/* * SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include #include #include "soc/soc.h" #include "soc/soc_caps.h" // TODO: IDF-5645 #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2 #include "soc/lp_aon_reg.h" #include "soc/pcr_reg.h" #define SYSTEM_CPU_PER_CONF_REG PCR_CPU_WAITI_CONF_REG #define SYSTEM_CPU_WAIT_MODE_FORCE_ON PCR_CPU_WAIT_MODE_FORCE_ON #elif CONFIG_IDF_TARGET_ESP32P4 #include "soc/lp_clkrst_reg.h" #include "soc/pmu_reg.h" #else #include "soc/rtc_cntl_reg.h" #endif #include "hal/soc_hal.h" #include "esp_bit_defs.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_cpu.h" #if __XTENSA__ #include "xtensa/config/core-isa.h" #else #include "soc/system_reg.h" // For SYSTEM_CPU_PER_CONF_REG #include "soc/dport_access.h" // For Dport access #include "riscv/semihosting.h" #endif #if SOC_CPU_HAS_FLEXIBLE_INTC #include "riscv/instruction_decode.h" #endif /* --------------------------------------------------- CPU Control ----------------------------------------------------- * * ------------------------------------------------------------------------------------------------------------------ */ void esp_cpu_stall(int core_id) { assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM); #if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core #if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7848 REG_SET_FIELD(PMU_CPU_SW_STALL_REG, core_id ? PMU_HPCORE1_SW_STALL_CODE : PMU_HPCORE0_SW_STALL_CODE, 0x86); #else /* We need to write the value "0x86" to stall a particular core. The write location is split into two separate bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has its own pair of "c0" and "c1" bit fields. Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source file's "rodata" section (see IDF-5214). */ int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M; int rtc_cntl_c0_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_S : RTC_CNTL_SW_STALL_APPCPU_C0_S; int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M; int rtc_cntl_c1_s = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_S : RTC_CNTL_SW_STALL_APPCPU_C1_S; CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m); SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2 << rtc_cntl_c0_s); CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m); SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21 << rtc_cntl_c1_s); #endif // CONFIG_IDF_TARGET_ESP32P4 #endif // SOC_CPU_CORES_NUM > 1 } void esp_cpu_unstall(int core_id) { assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM); #if SOC_CPU_CORES_NUM > 1 // We don't allow stalling of the current core #if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7848 REG_SET_FIELD(PMU_CPU_SW_STALL_REG, core_id ? PMU_HPCORE1_SW_STALL_CODE : PMU_HPCORE0_SW_STALL_CODE, 0); #else /* We need to write clear the value "0x86" to unstall a particular core. The location of this value is split into two separate bit fields named "c0" and "c1", and the two fields are located in different registers. Each core has its own pair of "c0" and "c1" bit fields. Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source file's "rodata" section (see IDF-5214). */ int rtc_cntl_c0_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C0_M : RTC_CNTL_SW_STALL_APPCPU_C0_M; int rtc_cntl_c1_m = (core_id == 0) ? RTC_CNTL_SW_STALL_PROCPU_C1_M : RTC_CNTL_SW_STALL_APPCPU_C1_M; CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_c0_m); CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, rtc_cntl_c1_m); #endif // CONFIG_IDF_TARGET_ESP32P4 #endif // SOC_CPU_CORES_NUM > 1 } void esp_cpu_reset(int core_id) { #if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7848 if (core_id == 0) REG_SET_BIT(LP_CLKRST_HPCPU_RESET_CTRL0_REG, LP_CLKRST_HPCORE0_SW_RESET); else REG_SET_BIT(LP_CLKRST_HPCPU_RESET_CTRL0_REG, LP_CLKRST_HPCORE1_SW_RESET); #else #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2// TODO: IDF-5645 SET_PERI_REG_MASK(LP_AON_CPUCORE0_CFG_REG, LP_AON_CPU_CORE0_SW_RESET); #else assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM); #if SOC_CPU_CORES_NUM > 1 /* Note: This function can be called when the cache is disabled. We use "ternary if" instead of an array so that the "rodata" of the register masks/shifts will be stored in this function's "rodata" section, instead of the source file's "rodata" section (see IDF-5214). */ int rtc_cntl_rst_m = (core_id == 0) ? RTC_CNTL_SW_PROCPU_RST_M : RTC_CNTL_SW_APPCPU_RST_M; #else // SOC_CPU_CORES_NUM > 1 int rtc_cntl_rst_m = RTC_CNTL_SW_PROCPU_RST_M; #endif // SOC_CPU_CORES_NUM > 1 SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_rst_m); #endif #endif // CONFIG_IDF_TARGET_ESP32P4 } void esp_cpu_wait_for_intr(void) { #if __XTENSA__ xt_utils_wait_for_intr(); #else //TODO: IDF-7848 #if !CONFIG_IDF_TARGET_ESP32P4 // TODO: IDF-5645 (better to implement with ll) C6 register names converted in the #include section at the top if (esp_cpu_dbgr_is_attached() && DPORT_REG_GET_BIT(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON) == 0) { /* when SYSTEM_CPU_WAIT_MODE_FORCE_ON is disabled in WFI mode SBA access to memory does not work for debugger, so do not enter that mode when debugger is connected */ return; } #endif rv_utils_wait_for_intr(); #endif // __XTENSA__ } /* -------------------------------------------------- CPU Registers ---------------------------------------------------- * * ------------------------------------------------------------------------------------------------------------------ */ /* ------------------------------------------------- CPU Interrupts ---------------------------------------------------- * * ------------------------------------------------------------------------------------------------------------------ */ // ---------------- Interrupt Descriptors ------------------ #if SOC_CPU_HAS_FLEXIBLE_INTC static bool is_intr_num_resv(int intr_num) { // Workaround to reserve interrupt number 1 for Wi-Fi, 5,8 for Bluetooth, 6 for "permanently disabled interrupt" // [TODO: IDF-2465] uint32_t reserved = BIT(1) | BIT(5) | BIT(6) | BIT(8); // int_num 0,3,4,7 are inavaliable for PULP cpu #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2// TODO: IDF-5728 replace with a better macro name reserved |= BIT(0) | BIT(3) | BIT(4) | BIT(7); #endif #if SOC_INT_CLIC_SUPPORTED //TODO: IDF-7795 return false; #endif if (reserved & BIT(intr_num)) { return true; } extern int _vector_table; extern int _interrupt_handler; const intptr_t pc = (intptr_t)(&_vector_table + intr_num); /* JAL instructions are relative to the PC there are executed from. */ const intptr_t destination = pc + riscv_decode_offset_from_jal_instruction(pc); return destination != (intptr_t)&_interrupt_handler; } void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret) { intr_desc_ret->priority = 1; //Todo: We should make this -1 intr_desc_ret->type = ESP_CPU_INTR_TYPE_NA; #if __riscv intr_desc_ret->flags = is_intr_num_resv(intr_num) ? ESP_CPU_INTR_DESC_FLAG_RESVD : 0; #else intr_desc_ret->flags = 0; #endif } #else // SOC_CPU_HAS_FLEXIBLE_INTC typedef struct { int priority; esp_cpu_intr_type_t type; uint32_t flags[SOC_CPU_CORES_NUM]; } intr_desc_t; #if SOC_CPU_CORES_NUM > 1 // Note: We currently only have dual core targets, so the table initializer is hard coded const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = { { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //2 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //3 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //4 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5 #if CONFIG_FREERTOS_CORETIMER_0 { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6 #else { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6 #endif { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //9 { 1, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //10 { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //12 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0} }, //13 { 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI #if CONFIG_FREERTOS_CORETIMER_1 { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15 #else { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15 #endif { 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //17 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //18 { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //19 { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //20 { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //21 { 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //22 { 3, ESP_CPU_INTR_TYPE_LEVEL, { 0, 0 } }, //23 { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, 0 } }, //24 { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25 { 5, ESP_CPU_INTR_TYPE_LEVEL, { 0, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //26 { 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27 { 4, ESP_CPU_INTR_TYPE_EDGE, { 0, 0 } }, //28 { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL, ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29 { 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30 { 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD, ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31 }; #else // SOC_CPU_CORES_NUM > 1 const static intr_desc_t intr_desc_table [SOC_CPU_INTR_NUM] = { { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //0 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //1 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //2 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //3 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //4 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //5 #if CONFIG_FREERTOS_CORETIMER_0 { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //6 #else { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //6 #endif { 1, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //7 { 1, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //8 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //9 { 1, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //10 { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //11 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //12 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //13 { 7, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //14, NMI #if CONFIG_FREERTOS_CORETIMER_1 { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //15 #else { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //15 #endif { 5, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //16 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //17 { 1, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //18 { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //19 { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //20 { 2, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //21 { 3, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //22 { 3, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //23 { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //24 { 4, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //25 { 5, ESP_CPU_INTR_TYPE_LEVEL, { 0 } }, //26 { 3, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //27 { 4, ESP_CPU_INTR_TYPE_EDGE, { 0 } }, //28 { 3, ESP_CPU_INTR_TYPE_NA, { ESP_CPU_INTR_DESC_FLAG_SPECIAL } }, //29 { 4, ESP_CPU_INTR_TYPE_EDGE, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //30 { 5, ESP_CPU_INTR_TYPE_LEVEL, { ESP_CPU_INTR_DESC_FLAG_RESVD } }, //31 }; #endif // SOC_CPU_CORES_NUM > 1 void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret) { assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM); #if SOC_CPU_CORES_NUM == 1 core_id = 0; //If this is a single core target, hard code CPU ID to 0 #endif intr_desc_ret->priority = intr_desc_table[intr_num].priority; intr_desc_ret->type = intr_desc_table[intr_num].type; intr_desc_ret->flags = intr_desc_table[intr_num].flags[core_id]; } #endif // SOC_CPU_HAS_FLEXIBLE_INTC /* ---------------------------------------------------- Debugging ------------------------------------------------------ * * ------------------------------------------------------------------------------------------------------------------ */ // --------------- Breakpoints/Watchpoints ----------------- #if SOC_CPU_BREAKPOINTS_NUM > 0 esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr) { /* Todo: - Check that bp_num is in range */ #if __XTENSA__ xt_utils_set_breakpoint(bp_num, (uint32_t)bp_addr); #else if (esp_cpu_dbgr_is_attached()) { /* If we want to set breakpoint which when hit transfers control to debugger * we need to set `action` in `mcontrol` to 1 (Enter Debug Mode). * That `action` value is supported only when `dmode` of `tdata1` is set. * But `dmode` can be modified by debugger only (from Debug Mode). * * So when debugger is connected we use special syscall to ask it to set breakpoint for us. */ long args[] = {true, bp_num, (long)bp_addr}; int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args); if (ret == 0) { return ESP_ERR_INVALID_RESPONSE; } } rv_utils_set_breakpoint(bp_num, (uint32_t)bp_addr); #endif // __XTENSA__ return ESP_OK; } esp_err_t esp_cpu_clear_breakpoint(int bp_num) { /* Todo: - Check if the bp_num is valid */ #if __XTENSA__ xt_utils_clear_breakpoint(bp_num); #else if (esp_cpu_dbgr_is_attached()) { // See description in esp_cpu_set_breakpoint() long args[] = {false, bp_num}; int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_BREAKPOINT_SET, args); if (ret == 0) { return ESP_ERR_INVALID_RESPONSE; } } rv_utils_clear_breakpoint(bp_num); #endif // __XTENSA__ return ESP_OK; } #endif // SOC_CPU_BREAKPOINTS_NUM > 0 #if SOC_CPU_WATCHPOINTS_NUM > 0 esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size, esp_cpu_watchpoint_trigger_t trigger) { /* Todo: - Check that wp_num is in range - Check if the wp_num is already in use */ // Check if size is 2^n, where n is in [0...6] if (size < 1 || size > 64 || (size & (size - 1)) != 0) { return ESP_ERR_INVALID_ARG; } bool on_read = (trigger == ESP_CPU_WATCHPOINT_LOAD || trigger == ESP_CPU_WATCHPOINT_ACCESS); bool on_write = (trigger == ESP_CPU_WATCHPOINT_STORE || trigger == ESP_CPU_WATCHPOINT_ACCESS); #if __XTENSA__ xt_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write); #else if (esp_cpu_dbgr_is_attached()) { // See description in esp_cpu_set_breakpoint() long args[] = {true, wp_num, (long)wp_addr, (long)size, (long)((on_read ? ESP_SEMIHOSTING_WP_FLG_RD : 0) | (on_write ? ESP_SEMIHOSTING_WP_FLG_WR : 0)) }; int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args); if (ret == 0) { return ESP_ERR_INVALID_RESPONSE; } } rv_utils_set_watchpoint(wp_num, (uint32_t)wp_addr, size, on_read, on_write); #endif // __XTENSA__ return ESP_OK; } esp_err_t esp_cpu_clear_watchpoint(int wp_num) { /* Todo: - Check if the wp_num is valid */ #if __XTENSA__ xt_utils_clear_watchpoint(wp_num); #else if (esp_cpu_dbgr_is_attached()) { // See description in esp_cpu_dbgr_is_attached() long args[] = {false, wp_num}; int ret = semihosting_call_noerrno(ESP_SEMIHOSTING_SYS_WATCHPOINT_SET, args); if (ret == 0) { return ESP_ERR_INVALID_RESPONSE; } } rv_utils_clear_watchpoint(wp_num); #endif // __XTENSA__ return ESP_OK; } #endif // SOC_CPU_WATCHPOINTS_NUM > 0 /* ------------------------------------------------------ Misc --------------------------------------------------------- * * ------------------------------------------------------------------------------------------------------------------ */ #if __XTENSA__ && XCHAL_HAVE_S32C1I && CONFIG_SPIRAM static DRAM_ATTR uint32_t external_ram_cas_lock = 0; #endif bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value) { #if __XTENSA__ bool ret; #if XCHAL_HAVE_S32C1I && CONFIG_SPIRAM // Check if the target address is in external RAM if ((uint32_t)addr >= SOC_EXTRAM_DATA_LOW && (uint32_t)addr < SOC_EXTRAM_DATA_HIGH) { /* The target address is in external RAM, thus the native CAS instruction cannot be used. Instead, we achieve atomicity by disabling interrupts and then acquiring an external RAM CAS lock. */ uint32_t intr_level; __asm__ __volatile__ ("rsil %0, " XTSTR(XCHAL_EXCM_LEVEL) "\n" : "=r"(intr_level)); if (!xt_utils_compare_and_set(&external_ram_cas_lock, 0, 1)) { // External RAM CAS lock already taken. Exit ret = false; goto exit; } // Now we compare and set the target address ret = (*addr == compare_value); if (ret) { *addr = new_value; } // Release the external RAM CAS lock external_ram_cas_lock = 0; exit: // Reenable interrupts __asm__ __volatile__ ("memw \n" "wsr %0, ps\n" :: "r"(intr_level)); } else #endif // XCHAL_HAVE_S32C1I && CONFIG_SPIRAM { // The target address is in internal RAM. Use the CPU's native CAS instruction ret = xt_utils_compare_and_set(addr, compare_value, new_value); } return ret; #else // __riscv return rv_utils_compare_and_set(addr, compare_value, new_value); #endif }