/* * SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_types.h" #include "esp_log.h" #include "soc/spi_mem_reg.h" #include "soc/io_mux_reg.h" #include "esp_private/mspi_timing_tuning.h" #include "soc/soc.h" #include "soc/rtc.h" #include "hal/spi_flash_hal.h" #include "hal/mspi_timing_tuning_ll.h" #include "hal/clk_tree_ll.h" #include "hal/regi2c_ctrl_ll.h" #include "mspi_timing_config.h" #if CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/cache.h" #endif #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING const static char *TAG = "MSPI Timing"; static mspi_timing_tuning_param_t s_flash_best_timing_tuning_config; static mspi_timing_tuning_param_t s_psram_best_timing_tuning_config; #endif /*------------------------------------------------------------------------------ * Common settings *----------------------------------------------------------------------------*/ void mspi_timing_set_pin_drive_strength(void) { //For now, set them all to 3. Need to check after QVL test results are out. TODO: IDF-3663 //Set default clk mspi_timing_ll_set_all_pin_drive(0, 3); } /*------------------------------------------------------------------------------ * Static functions to get clock configs *----------------------------------------------------------------------------*/ static mspi_timing_config_core_clock_t get_mspi_core_clock(void) { return mspi_timing_config_get_core_clock(); } static uint32_t get_flash_clock_divider(void) { #if CONFIG_ESPTOOLPY_FLASHFREQ_20M return MSPI_TIMING_CORE_CLOCK_MHZ / 20; #elif CONFIG_ESPTOOLPY_FLASHFREQ_40M return MSPI_TIMING_CORE_CLOCK_MHZ / 40; #elif CONFIG_ESPTOOLPY_FLASHFREQ_80M return MSPI_TIMING_CORE_CLOCK_MHZ / 80; #elif CONFIG_ESPTOOLPY_FLASHFREQ_120M return MSPI_TIMING_CORE_CLOCK_MHZ / 120; #else abort(); #endif } static uint32_t get_psram_clock_divider(void) { #if CONFIG_SPIRAM_SPEED_40M return MSPI_TIMING_CORE_CLOCK_MHZ / 40; #elif CONFIG_SPIRAM_SPEED_80M return MSPI_TIMING_CORE_CLOCK_MHZ / 80; #elif CONFIG_SPIRAM_SPEED_120M return MSPI_TIMING_CORE_CLOCK_MHZ / 120; #else //Will enter this branch only if PSRAM is not enable return 0; #endif } #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING /*------------------------------------------------------------------------------ * Static functions to do timing tuning *----------------------------------------------------------------------------*/ /** * Set timing tuning regs, in order to get successful sample points */ static void init_spi1_for_tuning(bool is_flash) { //Get required core clock and module clock settings mspi_timing_config_core_clock_t core_clock = get_mspi_core_clock(); //Set SPI1 core clock. SPI0 and SPI1 share the register for core clock. So we only set SPI0 here. mspi_timing_config_set_core_clock(0, core_clock); //Set SPI1 module clock as required if (is_flash) { uint32_t flash_div = get_flash_clock_divider(); mspi_timing_config_set_flash_clock(1, flash_div); //Power on HCLK mspi_timinng_ll_enable_flash_hclk(0); } else { //We use SPI1 Flash to tune PSRAM, PSRAM timing related regs do nothing on SPI1 uint32_t psram_div = get_psram_clock_divider(); mspi_timing_config_set_flash_clock(1, psram_div); //Power on HCLK mspi_timinng_ll_enable_psram_hclk(0); } } /** * We use different SPI1 timing tuning config to read data to see if current MSPI sampling is successful. * The sampling result will be stored in an array. In this array, successful item will be 1, failed item will be 0. */ static void sweep_for_success_sample_points(const uint8_t *reference_data, const mspi_timing_config_t *config, bool is_flash, uint8_t *out_array) { uint32_t config_idx = 0; uint8_t read_data[MSPI_TIMING_TEST_DATA_LEN] = {0}; for (config_idx = 0; config_idx < config->available_config_num; config_idx++) { memset(read_data, 0, MSPI_TIMING_TEST_DATA_LEN); #if MSPI_TIMING_FLASH_NEEDS_TUNING if (is_flash) { mspi_timing_config_flash_set_tuning_regs(&(config->tuning_config_table[config_idx])); mspi_timing_config_flash_read_data(read_data, MSPI_TIMING_FLASH_TEST_DATA_ADDR, sizeof(read_data)); } #endif #if MSPI_TIMING_PSRAM_NEEDS_TUNING if (!is_flash) { mspi_timing_config_psram_set_tuning_regs(&(config->tuning_config_table[config_idx])); mspi_timing_config_psram_read_data(read_data, MSPI_TIMING_PSRAM_TEST_DATA_ADDR, MSPI_TIMING_TEST_DATA_LEN); } #endif if (memcmp(reference_data, read_data, sizeof(read_data)) == 0) { out_array[config_idx] = 1; ESP_EARLY_LOGD(TAG, "%d, good", config_idx); } else { ESP_EARLY_LOGD(TAG, "%d, bad", config_idx); } } } /** * Find consecutive successful sampling points. * e.g. array: {1, 1, 0, 0, 1, 1, 1, 0} * out_length: 3 * outout_end_index: 6 */ static void find_max_consecutive_success_points(uint8_t *array, uint32_t size, uint32_t *out_length, uint32_t *out_end_index) { uint32_t max = 0; uint32_t match_num = 0; uint32_t i = 0; uint32_t end = 0; while (i < size) { if (array[i]) { match_num++; } else { if (match_num > max) { max = match_num; end = i - 1; } match_num = 0; } i++; } *out_length = match_num > max ? match_num : max; *out_end_index = match_num == size ? size : end; } #if (MSPI_TIMING_FLASH_DTR_MODE || MSPI_TIMING_PSRAM_DTR_MODE) && (MSPI_TIMING_CORE_CLOCK_MHZ == 240) static bool get_working_pll_freq(const uint8_t *reference_data, bool is_flash, uint32_t *out_max_freq, uint32_t *out_min_freq) { uint8_t read_data[MSPI_TIMING_TEST_DATA_LEN] = {0}; rtc_cpu_freq_config_t previous_config; rtc_clk_cpu_freq_get_config(&previous_config); uint32_t big_num = MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MAX * 2; //This number should be larger than MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MAX, for error handling uint32_t max_freq = 0; uint32_t min_freq = big_num; rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get(); //BBPLL CALIBRATION START regi2c_ctrl_ll_bbpll_calibration_start(); for (int pll_mhz_tuning = MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MIN; pll_mhz_tuning <= MSPI_TIMING_PLL_FREQ_SCAN_RANGE_MHZ_MAX; pll_mhz_tuning += 8) { /** * pll_mhz = xtal_mhz * (oc_div + 4) / (oc_ref_div + 1) */ clk_ll_bbpll_set_frequency_for_mspi_tuning(xtal_freq, pll_mhz_tuning, ((pll_mhz_tuning / 4) - 4), 9); memset(read_data, 0, MSPI_TIMING_TEST_DATA_LEN); if (is_flash) { mspi_timing_config_flash_read_data(read_data, MSPI_TIMING_FLASH_TEST_DATA_ADDR, MSPI_TIMING_TEST_DATA_LEN); } else { mspi_timing_config_psram_read_data(read_data, MSPI_TIMING_PSRAM_TEST_DATA_ADDR, MSPI_TIMING_TEST_DATA_LEN); } if (memcmp(read_data, reference_data, MSPI_TIMING_TEST_DATA_LEN) == 0) { max_freq = MAX(pll_mhz_tuning, max_freq); min_freq = MIN(pll_mhz_tuning, min_freq); //Continue to find successful cases continue; } if (max_freq != 0) { //The first fail case after successful case(s) is the end break; } //If no break, no successful case found, continue to find successful cases } //restore PLL config clk_ll_bbpll_set_freq_mhz(previous_config.source_freq_mhz); clk_ll_bbpll_set_config(previous_config.source_freq_mhz, xtal_freq); //WAIT CALIBRATION DONE while(!regi2c_ctrl_ll_bbpll_calibration_is_done()); //BBPLL CALIBRATION STOP regi2c_ctrl_ll_bbpll_calibration_stop(); *out_max_freq = max_freq; *out_min_freq = min_freq; return (max_freq != 0); } #endif //Frequency Scanning #if MSPI_TIMING_FLASH_DTR_MODE || MSPI_TIMING_PSRAM_DTR_MODE static uint32_t select_best_tuning_config_dtr(mspi_timing_config_t *config, uint32_t consecutive_length, uint32_t end, const uint8_t *reference_data, bool is_flash) { #if (MSPI_TIMING_CORE_CLOCK_MHZ == 160) //Core clock 160M DTR best point scheme (void) reference_data; (void) is_flash; uint32_t best_point = 0; //These numbers will probably be same on other chips, if this version of algorithm is utilised if (consecutive_length <= 2 || consecutive_length >= 6) { //tuning is FAIL, select default point, and generate a warning best_point = config->default_config_id; ESP_EARLY_LOGW(TAG, "tuning fail, best point is fallen back to index %d", best_point); } else if (consecutive_length <= 4) { //consecutive length : 3 or 4 best_point = end - 1; ESP_EARLY_LOGD(TAG,"tuning success, best point is index %d", best_point); } else { //consecutive point list length equals 5 best_point = end - 2; ESP_EARLY_LOGD(TAG,"tuning success, best point is index %d", best_point); } return best_point; #elif (MSPI_TIMING_CORE_CLOCK_MHZ == 240) uint32_t best_point = 0; uint32_t current_point = end + 1 - consecutive_length; bool ret = false; //This `max_freq` is the max pll frequency that per MSPI timing tuning config can work uint32_t max_freq = 0; uint32_t temp_max_freq = 0; uint32_t temp_min_freq = 0; for (; current_point <= end; current_point++) { if (is_flash) { mspi_timing_config_flash_set_tuning_regs(&(config->tuning_config_table[current_point])); } else { mspi_timing_config_psram_set_tuning_regs(&(config->tuning_config_table[current_point])); } ret = get_working_pll_freq(reference_data, is_flash, &temp_max_freq, &temp_min_freq); if (ret && temp_min_freq <= MSPI_TIMING_PLL_FREQ_SCAN_THRESH_MHZ_LOW && temp_max_freq >= MSPI_TIMING_PLL_FREQ_SCAN_THRESH_MHZ_HIGH && temp_max_freq > max_freq) { max_freq = temp_max_freq; best_point = current_point; } ESP_EARLY_LOGD(TAG, "sample point %d, max pll is %d mhz, min pll is %d\n", current_point, temp_max_freq, temp_min_freq); } if (max_freq == 0) { ESP_EARLY_LOGW(TAG, "freq scan tuning fail, best point is fallen back to index %d", end + 1 - consecutive_length); best_point = end + 1 - consecutive_length; } else { ESP_EARLY_LOGD(TAG, "freq scan success, max pll is %dmhz, best point is index %d", max_freq, best_point); } return best_point; #else //won't reach here abort(); #endif } #endif #if MSPI_TIMING_FLASH_STR_MODE || MSPI_TIMING_PSRAM_STR_MODE static uint32_t select_best_tuning_config_str(mspi_timing_config_t *config, uint32_t consecutive_length, uint32_t end) { #if (MSPI_TIMING_CORE_CLOCK_MHZ == 120 || MSPI_TIMING_CORE_CLOCK_MHZ == 240) ESP_EARLY_LOGW("FLASH/PSRAM", "DO NOT USE FOR MASS PRODUCTION! Timing parameters may be updated in future IDF version."); //STR best point scheme uint32_t best_point; if (consecutive_length <= 2|| consecutive_length >= 5) { //tuning is FAIL, select default point, and generate a warning best_point = config->default_config_id; ESP_EARLY_LOGW(TAG, "tuning fail, best point is fallen back to index %d", best_point); } else { //consecutive length : 3 or 4 best_point = end - consecutive_length / 2; ESP_EARLY_LOGD(TAG,"tuning success, best point is index %d", best_point); } return best_point; #else //won't reach here abort(); #endif } #endif static void select_best_tuning_config(mspi_timing_config_t *config, uint32_t consecutive_length, uint32_t end, const uint8_t *reference_data, bool is_flash) { uint32_t best_point = 0; if (is_flash) { #if MSPI_TIMING_FLASH_DTR_MODE best_point = select_best_tuning_config_dtr(config, consecutive_length, end, reference_data, is_flash); #elif MSPI_TIMING_FLASH_STR_MODE best_point = select_best_tuning_config_str(config, consecutive_length, end); #endif s_flash_best_timing_tuning_config = config->tuning_config_table[best_point]; } else { #if MSPI_TIMING_PSRAM_DTR_MODE best_point = select_best_tuning_config_dtr(config, consecutive_length, end, reference_data, is_flash); #elif MSPI_TIMING_PSRAM_STR_MODE best_point = select_best_tuning_config_str(config, consecutive_length, end); #endif s_psram_best_timing_tuning_config = config->tuning_config_table[best_point]; } } static void do_tuning(const uint8_t *reference_data, mspi_timing_config_t *timing_config, bool is_flash) { /** * We use SPI1 to tune the timing: * 1. Get all SPI1 sampling results. * 2. Find the longest consecutive successful sampling points from the result above. * 3. The middle one will be the best sampling point. */ uint32_t consecutive_length = 0; uint32_t last_success_point = 0; uint8_t sample_result[MSPI_TIMING_CONFIG_NUM_DEFAULT] = {0}; init_spi1_for_tuning(is_flash); sweep_for_success_sample_points(reference_data, timing_config, is_flash, sample_result); find_max_consecutive_success_points(sample_result, MSPI_TIMING_CONFIG_NUM_DEFAULT, &consecutive_length, &last_success_point); select_best_tuning_config(timing_config, consecutive_length, last_success_point, reference_data, is_flash); } #endif //#if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING /*------------------------------------------------------------------------------ * FLASH Timing Tuning *----------------------------------------------------------------------------*/ #if MSPI_TIMING_FLASH_NEEDS_TUNING static void get_flash_tuning_configs(mspi_timing_config_t *config) { #if MSPI_TIMING_FLASH_DTR_MODE #define FLASH_MODE DTR_MODE #else //MSPI_TIMING_FLASH_STR_MODE #define FLASH_MODE STR_MODE #endif #if CONFIG_ESPTOOLPY_FLASHFREQ_20M *config = MSPI_TIMING_FLASH_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 20, FLASH_MODE); #elif CONFIG_ESPTOOLPY_FLASHFREQ_40M *config = MSPI_TIMING_FLASH_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 40, FLASH_MODE); #elif CONFIG_ESPTOOLPY_FLASHFREQ_80M *config = MSPI_TIMING_FLASH_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 80, FLASH_MODE); #elif CONFIG_ESPTOOLPY_FLASHFREQ_120M *config = MSPI_TIMING_FLASH_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 120, FLASH_MODE); #endif #undef FLASH_MODE } void mspi_timing_flash_tuning(void) { /** * set SPI01 related regs to 20mhz configuration, to get reference data from FLASH * see detailed comments in this function (`mspi_timing_enter_low_speed_mode`) */ mspi_timing_enter_low_speed_mode(true); //Disable the variable dummy mode when doing timing tuning mspi_timing_ll_enable_flash_variable_dummy(1, false); //GD flash will read error in variable mode with 20MHz uint8_t reference_data[MSPI_TIMING_TEST_DATA_LEN] = {0}; mspi_timing_config_flash_read_data(reference_data, MSPI_TIMING_FLASH_TEST_DATA_ADDR, sizeof(reference_data)); mspi_timing_config_t timing_configs = {0}; get_flash_tuning_configs(&timing_configs); do_tuning(reference_data, &timing_configs, true); mspi_timing_enter_high_speed_mode(true); } #else void mspi_timing_flash_tuning(void) { //Empty function for compatibility, therefore upper layer won't need to know that FLASH in which operation mode and frequency config needs to be tuned } #endif //MSPI_TIMING_FLASH_NEEDS_TUNING /*------------------------------------------------------------------------------ * PSRAM Timing Tuning *----------------------------------------------------------------------------*/ #if MSPI_TIMING_PSRAM_NEEDS_TUNING static void get_psram_tuning_configs(mspi_timing_config_t *config) { #if MSPI_TIMING_PSRAM_DTR_MODE #define PSRAM_MODE DTR_MODE #else //MSPI_TIMING_PSRAM_STR_MODE #define PSRAM_MODE STR_MODE #endif #if CONFIG_SPIRAM_SPEED_40M *config = MSPI_TIMING_PSRAM_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 40, PSRAM_MODE); #elif CONFIG_SPIRAM_SPEED_80M *config = MSPI_TIMING_PSRAM_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 80, PSRAM_MODE); #elif CONFIG_SPIRAM_SPEED_120M *config = MSPI_TIMING_PSRAM_GET_TUNING_CONFIG(MSPI_TIMING_CORE_CLOCK_MHZ, 120, PSRAM_MODE); #endif #undef PSRAM_MODE } void mspi_timing_psram_tuning(void) { /** * set SPI01 related regs to 20mhz configuration, to write reference data to PSRAM * see detailed comments in this function (`mspi_timing_enter_low_speed_mode`) */ mspi_timing_enter_low_speed_mode(true); // write data into psram, used to do timing tuning test. uint8_t reference_data[MSPI_TIMING_TEST_DATA_LEN]; for (int i=0; i < MSPI_TIMING_TEST_DATA_LEN/4; i++) { ((uint32_t *)reference_data)[i] = 0xa5ff005a; } mspi_timing_config_psram_write_data(reference_data, MSPI_TIMING_PSRAM_TEST_DATA_ADDR, MSPI_TIMING_TEST_DATA_LEN); mspi_timing_config_t timing_configs = {0}; get_psram_tuning_configs(&timing_configs); //Disable the variable dummy mode when doing timing tuning mspi_timing_ll_enable_flash_variable_dummy(1, false); //Get required config, and set them to PSRAM related registers do_tuning(reference_data, &timing_configs, false); mspi_timing_enter_high_speed_mode(true); } #else void mspi_timing_psram_tuning(void) { //Empty function for compatibility, therefore upper layer won't need to know that FLASH in which operation mode and frequency config