/* * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ // #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #include #include #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "soc/soc_caps.h" #include "soc/periph_defs.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_check.h" #include "esp_heap_caps.h" #include "hal/gdma_hal.h" #include "hal/gdma_ll.h" #include "soc/gdma_periph.h" #include "esp_memory_utils.h" #include "esp_private/periph_ctrl.h" #include "esp_private/gdma.h" static const char *TAG = "gdma"; #if CONFIG_GDMA_ISR_IRAM_SAFE || CONFIG_GDMA_CTRL_FUNC_IN_IRAM #define GDMA_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT) #else #define GDMA_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT #endif #if CONFIG_GDMA_ISR_IRAM_SAFE #define GDMA_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED) #else #define GDMA_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED #endif #define GDMA_INVALID_PERIPH_TRIG (0x3F) #define SEARCH_REQUEST_RX_CHANNEL (1 << 0) #define SEARCH_REQUEST_TX_CHANNEL (1 << 1) typedef struct gdma_platform_t gdma_platform_t; typedef struct gdma_group_t gdma_group_t; typedef struct gdma_pair_t gdma_pair_t; typedef struct gdma_channel_t gdma_channel_t; typedef struct gdma_tx_channel_t gdma_tx_channel_t; typedef struct gdma_rx_channel_t gdma_rx_channel_t; /** * GDMA driver consists of there object class, namely: Group, Pair and Channel. * Channel is allocated when user calls `gdma_new_channel`, its lifecycle is maintained by user. * Pair and Group are all lazy allocated, their life cycles are maintained by this driver. * We use reference count to track their life cycles, i.e. the driver will free their memory only when their reference count reached to 0. * * We don't use an all-in-one spin lock in this driver, instead, we created different spin locks at different level. * For platform, it has a spinlock, which is used to protect the group handle slots and reference count of each group. * For group, it has a spinlock, which is used to protect group level stuffs, e.g. hal object, pair handle slots and reference count of each pair. * For pair, it has a spinlock, which is used to protect pair level stuffs, e.g. channel handle slots, occupy code. */ struct gdma_platform_t { portMUX_TYPE spinlock; // platform level spinlock gdma_group_t *groups[SOC_GDMA_GROUPS]; // array of GDMA group instances int group_ref_counts[SOC_GDMA_GROUPS]; // reference count used to protect group install/uninstall }; struct gdma_group_t { int group_id; // Group ID, index from 0 gdma_hal_context_t hal; // HAL instance is at group level portMUX_TYPE spinlock; // group level spinlock uint32_t tx_periph_in_use_mask; // each bit indicates which peripheral (TX direction) has been occupied uint32_t rx_periph_in_use_mask; // each bit indicates which peripheral (RX direction) has been occupied gdma_pair_t *pairs[SOC_GDMA_PAIRS_PER_GROUP]; // handles of GDMA pairs int pair_ref_counts[SOC_GDMA_PAIRS_PER_GROUP]; // reference count used to protect pair install/uninstall }; struct gdma_pair_t { gdma_group_t *group; // which group the pair belongs to int pair_id; // Pair ID, index from 0 gdma_tx_channel_t *tx_chan; // pointer of tx channel in the pair gdma_rx_channel_t *rx_chan; // pointer of rx channel in the pair int occupy_code; // each bit indicates which channel has been occupied (an occupied channel will be skipped during channel search) portMUX_TYPE spinlock; // pair level spinlock }; struct gdma_channel_t { gdma_pair_t *pair; // which pair the channel belongs to intr_handle_t intr; // per-channel interrupt handle portMUX_TYPE spinlock; // channel level