/* * SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "unity.h" #include "driver/rmt_tx.h" #include "esp_timer.h" #include "soc/soc_caps.h" #include "test_util_rmt_encoders.h" #if CONFIG_RMT_ISR_IRAM_SAFE #define TEST_RMT_CALLBACK_ATTR IRAM_ATTR #else #define TEST_RMT_CALLBACK_ATTR #endif TEST_CASE("rmt bytes encoder", "[rmt]") { rmt_tx_channel_config_t tx_channel_cfg = { .mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL, .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 1000000, // 1MHz, 1 tick = 1us .trans_queue_depth = 4, .gpio_num = 0, .intr_priority = 3 }; printf("install tx channel\r\n"); rmt_channel_handle_t tx_channel = NULL; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel)); printf("install bytes encoder\r\n"); rmt_encoder_handle_t bytes_encoder = NULL; rmt_bytes_encoder_config_t bytes_enc_config = { .bit0 = { .level0 = 1, .duration0 = 3, // 3us .level1 = 0, .duration1 = 9, // 9us }, .bit1 = { .level0 = 1, .duration0 = 9, // 9us .level1 = 0, .duration1 = 3, // 3us }, }; TEST_ESP_OK(rmt_new_bytes_encoder(&bytes_enc_config, &bytes_encoder)); printf("enable tx channel\r\n"); TEST_ESP_OK(rmt_enable(tx_channel)); printf("start transaction\r\n"); rmt_transmit_config_t transmit_config = { .loop_count = 0, // no loop }; TEST_ESP_OK(rmt_transmit(tx_channel, bytes_encoder, (uint8_t[]) { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05 }, 6, &transmit_config)); // adding extra delay here for visualizing vTaskDelay(pdMS_TO_TICKS(500)); TEST_ESP_OK(rmt_transmit(tx_channel, bytes_encoder, (uint8_t[]) { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }, 7, &transmit_config)); vTaskDelay(pdMS_TO_TICKS(500)); TEST_ESP_OK(rmt_transmit(tx_channel, bytes_encoder, (uint8_t[]) { 0x00, 0x01, 0x02, 0x03, 0x04 }, 5, &transmit_config)); vTaskDelay(pdMS_TO_TICKS(500)); printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel)); printf("remove tx channel and encoder\r\n"); TEST_ESP_OK(rmt_del_channel(tx_channel)); TEST_ESP_OK(rmt_del_encoder(bytes_encoder)); // Test if intr_priority check works tx_channel_cfg.intr_priority = 4; // 4 is an invalid interrupt priority TEST_ESP_ERR(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel), ESP_ERR_INVALID_ARG); } static void test_rmt_channel_single_trans(size_t mem_block_symbols, bool with_dma) { rmt_tx_channel_config_t tx_channel_cfg = { .mem_block_symbols = mem_block_symbols, .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 10000000, // 10MHz, 1 tick = 0.1us (led strip needs a high resolution) .trans_queue_depth = 4, .gpio_num = 0, .flags.with_dma = with_dma, .intr_priority = 2 }; printf("install tx channel\r\n"); rmt_channel_handle_t tx_channel_single_led = NULL; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel_single_led)); printf("install led strip encoder\r\n"); rmt_encoder_handle_t led_strip_encoder = NULL; TEST_ESP_OK(test_rmt_new_led_strip_encoder(&led_strip_encoder)); printf("enable tx channel\r\n"); TEST_ESP_OK(rmt_enable(tx_channel_single_led)); printf("single transmission: light up one RGB LED\r\n"); rmt_transmit_config_t transmit_config = { .loop_count = 0, // no loop }; TEST_ESP_OK(rmt_transmit(tx_channel_single_led, led_strip_encoder, (uint8_t[]) { 0x00, 0x7F, 0xFF }, 3, &transmit_config)); // adding