/* * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /** * @note TX and RX channels are index from 0 in the LL driver, i.e. tx_channel = [0,1], rx_channel = [0,1] */ #pragma once #include #include #include #include "hal/misc.h" #include "hal/assert.h" #include "soc/rmt_struct.h" #include "hal/rmt_types.h" #ifdef __cplusplus extern "C" { #endif #define RMT_LL_EVENT_TX_DONE(channel) (1 << (channel)) #define RMT_LL_EVENT_TX_THRES(channel) (1 << ((channel) + 8)) #define RMT_LL_EVENT_TX_LOOP_END(channel) (1 << ((channel) + 12)) #define RMT_LL_EVENT_TX_ERROR(channel) (1 << ((channel) + 4)) #define RMT_LL_EVENT_RX_DONE(channel) (1 << ((channel) + 2)) #define RMT_LL_EVENT_RX_THRES(channel) (1 << ((channel) + 10)) #define RMT_LL_EVENT_RX_ERROR(channel) (1 << ((channel) + 6)) #define RMT_LL_EVENT_TX_MASK(channel) (RMT_LL_EVENT_TX_DONE(channel) | RMT_LL_EVENT_TX_THRES(channel) | RMT_LL_EVENT_TX_LOOP_END(channel)) #define RMT_LL_EVENT_RX_MASK(channel) (RMT_LL_EVENT_RX_DONE(channel) | RMT_LL_EVENT_RX_THRES(channel)) #define RMT_LL_MAX_LOOP_COUNT_PER_BATCH 1023 typedef enum { RMT_LL_MEM_OWNER_SW = 0, RMT_LL_MEM_OWNER_HW = 1, } rmt_ll_mem_owner_t; /** * @brief Enable clock gate for register and memory * * @param dev Peripheral instance address * @param enable True to enable, False to disable */ static inline void rmt_ll_enable_periph_clock(rmt_dev_t *dev, bool enable) { dev->sys_conf.clk_en = enable; // register clock gating dev->sys_conf.mem_clk_force_on = enable; // memory clock gating } /** * @brief Power down memory * * @param dev Peripheral instance address * @param enable True to power down, False to power up */ static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, bool enable) { dev->sys_conf.mem_force_pu = !enable; dev->sys_conf.mem_force_pd = enable; } /** * @brief Enable APB accessing RMT memory in nonfifo mode * * @param dev Peripheral instance address * @param enable True to enable, False to disable */ static inline void rmt_ll_enable_mem_access_nonfifo(rmt_dev_t *dev, bool enable) { dev->sys_conf.fifo_mask = enable; } /** * @brief Set clock source and divider for RMT channel group * * @param dev Peripheral instance address * @param channel not used as clock source is set for all channels * @param src Clock source * @param divider_integral Integral part of the divider * @param divider_denominator Denominator part of the divider * @param divider_numerator Numerator part of the divider */ static inline void rmt_ll_set_group_clock_src(rmt_dev_t *dev, uint32_t channel, rmt_clock_source_t src, uint32_t divider_integral, uint32_t divider_denominator, uint32_t divider_numerator) { // Formula: rmt_sclk = module_clock_src / (1 + div_num + div_a / div_b) (void)channel; // the source clock is set for all channels HAL_ASSERT(divider_integral >= 1); dev->sys_conf.sclk_active = 0; HAL_FORCE_MODIFY_U32_REG_FIELD(dev->sys_conf, sclk_div_num, divider_integral - 1); dev->sys_conf.sclk_div_a = divider_numerator; dev->sys_conf.sclk_div_b = divider_denominator; switch (src) { case RMT_CLK_SRC_APB: dev->sys_conf.sclk_sel = 1; break; case RMT_CLK_SRC_RC_FAST: dev->sys_conf.sclk_sel = 2; break; case RMT_CLK_SRC_XTAL: dev->sys_conf.sclk_sel = 3; break; default: HAL_ASSERT(false && "unsupported RMT clock source"); break; } dev->sys_conf.sclk_active = 1; } ////////////////////////////////////////TX Channel Specific///////////////////////////////////////////////////////////// /** * @brief Reset clock divider for TX channels by mask * * @param dev Peripheral instance address * @param channel_mask Mask of TX channels */ static inline void rmt_ll_tx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask) { // write 1 to reset dev->ref_cnt_rst.val |= channel_mask & 0x03; } /** * @brief Set TX channel clock divider * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param div Division value */ static inline void rmt_ll_tx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div) { HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range"); // limit the maximum divider to 256 if (div >= 256) { div = 0; // 0 means 256 division } HAL_FORCE_MODIFY_U32_REG_FIELD(dev->tx_conf[channel], div_cnt, div); } /** * @brief Reset RMT