spinlock gdma_channel_direction_t direction; // channel direction int periph_id; // Peripheral instance ID, indicates which peripheral is connected to this GDMA channel size_t sram_alignment; // alignment for memory in SRAM size_t psram_alignment; // alignment for memory in PSRAM esp_err_t (*del)(gdma_channel_t *channel); // channel deletion function, it's polymorphic, see `gdma_del_tx_channel` or `gdma_del_rx_channel` }; struct gdma_tx_channel_t { gdma_channel_t base; // GDMA channel, base class void *user_data; // user registered DMA event data gdma_event_callback_t on_trans_eof; // TX EOF callback }; struct gdma_rx_channel_t { gdma_channel_t base; // GDMA channel, base class void *user_data; // user registered DMA event data gdma_event_callback_t on_recv_eof; // RX EOF callback }; static gdma_group_t *gdma_acquire_group_handle(int group_id); static gdma_pair_t *gdma_acquire_pair_handle(gdma_group_t *group, int pair_id); static void gdma_release_group_handle(gdma_group_t *group); static void gdma_release_pair_handle(gdma_pair_t *pair); static esp_err_t gdma_del_tx_channel(gdma_channel_t *dma_channel); static esp_err_t gdma_del_rx_channel(gdma_channel_t *dma_channel); static esp_err_t gdma_install_rx_interrupt(gdma_rx_channel_t *rx_chan); static esp_err_t gdma_install_tx_interrupt(gdma_tx_channel_t *tx_chan); // gdma driver platform static gdma_platform_t s_platform = { .spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED, .groups = {} // groups will be lazy installed }; esp_err_t gdma_new_channel(const gdma_channel_alloc_config_t *config, gdma_channel_handle_t *ret_chan) { esp_err_t ret = ESP_OK; gdma_tx_channel_t *alloc_tx_channel = NULL; gdma_rx_channel_t *alloc_rx_channel = NULL; int search_code = 0; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE(config && ret_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); if (config->flags.reserve_sibling) { search_code = SEARCH_REQUEST_RX_CHANNEL | SEARCH_REQUEST_TX_CHANNEL; // search for a pair of channels } if (config->direction == GDMA_CHANNEL_DIRECTION_TX) { search_code |= SEARCH_REQUEST_TX_CHANNEL; // search TX only alloc_tx_channel = heap_caps_calloc(1, sizeof(gdma_tx_channel_t), GDMA_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(alloc_tx_channel, ESP_ERR_NO_MEM, err, TAG, "no mem for gdma tx channel"); } else if (config->direction == GDMA_CHANNEL_DIRECTION_RX) { search_code |= SEARCH_REQUEST_RX_CHANNEL; // search RX only alloc_rx_channel = heap_caps_calloc(1, sizeof(gdma_rx_channel_t), GDMA_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(alloc_rx_channel, ESP_ERR_NO_MEM, err, TAG, "no mem for gdma rx channel"); } if (config->sibling_chan) { pair = config->sibling_chan->pair; ESP_GOTO_ON_FALSE(pair, ESP_ERR_INVALID_ARG, err, TAG, "invalid sibling channel"); ESP_GOTO_ON_FALSE(config->sibling_chan->direction != config->direction, ESP_ERR_INVALID_ARG, err, TAG, "sibling channel should have a different direction"); group = pair->group; portENTER_CRITICAL(&group->spinlock); group->pair_ref_counts[pair->pair_id]++; // channel obtains a reference to pair portEXIT_CRITICAL(&group->spinlock); goto search_done; // skip the search path below if user has specify a sibling channel } for (int i = 0; i < SOC_GDMA_GROUPS && search_code; i++) { // loop to search group group = gdma_acquire_group_handle(i); ESP_GOTO_ON_FALSE(group, ESP_ERR_NO_MEM, err, TAG, "no mem for group(%d)", i); for (int j = 0; j < SOC_GDMA_PAIRS_PER_GROUP && search_code; j++) { // loop to search pair pair = gdma_acquire_pair_handle(group, j); ESP_GOTO_ON_FALSE(pair, ESP_ERR_NO_MEM, err, TAG, "no mem for pair(%d,%d)", i, j); portENTER_CRITICAL(&pair->spinlock); if (!