extra delay here for visualizing vTaskDelay(pdMS_TO_TICKS(500)); TEST_ESP_OK(rmt_transmit(tx_channel_single_led, led_strip_encoder, (uint8_t[]) { 0xFF, 0x00, 0x7F }, 3, &transmit_config)); vTaskDelay(pdMS_TO_TICKS(500)); TEST_ESP_OK(rmt_transmit(tx_channel_single_led, led_strip_encoder, (uint8_t[]) { 0x7F, 0xFF, 0x00 }, 3, &transmit_config)); vTaskDelay(pdMS_TO_TICKS(500)); // can't delete channel if it's not in stop state TEST_ASSERT_EQUAL(ESP_ERR_INVALID_STATE, rmt_del_channel(tx_channel_single_led)); printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel_single_led)); printf("remove tx channel and led strip encoder\r\n"); TEST_ESP_OK(rmt_del_channel(tx_channel_single_led)); TEST_ESP_OK(rmt_del_encoder(led_strip_encoder)); } TEST_CASE("rmt_single_trans_no_dma", "[rmt]") { test_rmt_channel_single_trans(SOC_RMT_MEM_WORDS_PER_CHANNEL, false); } #if SOC_RMT_SUPPORT_DMA TEST_CASE("rmt_single_trans_with_dma", "[rmt]") { test_rmt_channel_single_trans(512, true); } #endif static void test_rmt_ping_pong_trans(size_t mem_block_symbols, bool with_dma) { rmt_tx_channel_config_t tx_channel_cfg = { .mem_block_symbols = mem_block_symbols, .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 10000000, // 10MHz, 1 tick = 0.1us (led strip needs a high resolution) .trans_queue_depth = 4, .gpio_num = 0, .flags.with_dma = with_dma, .intr_priority = 1 }; printf("install tx channel\r\n"); rmt_channel_handle_t tx_channel_multi_leds = NULL; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel_multi_leds)); printf("install led strip encoder\r\n"); rmt_encoder_handle_t led_strip_encoder = NULL; TEST_ESP_OK(test_rmt_new_led_strip_encoder(&led_strip_encoder)); printf("enable tx channel\r\n"); TEST_ESP_OK(rmt_enable(tx_channel_multi_leds)); // Mutiple LEDs (ping-pong in the background) printf("ping pong transmission: light up 100 RGB LEDs\r\n"); rmt_transmit_config_t transmit_config = { .loop_count = 0, // no loop }; #define TEST_LED_NUM 100 uint8_t leds_grb[TEST_LED_NUM * 3] = {}; // color: Material Design Green-A200 (#69F0AE) for (int i = 0; i < TEST_LED_NUM * 3; i += 3) { leds_grb[i + 0] = 0xF0; leds_grb[i + 1] = 0x69; leds_grb[i + 2] = 0xAE; } printf("start transmission and stop immediately, only a few LEDs are light up\r\n"); TEST_ESP_OK(rmt_transmit(tx_channel_multi_leds, led_strip_encoder, leds_grb, TEST_LED_NUM * 3, &transmit_config)); // this second transmission will stay in the queue and shouldn't be dispatched until we restart the tx channel later TEST_ESP_OK(rmt_transmit(tx_channel_multi_leds, led_strip_encoder, leds_grb, TEST_LED_NUM * 3, &transmit_config)); esp_rom_delay_us(100); TEST_ESP_OK(rmt_disable(tx_channel_multi_leds)); vTaskDelay(pdTICKS_TO_MS(500)); printf("enable tx channel again\r\n"); TEST_ESP_OK(rmt_enable(tx_channel_multi_leds)); // adding extra delay here for visualizing vTaskDelay(pdTICKS_TO_MS(500)); // color: Material Design Pink-A200 (#FF4081) for (int i = 0; i < TEST_LED_NUM * 3; i += 3) { leds_grb[i + 0] = 0x40; leds_grb[i + 1] = 0xFF; leds_grb[i + 2] = 0x81; } TEST_ESP_OK(rmt_transmit(tx_channel_multi_leds, led_strip_encoder, leds_grb, TEST_LED_NUM * 3, &transmit_config)); vTaskDelay(pdTICKS_TO_MS(500)); // color: Material Design Orange-900 (#E65100) for (int i = 