reading pointer for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number */ static inline void rmt_ll_tx_reset_pointer(rmt_dev_t *dev, uint32_t channel) { dev->tx_conf[channel].mem_rd_rst = 1; dev->tx_conf[channel].mem_rd_rst = 0; dev->tx_conf[channel].mem_rst = 1; dev->tx_conf[channel].mem_rst = 0; } /** * @brief Start transmitting for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number */ static inline void rmt_ll_tx_start(rmt_dev_t *dev, uint32_t channel) { // update other configuration registers before start transmitting dev->tx_conf[channel].conf_update = 1; dev->tx_conf[channel].tx_start = 1; } /** * @brief Stop transmitting for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number */ static inline void rmt_ll_tx_stop(rmt_dev_t *dev, uint32_t channel) { dev->tx_conf[channel].tx_stop = 1; // stop won't take place until configurations updated dev->tx_conf[channel].conf_update = 1; } /** * @brief Set memory block number for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param block_num memory block number */ static inline void rmt_ll_tx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num) { dev->tx_conf[channel].mem_size = block_num; } /** * @brief Enable TX wrap * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param enable True to enable, False to disable */ static inline void rmt_ll_tx_enable_wrap(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].mem_tx_wrap_en = enable; } /** * @brief Enable transmitting in a loop * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param enable True to enable, False to disable */ static inline void rmt_ll_tx_enable_loop(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].tx_conti_mode = enable; } /** * @brief Set loop count for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param count TX loop count */ static inline void rmt_ll_tx_set_loop_count(rmt_dev_t *dev, uint32_t channel, uint32_t count) { HAL_ASSERT(count <= RMT_LL_MAX_LOOP_COUNT_PER_BATCH && "loop count out of range"); dev->tx_lim[channel].tx_loop_num = count; } /** * @brief Reset loop count for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number */ static inline void rmt_ll_tx_reset_loop_count(rmt_dev_t *dev, uint32_t channel) { dev->tx_lim[channel].loop_count_reset = 1; dev->tx_lim[channel].loop_count_reset = 0; } /** * @brief Enable loop count for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param enable True to enable, False to disable */ static inline void rmt_ll_tx_enable_loop_count(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_lim[channel].tx_loop_cnt_en = enable; } /** * @brief Enable transmit multiple channels synchronously * * @param dev Peripheral instance address * @param enable True to enable, False to disable */ static inline void rmt_ll_tx_enable_sync(rmt_dev_t *dev, bool enable) { dev->tx_sim.en = enable; } /** * @brief Clear the TX channels synchronous group * * @param dev Peripheral instance address */ static inline void rmt_ll_tx_clear_sync_group(rmt_dev_t *dev) { dev->tx_sim.val &= ~(0x03); } /** * @brief Add TX channels to the synchronous group * * @param dev Peripheral instance address * @param channel_mask Mask of TX channels to be added to the synchronous group */ static inline void rmt_ll_tx_sync_group_add_channels(rmt_dev_t *dev, uint32_t channel_mask) { dev->tx_sim.val |= (channel_mask & 0x03); } /** * @brief Remove TX channels from the synchronous group * * @param dev Peripheral instance address * @param channel_mask Mask of TX channels to be removed from the synchronous group */ static inline void rmt_ll_tx_sync_group_remove_channels(rmt_dev_t *dev, uint32_t channel_mask) { dev->tx_sim.val &= ~channel_mask; } /** * @brief Fix the output level when TX channel is in IDLE state * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param level IDLE level (1 => high, 0 => low) * @param enable True to fix the IDLE level, otherwise the IDLE level is determined by EOF encoder */ static inline void rmt_ll_tx_fix_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level, bool enable) { dev->tx_conf[channel].idle_out_en = enable; dev->tx_conf[channel].idle_out_lv = level; } /** * @brief Set the amount of RMT symbols that