(search_code & pair->occupy_code)) { // pair has suitable position for acquired channel(s) pair->occupy_code |= search_code; search_code = 0; // exit search loop } portEXIT_CRITICAL(&pair->spinlock); if (search_code) { gdma_release_pair_handle(pair); pair = NULL; } } // loop used to search pair if (search_code) { gdma_release_group_handle(group); group = NULL; } } // loop used to search group ESP_GOTO_ON_FALSE(search_code == 0, ESP_ERR_NOT_FOUND, err, TAG, "no free gdma channel, search code=%d", search_code); assert(pair && group); // pair and group handle shouldn't be NULL search_done: // register TX channel if (alloc_tx_channel) { pair->tx_chan = alloc_tx_channel; alloc_tx_channel->base.pair = pair; alloc_tx_channel->base.direction = GDMA_CHANNEL_DIRECTION_TX; alloc_tx_channel->base.periph_id = GDMA_INVALID_PERIPH_TRIG; alloc_tx_channel->base.del = gdma_del_tx_channel; // set channel deletion function *ret_chan = &alloc_tx_channel->base; // return the installed channel } // register RX channel if (alloc_rx_channel) { pair->rx_chan = alloc_rx_channel; alloc_rx_channel->base.pair = pair; alloc_rx_channel->base.direction = GDMA_CHANNEL_DIRECTION_RX; alloc_rx_channel->base.periph_id = GDMA_INVALID_PERIPH_TRIG; alloc_rx_channel->base.del = gdma_del_rx_channel; // set channel deletion function *ret_chan = &alloc_rx_channel->base; // return the installed channel } (*ret_chan)->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; ESP_LOGD(TAG, "new %s channel (%d,%d) at %p", (config->direction == GDMA_CHANNEL_DIRECTION_TX) ? "tx" : "rx", group->group_id, pair->pair_id, *ret_chan); return ESP_OK; err: if (alloc_tx_channel) { free(alloc_tx_channel); } if (alloc_rx_channel) { free(alloc_rx_channel); } if (pair) { gdma_release_pair_handle(pair); } if (group) { gdma_release_group_handle(group); } return ret; } esp_err_t gdma_del_channel(gdma_channel_handle_t dma_chan) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); ret = dma_chan->del(dma_chan); // call `gdma_del_tx_channel` or `gdma_del_rx_channel` err: return ret; } esp_err_t gdma_get_channel_id(gdma_channel_handle_t dma_chan, int *channel_id) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; *channel_id = pair->pair_id; err: return ret; } esp_err_t gdma_connect(gdma_channel_handle_t dma_chan, gdma_trigger_t trig_periph) { gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_RETURN_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(dma_chan->periph_id == GDMA_INVALID_PERIPH_TRIG, ESP_ERR_INVALID_STATE, TAG, "channel is using by peripheral: %d", dma_chan->periph_id); pair = dma_chan->pair; group = pair->group; bool periph_conflict = false; if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) { if (trig_periph.instance_id >= 0) { portENTER_CRITICAL(&group->spinlock); if (group->tx_periph_in_use_mask & (1 << trig_periph.instance_id)) { periph_conflict = true; } else { group->tx_periph_in_use_mask |= (1 << trig_periph.instance_id); } portEXIT_CRITICAL(&group->spinlock); } if (!periph_conflict) { gdma_ll_tx_reset_channel(group->hal.dev, pair->pair_id); // reset channel gdma_ll_tx_connect_to_periph(group->hal.dev, pair->pair_id, trig_periph.periph, trig_periph.instance_id); } } else { if (trig_periph.instance_id >= 0) { portENTER_CRITICAL(&group->spinlock); if (group->rx_periph_in_use_mask & (1 << trig_periph.instance_id)) { periph_conflict = true; } else { group->rx_periph_in_use_mask |= (1 << trig_periph.instance_id); } portEXIT_CRITICAL(&group->spinlock); } if (!periph_conflict) { gdma_ll_rx_reset_channel(group->hal.dev, pair->pair_id); // reset channel