0; i < TEST_LED_NUM * 3; i += 3) { leds_grb[i + 0] = 0x51; leds_grb[i + 1] = 0xE6; leds_grb[i + 2] = 0x00; } TEST_ESP_OK(rmt_transmit(tx_channel_multi_leds, led_strip_encoder, leds_grb, TEST_LED_NUM * 3, &transmit_config)); vTaskDelay(pdTICKS_TO_MS(500)); printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel_multi_leds)); printf("remove tx channel and led strip encoder\r\n"); TEST_ESP_OK(rmt_del_channel(tx_channel_multi_leds)); TEST_ESP_OK(rmt_del_encoder(led_strip_encoder)); #undef TEST_LED_NUM } TEST_CASE("rmt_ping_pong_trans_no_dma", "[rmt]") { test_rmt_ping_pong_trans(SOC_RMT_MEM_WORDS_PER_CHANNEL, false); } #if SOC_RMT_SUPPORT_DMA TEST_CASE("rmt_ping_pong_trans_with_dma", "[rmt]") { test_rmt_ping_pong_trans(1024, true); } #endif TEST_RMT_CALLBACK_ATTR static bool test_rmt_tx_done_cb_check_event_data(rmt_channel_handle_t channel, const rmt_tx_done_event_data_t *edata, void *user_data) { uint32_t *p_expected_encoded_size = (uint32_t *)user_data; TEST_ASSERT_EQUAL(*p_expected_encoded_size, edata->num_symbols); return false; } static void test_rmt_trans_done_event(size_t mem_block_symbols, bool with_dma) { rmt_tx_channel_config_t tx_channel_cfg = { .mem_block_symbols = mem_block_symbols, .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 10000000, // 10MHz, 1 tick = 0.1us (led strip needs a high resolution) .trans_queue_depth = 1, .gpio_num = 0, .flags.with_dma = with_dma, .intr_priority = 3 }; printf("install tx channel\r\n"); rmt_channel_handle_t tx_channel_multi_leds = NULL; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel_multi_leds)); printf("install led strip encoder\r\n"); rmt_encoder_handle_t led_strip_encoder = NULL; TEST_ESP_OK(test_rmt_new_led_strip_encoder(&led_strip_encoder)); printf("register trans done event callback\r\n"); rmt_tx_event_callbacks_t cbs = { .on_trans_done = test_rmt_tx_done_cb_check_event_data, }; uint32_t expected_encoded_size = 0; TEST_ESP_OK(rmt_tx_register_event_callbacks(tx_channel_multi_leds, &cbs, &expected_encoded_size)); printf("enable tx channel\r\n"); TEST_ESP_OK(rmt_enable(tx_channel_multi_leds)); rmt_transmit_config_t transmit_config = { .loop_count = 0, // no loop }; printf("transmit dynamic number of LEDs\r\n"); #define TEST_LED_NUM 40 uint8_t leds_grb[TEST_LED_NUM * 3] = {}; // color: Material Design Purple-800 (6A1B9A) for (int i = 0; i < TEST_LED_NUM * 3; i += 3) { leds_grb[i + 0] = 0x1B; leds_grb[i + 1] = 0x6A; leds_grb[i + 2] = 0x9A; } for (int i = 1; i <= TEST_LED_NUM; i++) { expected_encoded_size = 2 + i * 24; // 2 = 1 reset symbol + 1 eof symbol, 24 = 8*3(RGB) TEST_ESP_OK(rmt_transmit(tx_channel_multi_leds, led_strip_encoder, leds_grb, i * 3, &transmit_config)); // wait for the transmission finished and recycled TEST_ESP_OK(rmt_tx_wait_all_done(tx_channel_multi_leds, -1)); } printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel_multi_leds)); printf("remove tx channel and led strip encoder\r\n"); TEST_ESP_OK(rmt_del_channel(tx_channel_multi_leds)); TEST_ESP_OK(rmt_del_encoder(led_strip_encoder)); #undef TEST_LED_NUM } TEST_CASE("rmt_trans_done_event_callback_no_dma", "[rmt]") { test_rmt_trans_done_event(SOC_RMT_MEM_WORDS_PER_CHANNEL, false); } #if SOC_RMT_SUPPORT_DMA