint32_t irom_load_addr = 0; uint32_t irom_size = 0; /* Reload the RTC memory sections whenever a non-deepsleep reset is occurring */ bool load_rtc_memory = rtc_get_reset_reason(0) != DEEPSLEEP_RESET; ESP_LOGD(TAG, "bin_header: %u %u %u %u %08x", image_header.magic, image_header.segment_count, image_header.spi_mode, image_header.spi_size, (unsigned)image_header.entry_addr); for (int segment = 0; segment < image_header.segment_count; segment++) { esp_image_segment_header_t segment_header; uint32_t data_offs; if(esp_image_load_segment_header(segment, partition->offset, &image_header, &segment_header, &data_offs) != ESP_OK) { ESP_LOGE(TAG, "failed to load segment header #%d", segment); return; } const uint32_t address = segment_header.load_addr; bool load = true; bool map = false; if (address == 0x00000000) { // padding, ignore block load = false; } if (address == 0x00000004) { load = false; // md5 checksum block // TODO: actually check md5 } if (address >= DROM_LOW && address < DROM_HIGH) { ESP_LOGD(TAG, "found drom section, map from %08x to %08x", data_offs, segment_header.load_addr); drom_addr = data_offs; drom_load_addr = segment_header.load_addr; drom_size = segment_header.data_len + sizeof(segment_header); load = false; map = true; } if (address >= IROM_LOW && address < IROM_HIGH) { ESP_LOGD(TAG, "found irom section, map from %08x to %08x", data_offs, segment_header.load_addr); irom_addr = data_offs; irom_load_addr = segment_header.load_addr; irom_size = segment_header.data_len + sizeof(segment_header); load = false; map = true; } if (!load_rtc_memory && address >= RTC_IRAM_LOW && address < RTC_IRAM_HIGH) { ESP_LOGD(TAG, "Skipping RTC code section at %08x\n", data_offs); load = false; } if (!load_rtc_memory && address >= RTC_DATA_LOW && address < RTC_DATA_HIGH) { ESP_LOGD(TAG, "Skipping RTC data section at %08x\n", data_offs); load = false; } ESP_LOGI(TAG, "segment %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", segment, data_offs - sizeof(esp_image_segment_header_t), segment_header.load_addr, segment_header.data_len, segment_header.data_len, (load)?"load":(map)?"map":""); if (load) { const void *data = bootloader_mmap(data_offs, segment_header.data_len); if(!data) { ESP_LOGE(TAG, "bootloader_mmap(0x%xc, 0x%x) failed", data_offs, segment_header.data_len); return; } memcpy((void *)segment_header.load_addr, data, segment_header.data_len); bootloader_unmap(data); } } set_cache_and_start_app(drom_addr, drom_load_addr, drom_size, irom_addr, irom_load_addr, irom_size, image_header.entry_addr); } void IRAM_ATTR set_cache_and_start_app( uint32_t drom_addr, uint32_t drom_load_addr, uint32_t drom_size, uint32_t irom_addr, uint32_t irom_load_addr, uint32_t irom_size, uint32_t entry_addr) { ESP_LOGD(TAG, "configure drom and irom and start"); Cache_Read_Disable( 0 ); Cache_Read_Disable( 1 ); Cache_Flush( 0 ); Cache_Flush( 1 ); uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count ); int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count ); ESP_LOGV(TAG, "rc=%d", rc ); rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count ); ESP_LOGV(TAG, "rc=%d", rc ); uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count ); rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count ); ESP_LOGV(TAG, "rc=%d", rc ); rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count ); ESP_LOGV(TAG, "rc=%d", rc ); REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 ); REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 ); Cache_Read_Enable( 0 ); Cache_Read_Enable( 1 ); ESP_LOGD(TAG, "start: 0x%08x", entry_addr); typedef void (*entry_t)(void); entry_t entry = ((entry_t) entry_addr); // TODO: we have used quite a bit of stack at this point. // use "movsp" instruction to reset stack back to where ROM stack starts. (*entry)(); } static void update_flash_config(const esp_image_header_t* pfhdr) { uint32_t size; switch(pfhdr->spi_size) { case ESP_IMAGE_FLASH_SIZE_1MB: size = 1; break; case ESP_IMAGE_FLASH_SIZE_2MB: size = 2; break; case ESP_IMAGE_FLASH_SIZE_4MB: size = 4; break; case ESP_IMAGE_FLASH_SIZE_8MB: size = 8; break; case ESP_IMAGE_FLASH_SIZE_16MB: size = 16; break; default: size = 2; } Cache_Read_Disable( 0 ); // Set flash chip size SPIParamCfg(g_rom_flashchip.deviceId, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff); // TODO: set mode // TODO: set frequency Cache_Flush(0); Cache_Read_Enable( 0 ); } void print_flash_info(const esp_image_header_t* phdr) { #if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE) ESP_LOGD(TAG, "magic %02x", phdr->magic ); ESP_LOGD(TAG, "segments %02x", phdr->segment_count ); ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode ); ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed ); ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size ); const char* str; switch ( phdr->spi_speed ) { case ESP_IMAGE_SPI_SPEED_40M: str = "40MHz"; break; case ESP_IMAGE_SPI_SPEED_26M: str = "26.7MHz"; break; case ESP_IMAGE_SPI_SPEED_20M: str = "20MHz"; break; case ESP_IMAGE_SPI_SPEED_80M: str = "80MHz"; break; default: str = "20MHz"; break; } ESP_LOGI(TAG, "SPI Speed : %s", str ); switch ( phdr->spi_mode ) { case ESP_IMAGE_SPI_MODE_QIO: str = "QIO"; break; case ESP_IMAGE_SPI_MODE_QOUT: str = "QOUT"; break; case ESP_IMAGE_SPI_MODE_DIO: str = "DIO"; break; case ESP_IMAGE_SPI_MODE_DOUT: str = "DOUT"; break; case ESP_IMAGE_SPI_MODE_FAST_READ: str = "FAST READ"; break; case ESP_IMAGE_SPI_MODE_SLOW_READ: str = "SLOW READ"; break; default: str = "DIO"; break; } ESP_LOGI(TAG, "SPI Mode : %s", str ); switch ( phdr->spi_size ) { case ESP_IMAGE_FLASH_SIZE_1MB: str = "1MB"; break; case ESP_IMAGE_FLASH_SIZE_2MB: str = "2MB"; break; case ESP_IMAGE_FLASH_SIZE_4MB: str = "4MB"; break; case ESP_IMAGE_FLASH_SIZE_8MB: str = "8MB"; break; case ESP_IMAGE_FLASH_SIZE_16MB: str = "16MB"; break; default: str = "2MB"; break; } ESP_LOGI(TAG, "SPI Flash Size : %s", str ); #endif }