gdma_ll_rx_connect_to_periph(group->hal.dev, pair->pair_id, trig_periph.periph, trig_periph.instance_id); } } ESP_RETURN_ON_FALSE(!periph_conflict, ESP_ERR_INVALID_STATE, TAG, "peripheral %d is already used by another channel", trig_periph.instance_id); dma_chan->periph_id = trig_periph.instance_id; return ESP_OK; } esp_err_t gdma_disconnect(gdma_channel_handle_t dma_chan) { gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_RETURN_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(dma_chan->periph_id != GDMA_INVALID_PERIPH_TRIG, ESP_ERR_INVALID_STATE, TAG, "no peripheral is connected to the channel"); pair = dma_chan->pair; group = pair->group; int save_periph_id = dma_chan->periph_id; if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) { if (save_periph_id >= 0) { portENTER_CRITICAL(&group->spinlock); group->tx_periph_in_use_mask &= ~(1 << save_periph_id); portEXIT_CRITICAL(&group->spinlock); } gdma_ll_tx_disconnect_from_periph(group->hal.dev, pair->pair_id); } else { if (save_periph_id >= 0) { portENTER_CRITICAL(&group->spinlock); group->rx_periph_in_use_mask &= ~(1 << save_periph_id); portEXIT_CRITICAL(&group->spinlock); } gdma_ll_rx_disconnect_from_periph(group->hal.dev, pair->pair_id); } dma_chan->periph_id = GDMA_INVALID_PERIPH_TRIG; return ESP_OK; } esp_err_t gdma_get_free_m2m_trig_id_mask(gdma_channel_handle_t dma_chan, uint32_t *mask) { gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_RETURN_ON_FALSE(dma_chan && mask, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); uint32_t free_mask = GDMA_LL_M2M_FREE_PERIPH_ID_MASK; pair = dma_chan->pair; group = pair->group; portENTER_CRITICAL(&group->spinlock); free_mask &= ~(group->tx_periph_in_use_mask); free_mask &= ~(group->rx_periph_in_use_mask); portEXIT_CRITICAL(&group->spinlock); *mask = free_mask; return ESP_OK; } esp_err_t gdma_set_transfer_ability(gdma_channel_handle_t dma_chan, const gdma_transfer_ability_t *ability) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; bool en_burst = true; ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; size_t sram_alignment = ability->sram_trans_align; size_t psram_alignment = ability->psram_trans_align; // alignment should be 2^n ESP_GOTO_ON_FALSE((sram_alignment & (sram_alignment - 1)) == 0, ESP_ERR_INVALID_ARG, err, TAG, "invalid sram alignment: %zu", sram_alignment); #if SOC_GDMA_SUPPORT_PSRAM int block_size_index = 0; switch (psram_alignment) { case 64: // 64 Bytes alignment block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_64B; break; case 32: // 32 Bytes alignment block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_32B; break; case 16: // 16 Bytes alignment block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_16B; break; case 0: // no alignment is requirement block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_16B; psram_alignment = SOC_GDMA_PSRAM_MIN_ALIGN; // fall back to minimal alignment break; default: ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "invalid psram alignment: %zu", psram_alignment); break; } #endif // #if SOC_GDMA_SUPPORT_PSRAM if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) { // TX channel can always enable burst mode, no matter data alignment gdma_ll_tx_enable_data_burst(group->hal.dev, pair->pair_id, true); gdma_ll_tx_enable_descriptor_burst(group->hal.dev, pair->pair_id, true); #if SOC_GDMA_SUPPORT_PSRAM gdma_ll_tx_set_block_size_psram(group->hal.dev, pair->pair_id, block_size_index); #endif // #if SOC_GDMA_SUPPORT_PSRAM } else { // RX channel burst mode depends on specific data alignment en_burst = sram_alignment >= 