TEST_CASE("rmt_trans_done_event_callback_with_dma", "[rmt]") { test_rmt_trans_done_event(332, true); } #endif #if SOC_RMT_SUPPORT_TX_LOOP_COUNT TEST_RMT_CALLBACK_ATTR static bool test_rmt_loop_done_cb_check_event_data(rmt_channel_handle_t channel, const rmt_tx_done_event_data_t *edata, void *user_data) { uint32_t *p_expected_encoded_size = (uint32_t *)user_data; TEST_ASSERT_EQUAL(*p_expected_encoded_size, edata->num_symbols); return false; } static void test_rmt_loop_trans(size_t mem_block_symbols, bool with_dma) { rmt_tx_channel_config_t tx_channel_cfg = { .mem_block_symbols = mem_block_symbols, .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 10000000, // 10MHz, 1 tick = 0.1us (led strip needs a high resolution) .trans_queue_depth = 4, .gpio_num = 0, .flags.with_dma = with_dma, .intr_priority = 2 }; printf("install tx channel\r\n"); rmt_channel_handle_t tx_channel_multi_leds = NULL; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel_multi_leds)); printf("install led strip encoder\r\n"); rmt_encoder_handle_t led_strip_encoder = NULL; TEST_ESP_OK(test_rmt_new_led_strip_encoder(&led_strip_encoder)); printf("register loop done event callback\r\n"); rmt_tx_event_callbacks_t cbs = { .on_trans_done = test_rmt_loop_done_cb_check_event_data, }; uint32_t expected_encoded_size = 0; TEST_ESP_OK(rmt_tx_register_event_callbacks(tx_channel_multi_leds, &cbs, &expected_encoded_size)); printf("enable tx channel\r\n"); TEST_ESP_OK(rmt_enable(tx_channel_multi_leds)); printf("loop transmission: light up RGB LEDs in a loop\r\n"); rmt_transmit_config_t transmit_config = { .loop_count = 5, }; #define TEST_LED_NUM 3 uint8_t leds_grb[TEST_LED_NUM * 3] = {}; for (int i = 0; i < TEST_LED_NUM * 3; i++) { leds_grb[i] = 0x10 + i; } expected_encoded_size = 2 + 24 * TEST_LED_NUM; TEST_ESP_OK(rmt_transmit(tx_channel_multi_leds, led_strip_encoder, leds_grb, TEST_LED_NUM * 3, &transmit_config)); vTaskDelay(pdTICKS_TO_MS(100)); printf("wait for loop transactions done\r\n"); TEST_ESP_OK(rmt_tx_wait_all_done(tx_channel_multi_leds, -1)); printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel_multi_leds)); printf("remove tx channel and led strip encoder\r\n"); TEST_ESP_OK(rmt_del_channel(tx_channel_multi_leds)); TEST_ESP_OK(rmt_del_encoder(led_strip_encoder)); #undef TEST_LED_NUM } TEST_CASE("rmt_loop_trans_no_dma", "[rmt]") { test_rmt_loop_trans(SOC_RMT_MEM_WORDS_PER_CHANNEL * 2, false); } #if SOC_RMT_SUPPORT_DMA TEST_CASE("rmt_loop_trans_with_dma", "[rmt]") { test_rmt_loop_trans(128, true); } #endif // SOC_RMT_SUPPORT_DMA #endif // SOC_RMT_SUPPORT_TX_LOOP_COUNT TEST_CASE("rmt_infinite_loop_trans", "[rmt]") { rmt_tx_channel_config_t tx_channel_cfg = { .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 1000000, // 1MHz, 1 tick = 1us .mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL, .gpio_num = 2, .trans_queue_depth = 3, .intr_priority = 1 }; printf("install tx channel\r\n"); rmt_channel_handle_t tx_channel = NULL; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel)); printf("install step motor encoder\r\n"); // stepper encoder is as simple as a copy encoder rmt_encoder_t *copy_encoder = NULL; rmt_copy_encoder_config_t copy_encoder_config = {}; TEST_ESP_OK(rmt_new_copy_encoder(©_encoder_config, ©_encoder)); printf("enable tx