/* * SPDX-FileCopyrightText: 2017-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "sdkconfig.h" #include "esp_log.h" #include "assert.h" #include "esp_efuse_utility.h" #include "soc/efuse_periph.h" #include "esp_private/esp_clk.h" #include "hal/efuse_hal.h" static const char *TAG = "efuse"; #ifdef CONFIG_EFUSE_VIRTUAL extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK]; #endif // CONFIG_EFUSE_VIRTUAL /*Range addresses to read blocks*/ const esp_efuse_range_addr_t range_read_addr_blocks[] = { {EFUSE_RD_WR_DIS_REG, EFUSE_RD_REPEAT_DATA4_REG}, // range address of EFUSE_BLK0 REPEAT {EFUSE_RD_MAC_SPI_SYS_0_REG, EFUSE_RD_MAC_SPI_SYS_5_REG}, // range address of EFUSE_BLK1 MAC_SPI_8M {EFUSE_RD_SYS_PART1_DATA0_REG, EFUSE_RD_SYS_PART1_DATA7_REG}, // range address of EFUSE_BLK2 SYS_DATA {EFUSE_RD_USR_DATA0_REG, EFUSE_RD_USR_DATA7_REG}, // range address of EFUSE_BLK3 USR_DATA {EFUSE_RD_KEY0_DATA0_REG, EFUSE_RD_KEY0_DATA7_REG}, // range address of EFUSE_BLK4 KEY0 {EFUSE_RD_KEY1_DATA0_REG, EFUSE_RD_KEY1_DATA7_REG}, // range address of EFUSE_BLK5 KEY1 {EFUSE_RD_KEY2_DATA0_REG, EFUSE_RD_KEY2_DATA7_REG}, // range address of EFUSE_BLK6 KEY2 {EFUSE_RD_KEY3_DATA0_REG, EFUSE_RD_KEY3_DATA7_REG}, // range address of EFUSE_BLK7 KEY3 {EFUSE_RD_KEY4_DATA0_REG, EFUSE_RD_KEY4_DATA7_REG}, // range address of EFUSE_BLK8 KEY4 {EFUSE_RD_KEY5_DATA0_REG, EFUSE_RD_KEY5_DATA7_REG}, // range address of EFUSE_BLK9 KEY5 {EFUSE_RD_SYS_PART2_DATA0_REG, EFUSE_RD_SYS_PART2_DATA7_REG} // range address of EFUSE_BLK10 KEY6 }; static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 }; /*Range addresses to write blocks (it is not real regs, it is buffer) */ const esp_efuse_range_addr_t range_write_addr_blocks[] = { {(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][5]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][5]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK4][0], (uint32_t) &write_mass_blocks[EFUSE_BLK4][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK5][0], (uint32_t) &write_mass_blocks[EFUSE_BLK5][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK6][0], (uint32_t) &write_mass_blocks[EFUSE_BLK6][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK7][0], (uint32_t) &write_mass_blocks[EFUSE_BLK7][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK8][0], (uint32_t) &write_mass_blocks[EFUSE_BLK8][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK9][0], (uint32_t) &write_mass_blocks[EFUSE_BLK9][7]}, {(uint32_t) &write_mass_blocks[EFUSE_BLK10][0], (uint32_t) &write_mass_blocks[EFUSE_BLK10][7]}, }; #ifndef CONFIG_EFUSE_VIRTUAL // Update Efuse timing configuration static esp_err_t esp_efuse_set_timing(void) { uint32_t clock_hz = esp_clk_apb_freq(); efuse_hal_set_timing(clock_hz); return ESP_OK; } #endif // ifndef CONFIG_EFUSE_VIRTUAL // Efuse read operation: copies data from physical efuses to efuse read registers. void esp_efuse_utility_clear_program_registers(void) { efuse_hal_read(); efuse_hal_clear_program_registers(); } esp_err_t esp_efuse_utility_check_errors(void) { return ESP_OK; } // Burn values written to the efuse write registers esp_err_t esp_efuse_utility_burn_chip(void) { esp_err_t error = ESP_OK; #ifdef CONFIG_EFUSE_VIRTUAL ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses"); for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) { int subblock = 0; for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) { virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block); } } #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH esp_efuse_utility_write_efuses_to_flash(); #endif #else // CONFIG_EFUSE_VIRTUAL if (esp_efuse_set_timing() != ESP_OK) { ESP_LOGE(TAG, "Efuse fields are not burnt"); } else { // Permanently update values written to the efuse write registers // It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks. for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) { bool need_burn_block = false; for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) { if (REG_READ(addr_wr_block) != 0) { need_burn_block = true; break; } } if (!need_burn_block) { continue; } if (error) { // It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data) // in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2. ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block); continue; } efuse_hal_clear_program_registers(); if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) { uint8_t block_rs[12]; efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs); #pragma GCC diagnostic push #ifndef __clang__ #pragma GCC diagnostic ignored "-Wstringop-overflow" #endif #pragma GCC diagnostic ignored "-Warray-bounds" memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs)); #pragma GCC diagnostic pop } unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t); unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t); memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len); uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data #pragma GCC diagnostic push #if __GNUC__ >= 11 #pragma GCC diagnostic ignored "-Wstringop-overread" #endif #pragma GCC diagnostic ignored "-Warray-bounds" memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data)); #pragma GCC diagnostic pop int repeat_burn_op = 1; bool correct_written_data; bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block); if (coding_error_before) { ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block); } bool coding_error_occurred; do { ESP_LOGI(TAG, "BURN BLOCK%d", num_block); efuse_hal_program(num_block); // BURN a block bool coding_error_after; for (unsigned i = 0; i < 5; i++) { efuse_hal_read(); coding_error_after = efuse_hal_is_coding_error_in_block(num_block); if (coding_error_after == true) { break; } } coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false; if (coding_error_occurred) { ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block); } correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len); if (!correct_written_data || coding_error_occurred) { ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op); #pragma GCC diagnostic push #ifndef __clang__ #pragma GCC diagnostic ignored "-Wstringop-overflow" #endif #pragma GCC diagnostic ignored "-Warray-bounds" memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data)); #pragma GCC diagnostic pop } } while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3); if (coding_error_occurred) { ESP_LOGW(TAG, "Coding error was not fixed"); if (num_block == 0) { ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security"); error = ESP_FAIL; } } if (!correct_written_data) { ESP_LOGE(TAG, "Written data are incorrect"); error = ESP_FAIL; } } } #endif // CONFIG_EFUSE_VIRTUAL esp_efuse_utility_reset(); return error; } // After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values. // This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme. // The RS coding scheme does not require data changes for the encoded data. esp32s2 has special registers for this. // They will be filled during the burn operation. esp_err_t esp_efuse_utility_apply_new_coding_scheme() { // start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE. for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) { if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) { for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) { if (REG_READ(addr_wr_block)) { int num_reg = 0; for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) { if (esp_efuse_utility_read_reg(num_block, num_reg)) { ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden."); return ESP_ERR_CODING; } } break; } } } } return ESP_OK; }