4; gdma_ll_rx_enable_data_burst(group->hal.dev, pair->pair_id, en_burst); gdma_ll_rx_enable_descriptor_burst(group->hal.dev, pair->pair_id, en_burst); #if SOC_GDMA_SUPPORT_PSRAM gdma_ll_rx_set_block_size_psram(group->hal.dev, pair->pair_id, block_size_index); #endif // #if SOC_GDMA_SUPPORT_PSRAM } dma_chan->sram_alignment = sram_alignment; dma_chan->psram_alignment = psram_alignment; ESP_LOGD(TAG, "%s channel (%d,%d), (%zu:%zu) bytes aligned, burst %s", dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX ? "tx" : "rx", group->group_id, pair->pair_id, sram_alignment, psram_alignment, en_burst ? "enabled" : "disabled"); err: return ret; } esp_err_t gdma_apply_strategy(gdma_channel_handle_t dma_chan, const gdma_strategy_config_t *config) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) { gdma_ll_tx_enable_owner_check(group->hal.dev, pair->pair_id, config->owner_check); gdma_ll_tx_enable_auto_write_back(group->hal.dev, pair->pair_id, config->auto_update_desc); } else { gdma_ll_rx_enable_owner_check(group->hal.dev, pair->pair_id, config->owner_check); } err: return ret; } esp_err_t gdma_register_tx_event_callbacks(gdma_channel_handle_t dma_chan, gdma_tx_event_callbacks_t *cbs, void *user_data) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE(dma_chan && dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; gdma_tx_channel_t *tx_chan = __containerof(dma_chan, gdma_tx_channel_t, base); #if CONFIG_GDMA_ISR_IRAM_SAFE if (cbs->on_trans_eof) { ESP_GOTO_ON_FALSE(esp_ptr_in_iram(cbs->on_trans_eof), ESP_ERR_INVALID_ARG, err, TAG, "on_trans_eof not in IRAM"); } if (user_data) { ESP_GOTO_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, err, TAG, "user context not in internal RAM"); } #endif // CONFIG_GDMA_ISR_IRAM_SAFE // lazy install interrupt service ESP_GOTO_ON_ERROR(gdma_install_tx_interrupt(tx_chan), err, TAG, "install interrupt service failed"); // enable/disable GDMA interrupt events for TX channel portENTER_CRITICAL(&pair->spinlock); gdma_ll_tx_enable_interrupt(group->hal.dev, pair->pair_id, GDMA_LL_EVENT_TX_EOF, cbs->on_trans_eof != NULL); portEXIT_CRITICAL(&pair->spinlock); tx_chan->on_trans_eof = cbs->on_trans_eof; tx_chan->user_data = user_data; ESP_GOTO_ON_ERROR(esp_intr_enable(dma_chan->intr), err, TAG, "enable interrupt failed"); err: return ret; } esp_err_t gdma_register_rx_event_callbacks(gdma_channel_handle_t dma_chan, gdma_rx_event_callbacks_t *cbs, void *user_data) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE(dma_chan && dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; gdma_rx_channel_t *rx_chan = __containerof(dma_chan, gdma_rx_channel_t, base); #if CONFIG_GDMA_ISR_IRAM_SAFE if (cbs->on_recv_eof) { ESP_GOTO_ON_FALSE(esp_ptr_in_iram(cbs->on_recv_eof), ESP_ERR_INVALID_ARG, err, TAG, "on_recv_eof not in IRAM"); } if (user_data) { ESP_GOTO_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, err, TAG, "user context not in internal RAM"); } #endif // CONFIG_GDMA_ISR_IRAM_SAFE // lazy install interrupt service ESP_GOTO_ON_ERROR(gdma_install_rx_interrupt(rx_chan), err, TAG, "install interrupt service failed"); // enable/disable GDMA interrupt events for RX channel portENTER_CRITICAL(&pair->spinlock); gdma_ll_rx_enable_interrupt(group->hal.dev, pair->pair_id, GDMA_LL_EVENT_RX_SUC_EOF, cbs->on_recv_eof != NULL); portEXIT_CRITICAL(&pair->spinlock); rx_chan->on_recv_eof = cbs->on_recv_eof; rx_chan->user_data = user_data; ESP_GOTO_ON_ERROR(esp_intr_enable(dma_chan->intr), err, TAG, "enable interrupt failed"); err: return ret; } esp_err_t gdma_start(gdma_channel_handle_t dma_chan, intptr_t