channel\r\n"); TEST_ESP_OK(rmt_enable(tx_channel)); rmt_transmit_config_t transmit_config = { .loop_count = -1, // infinite loop transmission }; printf("infinite loop transmission: keep spinning stepper motor\r\n"); uint32_t step_motor_frequency_hz = 1000; // 1KHz uint32_t rmt_raw_symbol_duration = 1000000 / step_motor_frequency_hz / 2; // 1KHz PWM, Period: 1ms rmt_symbol_word_t stepper_motor_rmt_symbol = { .level0 = 0, .duration0 = rmt_raw_symbol_duration, .level1 = 1, .duration1 = rmt_raw_symbol_duration, }; TEST_ESP_OK(rmt_transmit(tx_channel, copy_encoder, &stepper_motor_rmt_symbol, sizeof(stepper_motor_rmt_symbol), &transmit_config)); // not trans done event should be triggered TEST_ESP_ERR(ESP_ERR_TIMEOUT, rmt_tx_wait_all_done(tx_channel, 500)); printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel)); // the flush operation should return immediately, as there's not pending transactions and the TX machine has stopped TEST_ESP_OK(rmt_tx_wait_all_done(tx_channel, 0)); #if SOC_RMT_SUPPORT_TX_LOOP_COUNT printf("enable tx channel again\r\n"); TEST_ESP_OK(rmt_enable(tx_channel)); printf("finite loop transmission: spinning stepper motor with various number of loops\r\n"); #define TEST_RMT_LOOPS 5 uint32_t pwm_freq[TEST_RMT_LOOPS] = {}; rmt_symbol_word_t pwm_rmt_symbols[TEST_RMT_LOOPS] = {}; for (int i = 0; i < TEST_RMT_LOOPS; i++) { transmit_config.loop_count = 100 * i; pwm_freq[i] = 1000 * (i + 1); uint32_t pwm_symbol_duration = 1000000 / pwm_freq[i] / 2; // 1KHz PWM, Period: 1ms pwm_rmt_symbols[i] = (rmt_symbol_word_t) { .level0 = 0, .duration0 = pwm_symbol_duration, .level1 = 1, .duration1 = pwm_symbol_duration, }; TEST_ESP_OK(rmt_transmit(tx_channel, copy_encoder, &pwm_rmt_symbols[i], sizeof(rmt_symbol_word_t), &transmit_config)); } printf("wait for loop transactions done\r\n"); TEST_ESP_OK(rmt_tx_wait_all_done(tx_channel, -1)); // wait forever printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel)); #undef TEST_RMT_LOOPS #endif // SOC_RMT_SUPPORT_TX_LOOP_COUNT printf("remove tx channel and motor encoder\r\n"); TEST_ESP_OK(rmt_del_channel(tx_channel)); TEST_ESP_OK(rmt_del_encoder(copy_encoder)); } static void test_rmt_tx_nec_carrier(size_t mem_block_symbols, bool with_dma) { rmt_tx_channel_config_t tx_channel_cfg = { .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 1000000, // 1MHz, 1 tick = 1us .mem_block_symbols = mem_block_symbols, .gpio_num = 2, .trans_queue_depth = 4, .flags.with_dma = with_dma, .intr_priority = 3 }; printf("install tx channel\r\n"); rmt_channel_handle_t tx_channel = NULL; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel)); printf("install nec protocol encoder\r\n"); rmt_encoder_handle_t nec_encoder = NULL; TEST_ESP_OK(test_rmt_new_nec_protocol_encoder(&nec_encoder)); printf("enable tx channel\r\n"); TEST_ESP_OK(rmt_enable(tx_channel)); printf("transmit nec frame without carrier\r\n"); rmt_transmit_config_t transmit_config = { .loop_count = 0, // no loop }; TEST_ESP_OK(rmt_transmit(tx_channel, nec_encoder, (uint16_t[]) { 0x0440, 0x3003 // address, command }, 4, &transmit_config)); TEST_ESP_OK(rmt_tx_wait_all_done(tx_channel, -1)); printf("transmit nec frame with carrier\r\n"); rmt_carrier_config_t carrier_cfg = { .duty_cycle = 0.33, .frequency_hz = 