// Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "esp_log.h" #include "sys/lock.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "esp_intr_alloc.h" #include "driver/periph_ctrl.h" #include "driver/rtc_io.h" #include "driver/rtc_cntl.h" #include "driver/gpio.h" #include "driver/adc.h" #include "sdkconfig.h" #include "esp32c3/rom/ets_sys.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #define ADC_CHECK_RET(fun_ret) ({ \ if (fun_ret != ESP_OK) { \ ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \ return ESP_FAIL; \ } \ }) static const char *ADC_TAG = "ADC"; #define ADC_CHECK(a, str, ret_val) ({ \ if (!(a)) { \ ESP_LOGE(ADC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \ return (ret_val); \ } \ }) #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG) extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config) { esp_err_t ret = ESP_OK; ADC_ENTER_CRITICAL(); adc_hal_digi_controller_config(config); ADC_EXIT_CRITICAL(); return ret; } esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config) { if (adc_unit & ADC_UNIT_1) { return ESP_ERR_NOT_SUPPORTED; } ADC_ENTER_CRITICAL(); adc_hal_arbiter_config(config); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * @brief Set ADC module controller. * There are five SAR ADC controllers: * Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes; * Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep; * the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2. * * @note Only ADC2 support arbiter to switch controllers automatically. Access to the ADC is based on the priority of the controller. * @note For ADC1, Controller access is mutually exclusive. * * @param adc_unit ADC unit. * @param ctrl ADC controller, Refer to `adc_ll_controller_t`. * * @return * - ESP_OK Success */ esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_ll_controller_t ctrl) { adc_arbiter_t config = {0}; adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT(); if (adc_unit & ADC_UNIT_1) { adc_hal_set_controller(ADC_NUM_1, ctrl); } if (adc_unit & ADC_UNIT_2) { adc_hal_set_controller(ADC_NUM_2, ctrl); switch (ctrl) { case ADC2_CTRL_FORCE_PWDET: config.pwdet_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC2_CTRL_PWDET); break; case ADC2_CTRL_FORCE_RTC: config.rtc_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC); break; case ADC2_CTRL_FORCE_DIG: config.dig_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_DIG); break; default: adc_hal_arbiter_config(&cfg); break; } } return ESP_OK; } /** * @brief Reset FSM of adc digital controller. * * @return * - ESP_OK Success */ esp_err_t adc_digi_reset(void) { ADC_ENTER_CRITICAL(); adc_hal_digi_reset(); adc_hal_digi_clear_pattern_table(ADC_NUM_1); adc_hal_digi_clear_pattern_table(ADC_NUM_2); ADC_EXIT_CRITICAL(); return ESP_OK; } /*************************************/ /* Digital controller filter setting */ /*************************************/ esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx) { abort(); // TODO ESP32-C3 IDF-2528 } esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { abort(); // TODO ESP32-C3 IDF-2528 } esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { abort(); // TODO ESP32-C3 IDF-2528 } esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable) { abort(); // TODO ESP32-C3 IDF-2528 } /** * @brief Get the filtered data of adc digital controller filter. For debug. * The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API. * * @note For ESP32S2, The filter will filter all the enabled channel data of the each ADC unit at the same time. * @param idx Filter index. * @return Filtered data. if <0, the read data invalid. */ int adc_digi_filter_read_data(adc_digi_filter_idx_t idx) { abort(); // TODO ESP32-C3 IDF-2528 } /**************************************/ /* Digital controller monitor setting */ /**************************************/ esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_MONITOR_IDX0) { adc_hal_digi_monitor_config(ADC_NUM_1, config); } else if (idx == ADC_DIGI_MONITOR_IDX1) { adc_hal_digi_monitor_config(ADC_NUM_2, config); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_MONITOR_IDX0) { adc_hal_digi_monitor_enable(ADC_NUM_1, enable); } else if (idx == ADC_DIGI_MONITOR_IDX1) { adc_hal_digi_monitor_enable(ADC_NUM_2, enable); } ADC_EXIT_CRITICAL(); return ESP_OK; } /**************************************/ /* Digital controller intr setting */ /**************************************/ esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_enable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_enable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_disable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_disable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_clear(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_clear(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit) { uint32_t ret = 0; ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { ret = adc_hal_digi_get_intr_status(ADC_NUM_1); } if (adc_unit & ADC_UNIT_2) { ret = adc_hal_digi_get_intr_status(ADC_NUM_2); } ADC_EXIT_CRITICAL(); return ret; } static uint8_t s_isr_registered = 0; static intr_handle_t s_adc_isr_handle = NULL; esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags) { ADC_CHECK((fn != NULL), "Parameter error", ESP_ERR_INVALID_ARG); ADC_CHECK(s_isr_registered == 0, "ADC ISR have installed, can not install again", ESP_FAIL); esp_err_t ret = esp_intr_alloc(ETS_APB_ADC_INTR_SOURCE, intr_alloc_flags, fn, arg, &s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 1; } return ret; } esp_err_t adc_digi_isr_deregister(void) { esp_err_t ret = ESP_FAIL; if (s_isr_registered) { ret = esp_intr_free(s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 0; } } return ret; } /*--------------------------------------------------------------- RTC controller setting ---------------------------------------------------------------*/ //This feature is currently supported on ESP32C3, will be supported on other chips soon /*--------------------------------------------------------------- DMA setting ---------------------------------------------------------------*/ #include "soc/system_reg.h" #include "hal/dma_types.h" #include "hal/gdma_ll.h" #include "hal/adc_hal.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/ringbuf.h" #include #define INTERNAL_BUF_NUM 5 #define IN_SUC_EOF_BIT GDMA_LL_EVENT_RX_SUC_EOF typedef struct adc_digi_context_t { intr_handle_t dma_intr_hdl; //MD interrupt handle uint32_t bytes_between_intr; //bytes between in suc eof intr uint8_t *rx_dma_buf; //dma buffer adc_dma_hal_context_t hal_dma; //dma context (hal) adc_dma_hal_config_t hal_dma_config; //dma config (hal) RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler bool ringbuf_overflow_flag; //1: ringbuffer overflow bool driver_state_flag; //1: driver is started; 2: driver is stoped } adc_digi_context_t; static const char* ADC_DMA_TAG = "ADC_DMA:"; static adc_digi_context_t *adc_digi_ctx = NULL; static void adc_dma_intr(void* arg); static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel) { return adc_channel_io_map[adc_unit][adc_channel]; } static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask) { esp_err_t ret = ESP_OK; uint64_t gpio_mask = 0; uint32_t n = 0; int8_t io = 0; while (channel_mask) { if (channel_mask & 0x1) { io = adc_digi_get_io_num(adc_unit, n); if (io < 0) { return ESP_ERR_INVALID_ARG; } gpio_mask |= BIT64(io); } channel_mask = channel_mask >> 1; n++; } gpio_config_t cfg = { .pin_bit_mask = gpio_mask, .mode = GPIO_MODE_DISABLE, }; gpio_config(&cfg); return ret; } esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config) { esp_err_t ret = ESP_OK; adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t)); if (adc_digi_ctx == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } ret = esp_intr_alloc(SOC_GDMA_ADC_INTR_SOURCE, 0, adc_dma_intr, (void *)adc_digi_ctx, &adc_digi_ctx->dma_intr_hdl); if (ret != ESP_OK) { goto cleanup; } //ringbuffer adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF); if (!adc_digi_ctx->ringbuf_hdl) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc internal buffer adc_digi_ctx->bytes_between_intr = init_config->conv_num_each_intr; adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, adc_digi_ctx->bytes_between_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL); if (!adc_digi_ctx->rx_dma_buf) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc dma descriptor adc_digi_ctx->hal_dma_config.