desc_base_addr) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; portENTER_CRITICAL_SAFE(&dma_chan->spinlock); if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) { gdma_ll_rx_set_desc_addr(group->hal.dev, pair->pair_id, desc_base_addr); gdma_ll_rx_start(group->hal.dev, pair->pair_id); } else { gdma_ll_tx_set_desc_addr(group->hal.dev, pair->pair_id, desc_base_addr); gdma_ll_tx_start(group->hal.dev, pair->pair_id); } portEXIT_CRITICAL_SAFE(&dma_chan->spinlock); err: return ret; } esp_err_t gdma_stop(gdma_channel_handle_t dma_chan) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; portENTER_CRITICAL_SAFE(&dma_chan->spinlock); if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) { gdma_ll_rx_stop(group->hal.dev, pair->pair_id); } else { gdma_ll_tx_stop(group->hal.dev, pair->pair_id); } portEXIT_CRITICAL_SAFE(&dma_chan->spinlock); err: return ret; } esp_err_t gdma_append(gdma_channel_handle_t dma_chan) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; portENTER_CRITICAL_SAFE(&dma_chan->spinlock); if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) { gdma_ll_rx_restart(group->hal.dev, pair->pair_id); } else { gdma_ll_tx_restart(group->hal.dev, pair->pair_id); } portEXIT_CRITICAL_SAFE(&dma_chan->spinlock); err: return ret; } esp_err_t gdma_reset(gdma_channel_handle_t dma_chan) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = NULL; gdma_group_t *group = NULL; ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); pair = dma_chan->pair; group = pair->group; portENTER_CRITICAL_SAFE(&dma_chan->spinlock); if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) { gdma_ll_rx_reset_channel(group->hal.dev, pair->pair_id); } else { gdma_ll_tx_reset_channel(group->hal.dev, pair->pair_id); } portEXIT_CRITICAL_SAFE(&dma_chan->spinlock); err: return ret; } static void gdma_release_group_handle(gdma_group_t *group) { int group_id = group->group_id; bool do_deinitialize = false; portENTER_CRITICAL(&s_platform.spinlock); s_platform.group_ref_counts[group_id]--; if (s_platform.group_ref_counts[group_id] == 0) { assert(s_platform.groups[group_id]); do_deinitialize = true; s_platform.groups[group_id] = NULL; // deregister from platfrom gdma_ll_enable_clock(group->hal.dev, false); periph_module_disable(gdma_periph_signals.groups[group_id].module); } portEXIT_CRITICAL(&s_platform.spinlock); if (do_deinitialize) { free(group); ESP_LOGD(TAG, "del group %d", group_id); } } static gdma_group_t *gdma_acquire_group_handle(int group_id) { bool new_group = false; gdma_group_t *group = NULL; gdma_group_t *pre_alloc_group = heap_caps_calloc(1, sizeof(gdma_group_t), GDMA_MEM_ALLOC_CAPS); if (!pre_alloc_group) { goto out; } portENTER_CRITICAL(&s_platform.spinlock); if (!s_platform.groups[group_id]) { new_group = true; group = pre_alloc_group; s_platform.groups[group_id] = group; // register to platform group->group_id = group_id; group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; periph_module_enable(gdma_periph_signals.groups[group_id].module); // enable APB to access GDMA registers gdma_hal_init(&group->hal, group_id); // initialize HAL context gdma_ll_enable_clock(group->hal.dev, true); // enable gdma clock } else { group = s_platform.groups[group_id]; } // someone acquired the group handle means we have a new object that refer to this group s_platform.group_ref_counts[group_id]++; portEXIT_CRITICAL(&s_platform.spinlock); if (new_group) { ESP_LOGD(TAG, "new group (%d) at %p", group->group_id, group); } else { free(pre_alloc_group); } out: return group; } static void gdma_release_pair_handle(gdma_pair_t *pair) { gdma_group_t *group = pair->group; int pair_id = pair->pair_id; bool do_deinitialize = false; portENTER_CRITICAL(&group->spinlock); group->pair_ref_counts[pair_id]--; if (group->pair_ref_counts[pair_id] == 0) { assert(group->pairs[pair_id]); do_deinitialize = true; group->pairs[pair_id] = NULL; // deregister from pair } portEXIT_CRITICAL(&group->spinlock); if (do_deinitialize) { free(pair); ESP_LOGD(TAG, "del pair (%d,%d)", group->group_id, pair_id); gdma_release_group_handle(group); } } static gdma_pair_t *gdma_acquire_pair_handle(gdma_group_t *group, int pair_id) { bool new_pair = false; gdma_pair_t *pair = NULL; gdma_pair_t *pre_alloc_pair = heap_caps_calloc(1, sizeof(gdma_pair_t), GDMA_MEM_ALLOC_CAPS); if (!pre_alloc_pair) { goto out; } portENTER_CRITICAL(&group->spinlock); if (!group->pairs[pair_id]) { new_pair = true; pair = pre_alloc_pair; group->pairs[pair_id] = pair; // register to group pair->group = group; pair->pair_id = pair_id; pair->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; } else { pair = group->pairs[pair_id]; } // someone acquired the pair handle means we have a new object that refer to this pair group->pair_ref_counts[pair_id]++; portEXIT_CRITICAL(&group->spinlock); if (new_pair) { portENTER_CRITICAL(&s_platform.spinlock); s_platform.group_ref_counts[group->group_id]++; // pair obtains a reference to group portEXIT_CRITICAL(&s_platform.spinlock); ESP_LOGD(TAG, "new pair (%d,%d) at %p", group->group_id, pair->pair_id, pair); } else { free(pre_alloc_pair); } out: return pair; } static esp_err_t gdma_del_tx_channel(gdma_channel_t *dma_channel) { gdma_pair_t *pair = dma_channel->pair; gdma_group_t *group = pair->group; int pair_id = pair->pair_id; int group_id = group->group_id; gdma_tx_channel_t *tx_chan = __containerof(dma_channel, gdma_tx_channel_t, base); portENTER_CRITICAL(&pair->spinlock); pair->tx_chan = NULL; pair->occupy_code &= ~SEARCH_REQUEST_TX_CHANNEL; portEXIT_CRITICAL(&pair->spinlock); if (dma_channel->intr) { esp_intr_free(dma_channel->intr); portENTER_CRITICAL(&pair->spinlock); gdma_ll_tx_enable_interrupt(group->hal.dev, pair_id, UINT32_MAX, false); // disable all interupt events gdma_ll_tx_clear_interrupt_status(group->hal.dev, pair_id, UINT32_MAX); // clear all pending events portEXIT_CRITICAL(&pair->spinlock); ESP_LOGD(TAG, "uninstall interrupt service for tx channel (%d,%d)", group_id, pair_id); } free(tx_chan); ESP_LOGD(TAG, "del tx channel (%d,%d)", group_id, pair_id); // channel has a reference on pair, release it now gdma_release_pair_handle(pair); return ESP_OK; } static esp_err_t gdma_del_rx_channel(gdma_channel_t *dma_channel) { gdma_pair_t *pair = dma_channel->pair; gdma_group_t *group = pair->group; int pair_id = pair->pair_id; int group_id = group->group_id; gdma_rx_channel_t *rx_chan = __containerof(dma_channel, gdma_rx_channel_t, base); portENTER_CRITICAL(&pair->spinlock); pair->rx_chan = NULL; pair->occupy_code &= ~SEARCH_REQUEST_RX_CHANNEL; portEXIT_CRITICAL(&pair->spinlock); if (dma_channel->intr) { esp_intr_free(dma_channel->intr); portENTER_CRITICAL(&pair->spinlock); gdma_ll_rx_enable_interrupt(group->hal.dev, pair_id, UINT32_MAX, false); // disable all interupt events gdma_ll_rx_clear_interrupt_status(group->hal.dev, pair_id, UINT32_MAX); // clear all pending events portEXIT_CRITICAL(&pair->spinlock); ESP_LOGD(TAG, "uninstall interrupt service for rx channel (%d,%d)", group_id, pair_id); } free(rx_chan); ESP_LOGD(TAG, "del rx channel (%d,%d)", group_id, pair_id); gdma_release_pair_handle(pair); return ESP_OK; } static void IRAM_ATTR gdma_default_rx_isr(void *args) { gdma_rx_channel_t *rx_chan = (gdma_rx_channel_t *)args; gdma_pair_t *pair = rx_chan->base.pair; gdma_group_t *group = pair->group; bool need_yield = false; // clear pending interrupt event uint32_t