38000, }; TEST_ESP_OK(rmt_apply_carrier(tx_channel, &carrier_cfg)); TEST_ESP_OK(rmt_transmit(tx_channel, nec_encoder, (uint16_t[]) { 0x0440, 0x3003 // address, command }, 4, &transmit_config)); TEST_ESP_OK(rmt_tx_wait_all_done(tx_channel, -1)); printf("remove carrier\r\n"); TEST_ESP_OK(rmt_apply_carrier(tx_channel, NULL)); printf("transmit nec frame without carrier\r\n"); TEST_ESP_OK(rmt_transmit(tx_channel, nec_encoder, (uint16_t[]) { 0x0440, 0x3003 // address, command }, 4, &transmit_config)); TEST_ESP_OK(rmt_tx_wait_all_done(tx_channel, -1)); printf("disable tx channel\r\n"); TEST_ESP_OK(rmt_disable(tx_channel)); printf("remove tx channel and nec encoder\r\n"); TEST_ESP_OK(rmt_del_channel(tx_channel)); TEST_ESP_OK(rmt_del_encoder(nec_encoder)); } TEST_CASE("rmt_tx_nec_carrier_no_dma", "[rmt]") { test_rmt_tx_nec_carrier(SOC_RMT_MEM_WORDS_PER_CHANNEL, false); } #if SOC_RMT_SUPPORT_DMA TEST_CASE("rmt_tx_nec_carrier_with_dma", "[rmt]") { test_rmt_tx_nec_carrier(128, true); } #endif TEST_RMT_CALLBACK_ATTR static bool test_rmt_tx_done_cb_record_time(rmt_channel_handle_t channel, const rmt_tx_done_event_data_t *edata, void *user_data) { int64_t *record_time = (int64_t *)user_data; *record_time = esp_timer_get_time(); return false; } static void test_rmt_multi_channels_trans(size_t channel0_mem_block_symbols, size_t channel1_mem_block_symbols, bool channel0_with_dma, bool channel1_with_dma) { #define TEST_RMT_CHANS 2 #define TEST_LED_NUM 24 rmt_tx_channel_config_t tx_channel_cfg = { .clk_src = RMT_CLK_SRC_DEFAULT, .resolution_hz = 10000000, // 10MHz, 1 tick = 0.1us (led strip needs a high resolution) .trans_queue_depth = 4, .intr_priority = 3 }; printf("install tx channels\r\n"); rmt_channel_handle_t tx_channels[TEST_RMT_CHANS] = {NULL}; int gpio_nums[TEST_RMT_CHANS] = {0, 2}; size_t mem_blk_syms[TEST_RMT_CHANS] = {channel0_mem_block_symbols, channel1_mem_block_symbols}; bool dma_flags[TEST_RMT_CHANS] = {channel0_with_dma, channel1_with_dma}; for (int i = 0; i < TEST_RMT_CHANS; i++) { tx_channel_cfg.gpio_num = gpio_nums[i]; tx_channel_cfg.mem_block_symbols = mem_blk_syms[i]; tx_channel_cfg.flags.with_dma = dma_flags[i]; TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channels[i])); } printf("install led strip encoders\r\n"); rmt_encoder_handle_t led_strip_encoders[TEST_RMT_CHANS] = {NULL}; for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(test_rmt_new_led_strip_encoder(&led_strip_encoders[i])); } printf("register tx event callback\r\n"); rmt_tx_event_callbacks_t cbs = { .on_trans_done = test_rmt_tx_done_cb_record_time }; int64_t record_stop_time[TEST_RMT_CHANS] = {}; for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_tx_register_event_callbacks(tx_channels[i], &cbs, &record_stop_time[i])); } printf("enable tx channels\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_enable(tx_channels[i])); } uint8_t leds_grb[TEST_LED_NUM * 3] = {}; // color: Material Design Green-A200 (#69F0AE) for (int i = 0; i < TEST_LED_NUM * 3; i += 3) { leds_grb[i + 0] = 0xF0; leds_grb[i + 1] = 0x69; leds_grb[i + 2] = 0xAE; } printf("transmit without synchronization\r\n"); rmt_transmit_config_t transmit_config = { .loop_count = 0, // no loop }; // the channels should work independently, without