can trigger the limitation interrupt * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param limit Specify the number of symbols */ static inline void rmt_ll_tx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit) { dev->tx_lim[channel].limit = limit; } /** * @brief Set high and low duration of carrier signal * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param high_ticks Duration of high level * @param low_ticks Duration of low level */ static inline void rmt_ll_tx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks) { HAL_ASSERT(high_ticks >= 1 && high_ticks <= 65536 && low_ticks >= 1 && low_ticks <= 65536 && "out of range high/low ticks"); // ticks=0 means 65536 in hardware if (high_ticks >= 65536) { high_ticks = 0; } if (low_ticks >= 65536) { low_ticks = 0; } HAL_FORCE_MODIFY_U32_REG_FIELD(dev->tx_carrier[channel], high, high_ticks); HAL_FORCE_MODIFY_U32_REG_FIELD(dev->tx_carrier[channel], low, low_ticks); } /** * @brief Enable modulating carrier signal to TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param enable True to enable, False to disable */ static inline void rmt_ll_tx_enable_carrier_modulation(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].carrier_en = enable; } /** * @brief Set on high or low to modulate the carrier signal * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param level Which level to modulate on (0=>low level, 1=>high level) */ static inline void rmt_ll_tx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level) { dev->tx_conf[channel].carrier_out_lv = level; } /** * @brief Enable to always output carrier signal, regardless of a valid data transmission * * @param dev Peripheral instance address * @param channel RMT TX channel number * @param enable True to output carrier signal in all RMT state, False to only ouput carrier signal for effective data */ static inline void rmt_ll_tx_enable_carrier_always_on(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].carrier_eff_en = !enable; } ////////////////////////////////////////RX Channel Specific///////////////////////////////////////////////////////////// /** * @brief Reset clock divider for RX channels by mask * * @param dev Peripheral instance address * @param channel_mask Mask of RX channels */ static inline void rmt_ll_rx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask) { // write 1 to reset dev->ref_cnt_rst.val |= ((channel_mask & 0x03) << 2); } /** * @brief Set RX channel clock divider * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param div Division value */ static inline void rmt_ll_rx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div) { HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range"); // limit the maximum divider to 256 if (div >= 256) { div = 0; // 0 means 256 division } HAL_FORCE_MODIFY_U32_REG_FIELD(dev->rx_conf[channel].conf0, div_cnt, div); } /** * @brief Reset RMT writing pointer for RX channel * * @param dev Peripheral instance address * @param channel RMT RX channel number */ static inline void rmt_ll_rx_reset_pointer(rmt_dev_t *dev, uint32_t channel) { dev->rx_conf[channel].conf1.mem_wr_rst = 1; dev->rx_conf[channel].conf1.mem_wr_rst = 0; dev->rx_conf[channel].conf1.mem_rst = 1; dev->rx_conf[channel].conf1.mem_rst = 0; } /** * @brief Enable receiving for RX channel * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param enable True to enable, False to disable */ static inline void rmt_ll_rx_enable(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf1.rx_en = enable; // rx won't be enabled until configurations updated dev->rx_conf[channel].conf1.conf_update = 1; } /** * @brief Set memory block number for RX channel * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param block_num memory block number */ static inline void rmt_ll_rx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num) { dev->rx_conf[channel].conf0.mem_size = block_num; } /** * @brief Set the time length for RX channel before going into IDLE state * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param thres Time length threshold */ static inline void rmt_ll_rx_set_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres) { dev->rx_conf[channel].conf0.idle_thres = thres; } /** * @brief Set RMT memory owner for RX channel * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param owner Memory owner */ static inline void rmt_ll_rx_set_mem_owner(rmt_dev_t *dev, uint32_t channel, rmt_ll_mem_owner_t owner) { dev->rx_conf[channel].conf1.mem_owner = owner; } /** * @brief Enable filter for RX channel * * @param dev Peripheral instance address * @param channel RMT RX chanenl number * @param enable True to enable, False to disable */ static inline void rmt_ll_rx_enable_filter(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf1.rx_filter_en = enable; } /** * @brief Set RX channel filter threshold (i.e. the maximum width of one pulse signal that would be treated as a noise) * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param thres Filter threshold */ static inline void rmt_ll_rx_set_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres) { HAL_FORCE_MODIFY_U32_REG_FIELD(dev->rx_conf[channel].conf1, rx_filter_thres, thres); } /** * @brief Get RMT memory write cursor offset * * @param dev Peripheral instance address * @param channel RMT RX channel number * @return writer offset */ static inline uint32_t rmt_ll_rx_get_memory_writer_offset(rmt_dev_t *dev, uint32_t channel) { return dev->rx_status[channel].mem_waddr_ex - (channel + 2) * 48; } /** * @brief Set the amount of RMT symbols that can trigger the limitation interrupt * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param limit Specify the number of symbols */ static inline void rmt_ll_rx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit) { dev->rx_lim[channel].rx_lim = limit; } /** * @brief Set high and low duration of carrier signal * * @param dev dev Peripheral instance address * @param channel RMT TX channel number * @param high_ticks Duration of high level * @param low_ticks Duration of low level */ static inline void rmt_ll_rx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks) { HAL_ASSERT(high_ticks >= 1 && high_ticks <= 65536 && low_ticks >= 1 && low_ticks <= 65536 && "out of range high/low ticks"); HAL_FORCE_MODIFY_U32_REG_FIELD(dev->rx_carrier[channel], high_thres, high_ticks - 1); HAL_FORCE_MODIFY_U32_REG_FIELD(dev->rx_carrier[channel], low_thres, low_ticks - 1); } /** * @brief Enable demodulating the carrier on RX channel * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param enable True to enable, False to disable */ static inline void rmt_ll_rx_enable_carrier_demodulation(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf0.carrier_en = enable; } /** * @brief Set on high or low to demodulate the carrier signal * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param level Which level to demodulate (0=>low level, 1=>high level) */ static inline void rmt_ll_rx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level) { dev->rx_conf[channel].conf0.carrier_out_lv = level; } /** * @brief Enable RX wrap * * @param dev Peripheral instance address * @param channel RMT RX channel number * @param enable True to enable, False to disable */ static inline void rmt_ll_rx_enable_wrap(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf1.mem_rx_wrap_en = enable; } //////////////////////////////////////////Interrupt Specific//////////////////////////////////////////////////////////// /** * @brief Enable RMT interrupt for specific event mask * * @param dev Peripheral instance address * @param mask Event mask * @param enable True to enable, False to disable */ static inline void rmt_ll_enable_interrupt(rmt_dev_t *dev, uint32_t mask, bool enable) { if (enable) { dev->int_ena.val |= mask; } else { dev->int_ena.val &= ~mask; } } /** * @brief Clear RMT interrupt status by mask * * @param dev Peripheral instance address * @param mask Interupt status mask */ static inline void rmt_ll_clear_interrupt_status(rmt_dev_t *dev, uint32_t mask) { dev->int_clr.val = mask; } /** * @brief Get interrupt status register address * * @param dev Peripheral instance address * @return Register address */ static inline volatile void *rmt_ll_get_interrupt_status_reg(rmt_dev_t *dev) { return &dev->int_st; } /** * @brief Get interrupt status for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number * @return Interrupt status */ static inline uint32_t rmt_ll_tx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel) { return dev->int_st.val & RMT_LL_EVENT_TX_MASK(channel); } /** * @brief Get interrupt raw status for TX channel * * @param dev Peripheral instance address * @param channel RMT TX channel number * @return Interrupt raw status */ static inline uint32_t rmt_ll_tx_get_interrupt_status_raw(rmt_dev_t *dev, uint32_t channel) { return dev->int_raw.val & RMT_LL_EVENT_TX_MASK(channel); } /** * @brief Get interrupt status for RX channel * * @param dev Peripheral instance address * @param channel RMT RX channel number * @return Interrupt status */ static inline uint32_t rmt_ll_rx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel) { return dev->int_st.val & RMT_LL_EVENT_RX_MASK(channel); } //////////////////////////////////////////Deprecated Functions////////////////////////////////////////////////////////// /////////////////////////////The following functions are only used by the legacy driver///////////////////////////////// /////////////////////////////They might be removed in the next major release (ESP-IDF 6.0)////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static inline uint32_t rmt_ll_tx_get_status_word(rmt_dev_t *dev, uint32_t channel) { return dev->tx_status[channel].val; } static inline uint32_t rmt_ll_rx_get_status_word(rmt_dev_t *dev, uint32_t channel) { return dev->rx_status[channel].val; } static inline uint32_t rmt_ll_tx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel) { uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->tx_conf[channel], div_cnt); return div == 0 ? 256 : div; } static inline uint32_t rmt_ll_rx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel) { uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->rx_conf[channel].conf0, div_cnt); return div == 0 ? 256 : div; } static inline uint32_t rmt_ll_rx_get_idle_thres(rmt_dev_t *dev, uint32_t channel) { return dev->rx_conf[channel].conf0.idle_thres; } static inline uint32_t rmt_ll_tx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].mem_size; } static inline uint32_t rmt_ll_rx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel) { return dev->rx_conf[channel].conf0.mem_size; } static inline bool rmt_ll_tx_is_loop_enabled(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].tx_conti_mode; } static inline rmt_clock_source_t rmt_ll_get_group_clock_src(rmt_dev_t *dev, uint32_t channel) { rmt_clock_source_t clk_src = RMT_CLK_SRC_APB; switch (dev->sys_conf.sclk_sel) { case 1: clk_src = RMT_CLK_SRC_APB; break; case 2: clk_src = RMT_CLK_SRC_RC_FAST; break; case 3: clk_src = RMT_CLK_SRC_XTAL; break; } return clk_src; } static inline bool rmt_ll_tx_is_idle_enabled(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].idle_out_en; } static inline uint32_t rmt_ll_tx_get_idle_level(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].idle_out_lv; } static inline bool rmt_ll_is_mem_powered_down(rmt_dev_t *dev) { // the RTC domain can also power down RMT memory // so it's probably not enough to detect whether it's powered down or not // mem_force_pd has higher priority than mem_force_pu return (dev->sys_conf.mem_force_pd) || !(dev->sys_conf.mem_force_pu); } static inline uint32_t rmt_ll_rx_get_mem_owner(rmt_dev_t *dev, uint32_t channel) { return dev->rx_conf[channel].conf1.mem_owner; } static inline uint32_t rmt_ll_rx_get_limit(rmt_dev_t *dev, uint32_t channel) { return dev->rx_lim[channel].rx_lim; } static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev) { return dev->int_st.val & 0x03; } static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 2) & 0x03; } static inline uint32_t rmt_ll_get_tx_err_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 4) & 0x03; } static inline uint32_t rmt_ll_get_rx_err_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 6) & 0x03; } static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 8) & 0x03; } static inline uint32_t rmt_ll_get_rx_thres_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 10) & 0x03; } static inline uint32_t rmt_ll_get_tx_loop_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 12) & 0x03; } #ifdef __cplusplus } #endif