intr_status = gdma_ll_rx_get_interrupt_status(group->hal.dev, pair->pair_id); gdma_ll_rx_clear_interrupt_status(group->hal.dev, pair->pair_id, intr_status); if (intr_status & GDMA_LL_EVENT_RX_SUC_EOF) { if (rx_chan && rx_chan->on_recv_eof) { uint32_t eof_addr = gdma_ll_rx_get_success_eof_desc_addr(group->hal.dev, pair->pair_id); gdma_event_data_t edata = { .rx_eof_desc_addr = eof_addr }; if (rx_chan->on_recv_eof(&rx_chan->base, &edata, rx_chan->user_data)) { need_yield = true; } } } if (need_yield) { portYIELD_FROM_ISR(); } } static void IRAM_ATTR gdma_default_tx_isr(void *args) { gdma_tx_channel_t *tx_chan = (gdma_tx_channel_t *)args; gdma_pair_t *pair = tx_chan->base.pair; gdma_group_t *group = pair->group; bool need_yield = false; // clear pending interrupt event uint32_t intr_status = gdma_ll_tx_get_interrupt_status(group->hal.dev, pair->pair_id); gdma_ll_tx_clear_interrupt_status(group->hal.dev, pair->pair_id, intr_status); if (intr_status & GDMA_LL_EVENT_TX_EOF) { if (tx_chan && tx_chan->on_trans_eof) { uint32_t eof_addr = gdma_ll_tx_get_eof_desc_addr(group->hal.dev, pair->pair_id); gdma_event_data_t edata = { .tx_eof_desc_addr = eof_addr }; if (tx_chan->on_trans_eof(&tx_chan->base, &edata, tx_chan->user_data)) { need_yield = true; } } } if (need_yield) { portYIELD_FROM_ISR(); } } static esp_err_t gdma_install_rx_interrupt(gdma_rx_channel_t *rx_chan) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = rx_chan->base.pair; gdma_group_t *group = pair->group; // pre-alloc a interrupt handle, with handler disabled int isr_flags = GDMA_INTR_ALLOC_FLAGS; #if SOC_GDMA_TX_RX_SHARE_INTERRUPT isr_flags |= ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_LOWMED; #endif intr_handle_t intr = NULL; ret = esp_intr_alloc_intrstatus(gdma_periph_signals.groups[group->group_id].pairs[pair->pair_id].rx_irq_id, isr_flags, (uint32_t)gdma_ll_rx_get_interrupt_status_reg(group->hal.dev, pair->pair_id), GDMA_LL_RX_EVENT_MASK, gdma_default_rx_isr, rx_chan, &intr); ESP_GOTO_ON_ERROR(ret, err, TAG, "alloc interrupt failed"); rx_chan->base.intr = intr; portENTER_CRITICAL(&pair->spinlock); gdma_ll_rx_enable_interrupt(group->hal.dev, pair->pair_id, UINT32_MAX, false); // disable all interupt events gdma_ll_rx_clear_interrupt_status(group->hal.dev, pair->pair_id, UINT32_MAX); // clear all pending events portEXIT_CRITICAL(&pair->spinlock); ESP_LOGD(TAG, "install interrupt service for rx channel (%d,%d)", group->group_id, pair->pair_id); err: return ret; } static esp_err_t gdma_install_tx_interrupt(gdma_tx_channel_t *tx_chan) { esp_err_t ret = ESP_OK; gdma_pair_t *pair = tx_chan->base.pair; gdma_group_t *group = pair->group; // pre-alloc a interrupt handle, with handler disabled int isr_flags = GDMA_INTR_ALLOC_FLAGS; #if SOC_GDMA_TX_RX_SHARE_INTERRUPT isr_flags |= ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_LOWMED; #endif intr_handle_t intr = NULL; ret = esp_intr_alloc_intrstatus(gdma_periph_signals.groups[group->group_id].pairs[pair->pair_id].tx_irq_id, isr_flags, (uint32_t)gdma_ll_tx_get_interrupt_status_reg(group->hal.dev, pair->pair_id), GDMA_LL_TX_EVENT_MASK, gdma_default_tx_isr, tx_chan, &intr); ESP_GOTO_ON_ERROR(ret, err, TAG, "alloc interrupt failed"); tx_chan->base.intr = intr; portENTER_CRITICAL(&pair->spinlock); gdma_ll_tx_enable_interrupt(group->hal.dev, pair->pair_id, UINT32_MAX, false); // disable all interupt events gdma_ll_tx_clear_interrupt_status(group->hal.dev, pair->pair_id, UINT32_MAX); // clear all pending events portEXIT_CRITICAL(&pair->spinlock); ESP_LOGD(TAG, "install interrupt service for tx channel (%d,%d)", group->group_id, pair->pair_id); err: return ret; }