synchronization for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_transmit(tx_channels[i], led_strip_encoders[i], leds_grb, TEST_LED_NUM * 3, &transmit_config)); } for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_tx_wait_all_done(tx_channels[i], -1)); } printf("stop time (no sync):\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { printf("\t%lld\r\n", record_stop_time[i]); } // without synchronization, there will be obvious time shift TEST_ASSERT((record_stop_time[1] - record_stop_time[0]) < 100); printf("install sync manager\r\n"); rmt_sync_manager_handle_t synchro = NULL; rmt_sync_manager_config_t synchro_config = { .tx_channel_array = tx_channels, .array_size = TEST_RMT_CHANS, }; #if SOC_RMT_SUPPORT_TX_SYNCHRO TEST_ESP_OK(rmt_new_sync_manager(&synchro_config, &synchro)); #else TEST_ASSERT_EQUAL(ESP_ERR_NOT_SUPPORTED, rmt_new_sync_manager(&synchro_config, &synchro)); #endif // SOC_RMT_SUPPORT_TX_SYNCHRO #if SOC_RMT_SUPPORT_TX_SYNCHRO printf("transmit with synchronization\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_transmit(tx_channels[i], led_strip_encoders[i], leds_grb, TEST_LED_NUM * 3, &transmit_config)); // manually introduce the delay, to show the managed channels are indeed in sync vTaskDelay(pdMS_TO_TICKS(10)); } for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_tx_wait_all_done(tx_channels[i], -1)); } printf("stop time (with sync):\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { printf("\t%lld\r\n", record_stop_time[i]); } // because of synchronization, the managed channels will stop at the same time // but call of `esp_timer_get_time` won't happen at the same time, so there still be time drift, very small TEST_ASSERT((record_stop_time[1] - record_stop_time[0]) < 10); printf("reset sync manager\r\n"); TEST_ESP_OK(rmt_sync_reset(synchro)); printf("transmit with synchronization again\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_transmit(tx_channels[i], led_strip_encoders[i], leds_grb, TEST_LED_NUM * 3, &transmit_config)); // manually introduce the delay, ensure the channels get synchronization vTaskDelay(pdMS_TO_TICKS(10)); } for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_tx_wait_all_done(tx_channels[i], -1)); } printf("stop time (with sync):\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { printf("\t%lld\r\n", record_stop_time[i]); } TEST_ASSERT((record_stop_time[1] - record_stop_time[0]) < 10); printf("delete sync manager\r\n"); TEST_ESP_OK(rmt_del_sync_manager(synchro)); #endif // SOC_RMT_SUPPORT_TX_SYNCHRO printf("disable tx channels\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_disable(tx_channels[i])); } printf("delete channels and encoders\r\n"); for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_del_channel(tx_channels[i])); } for (int i = 0; i < TEST_RMT_CHANS; i++) { TEST_ESP_OK(rmt_del_encoder(led_strip_encoders[i])); } #undef TEST_LED_NUM #undef TEST_RMT_CHANS } TEST_CASE("rmt_multi_channels_trans_no_dma", "[rmt]") { test_rmt_multi_channels_trans(SOC_RMT_MEM_WORDS_PER_CHANNEL, SOC_RMT_MEM_WORDS_PER_CHANNEL, false, false); } #if SOC_RMT_SUPPORT_DMA TEST_CASE("rmt_multi_channels_trans_with_dma", "[rmt]") { test_rmt_multi_channels_trans(1024, SOC_RMT_MEM_WORDS_PER_CHANNEL, true, false); } #endif