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA); if (!adc_digi_ctx->hal_dma_config.rx_desc) { ret = ESP_ERR_NO_MEM; goto cleanup; } adc_digi_ctx->hal_dma_config.desc_max_num = INTERNAL_BUF_NUM; adc_digi_ctx->hal_dma_config.dma_chan = init_config->dma_chan; if (init_config->adc1_chan_mask) { ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask); if (ret != ESP_OK) { goto cleanup; } } if (init_config->adc2_chan_mask) { ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask); if (ret != ESP_OK) { goto cleanup; } } periph_module_enable(PERIPH_SARADC_MODULE); periph_module_enable(PERIPH_GDMA_MODULE); adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); ADC_ENTER_CRITICAL(); adc_hal_init(); adc_hal_arbiter_config(&config); adc_hal_digi_init(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config); ADC_EXIT_CRITICAL(); return ret; cleanup: adc_digi_deinitialize(); return ret; } static IRAM_ATTR void adc_dma_intr(void *arg) { portBASE_TYPE taskAwoken = 0; BaseType_t ret; //clear the in suc eof interrupt adc_hal_digi_clr_intr(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT); while (adc_digi_ctx->hal_dma_config.cur_desc_ptr->dw0.owner == 0) { dma_descriptor_t *current_desc = adc_digi_ctx->hal_dma_config.cur_desc_ptr; ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken); if (ret == pdFALSE) { //ringbuffer overflow adc_digi_ctx->ringbuf_overflow_flag = 1; } adc_digi_ctx->hal_dma_config.desc_cnt += 1; //cycle the dma descriptor and buffers adc_digi_ctx->hal_dma_config.cur_desc_ptr = adc_digi_ctx->hal_dma_config.cur_desc_ptr->next; if (!adc_digi_ctx->hal_dma_config.cur_desc_ptr) { break; } } if (!adc_digi_ctx->hal_dma_config.cur_desc_ptr) { assert(adc_digi_ctx->hal_dma_config.desc_cnt == adc_digi_ctx->hal_dma_config.desc_max_num); //reset the current descriptor status adc_digi_ctx->hal_dma_config.cur_desc_ptr = adc_digi_ctx->hal_dma_config.rx_desc; adc_digi_ctx->hal_dma_config.desc_cnt = 0; //start next turns of dma operation adc_hal_digi_rxdma_start(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config); } if(taskAwoken == pdTRUE) { portYIELD_FROM_ISR(); } } esp_err_t adc_digi_start(void) { assert(adc_digi_ctx->driver_state_flag == 0 && "the driver is already started"); //reset flags adc_digi_ctx->ringbuf_overflow_flag = 0; adc_digi_ctx->driver_state_flag = 1; //create dma descriptors adc_hal_digi_dma_multi_descriptor(&adc_digi_ctx->hal_dma_config, adc_digi_ctx->rx_dma_buf, adc_digi_ctx->bytes_between_intr, adc_digi_ctx->hal_dma_config.desc_max_num); adc_hal_digi_set_eof_num(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config, (adc_digi_ctx->bytes_between_intr)/4); //set the current descriptor pointer adc_digi_ctx->hal_dma_config.cur_desc_ptr = adc_digi_ctx->hal_dma_config.rx_desc; adc_digi_ctx->hal_dma_config.desc_cnt = 0; //enable in suc eof intr adc_hal_digi_ena_intr(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config, GDMA_LL_EVENT_RX_SUC_EOF); //start DMA adc_hal_digi_rxdma_start(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config); //start ADC adc_hal_digi_start(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config); return ESP_OK; } esp_err_t adc_digi_stop(void) { assert(adc_digi_ctx->driver_state_flag == 1 && "the driver is already stoped"); adc_digi_ctx->driver_state_flag = 0; //disable the in suc eof intrrupt adc_hal_digi_dis_intr(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT); //clear the in suc eof interrupt adc_hal_digi_clr_intr(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT); //stop DMA adc_hal_digi_rxdma_stop(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config); //stop ADC adc_hal_digi_stop(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config); return ESP_OK; } esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms) { TickType_t ticks_to_wait; esp_err_t ret = ESP_OK; uint8_t *data = NULL; size_t size = 0; ticks_to_wait = timeout_ms / portTICK_RATE_MS; if (timeout_ms == ADC_MAX_DELAY) { ticks_to_wait = portMAX_DELAY; } data = xRingbufferReceiveUpTo(adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max); if (!data) { ESP_EARLY_LOGW(ADC_DMA_TAG, "No data, increase timeout or reduce conv_num_each_intr"); ret = ESP_ERR_TIMEOUT; *out_length = 0; return ret; } memcpy(buf, data, size); vRingbufferReturnItem(adc_digi_ctx->ringbuf_hdl, data); assert((size % 4) == 0); *out_length = size; if (adc_digi_ctx->ringbuf_overflow_flag) { ret = ESP_ERR_INVALID_STATE; } return ret; } static esp_err_t adc_digi_deinit(void) { ADC_ENTER_CRITICAL(); adc_hal_digi_deinit(); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_deinitialize(void) { assert(adc_digi_ctx->driver_state_flag == 0 && "the driver is not stoped"); if (adc_digi_ctx == NULL) { return ESP_ERR_INVALID_STATE; } if (adc_digi_ctx->dma_intr_hdl) { esp_intr_free(adc_digi_ctx->dma_intr_hdl); } if(adc_digi_ctx->ringbuf_hdl) { vRingbufferDelete(adc_digi_ctx->ringbuf_hdl); adc_digi_ctx->ringbuf_hdl = NULL; } if (adc_digi_ctx->hal_dma_config.rx_desc) { free(adc_digi_ctx->hal_dma_config.rx_desc); } free(adc_digi_ctx); adc_digi_ctx = NULL; adc_digi_deinit(); periph_module_disable(PERIPH_SARADC_MODULE); periph_module_disable(PERIPH_GDMA_MODULE); return ESP_OK; }