needs to be tuned } #endif //MSPI_TIMING_PSRAM_NEEDS_TUNING /*------------------------------------------------------------------------------ * APIs to make SPI0 (and SPI1) FLASH work for high/low freq *----------------------------------------------------------------------------*/ #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING static void clear_timing_tuning_regs(bool control_spi1) { mspi_timing_config_flash_set_din_mode_num(0, 0, 0); //SPI0 and SPI1 share the registers for flash din mode and num setting, so we only set SPI0's reg mspi_timing_config_flash_set_extra_dummy(0, 0); if (control_spi1) { mspi_timing_config_flash_set_extra_dummy(1, 0); } else { //Won't touch SPI1 registers } mspi_timing_config_psram_set_din_mode_num(0, 0, 0); mspi_timing_config_psram_set_extra_dummy(0, 0); } #endif //#if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING void mspi_timing_enter_low_speed_mode(bool control_spi1) { /** * Here we are going to slow the SPI1 frequency to 20Mhz, so we need to set SPI1 din_num and din_mode regs. * * Because SPI0 and SPI1 share the din_num and din_mode regs, so if we clear SPI1 din_num and din_mode to * 0, if the SPI0 flash module clock is still in high freq, it may not work correctly. * * Therefore, here we need to slow both the SPI0 and SPI1 and related timing tuning regs to 20Mhz configuration. */ //Switch SPI1 and SPI0 clock as 20MHz, set its SPIMEM core clock as 80M and set clock division as 4 mspi_timing_config_set_core_clock(0, MSPI_TIMING_CONFIG_CORE_CLOCK_80M); //SPI0 and SPI1 share the register for core clock. So we only set SPI0 here. mspi_timing_config_set_flash_clock(0, 4); if (control_spi1) { //After tuning, won't touch SPI1 again mspi_timing_config_set_flash_clock(1, 4); } //Set PSRAM module clock mspi_timing_config_set_psram_clock(0, 4); #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING clear_timing_tuning_regs(control_spi1); #endif } #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING static void set_timing_tuning_regs_as_required(bool control_spi1) { //SPI0 and SPI1 share the registers for flash din mode and num setting, so we only set SPI0's reg mspi_timing_config_flash_set_din_mode_num(0, s_flash_best_timing_tuning_config.spi_din_mode, s_flash_best_timing_tuning_config.spi_din_num); mspi_timing_config_flash_set_extra_dummy(0, s_flash_best_timing_tuning_config.extra_dummy_len); if (control_spi1) { mspi_timing_config_flash_set_extra_dummy(1, s_flash_best_timing_tuning_config.extra_dummy_len); } mspi_timing_config_psram_set_din_mode_num(0, s_psram_best_timing_tuning_config.spi_din_mode, s_psram_best_timing_tuning_config.spi_din_num); mspi_timing_config_psram_set_extra_dummy(0, s_psram_best_timing_tuning_config.extra_dummy_len); } #endif //#if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING /** * Set SPI0 FLASH and PSRAM module clock, din_num, din_mode and extra dummy, * according to the configuration got from timing tuning function (`calculate_best_flash_tuning_config`). * iF control_spi1 == 1, will also update SPI1 timing registers. Should only be set to 1 when do tuning. * * This function should always be called after `mspi_timing_flash_tuning` or `calculate_best_flash_tuning_config` */ void mspi_timing_enter_high_speed_mode(bool control_spi1) { mspi_timing_config_core_clock_t core_clock = get_mspi_core_clock(); uint32_t flash_div = get_flash_clock_divider(); uint32_t psram_div = get_psram_clock_divider(); //Set SPI01 core clock mspi_timing_config_set_core_clock(0, core_clock); //SPI0 and SPI1 share the register for core clock. So we only set SPI0 here. //Set FLASH module clock mspi_timing_config_set_flash_clock(0, flash_div); if (control_spi1) { mspi_timing_config_set_flash_clock(1, flash_div); } //Set PSRAM module clock mspi_timing_config_set_psram_clock(0, psram_div); #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING set_timing_tuning_regs_as_required(true); #endif } void mspi_timing_change_speed_mode_cache_safe(bool switch_down) { Cache_Freeze_ICache_Enable(CACHE_FREEZE_ACK_BUSY); Cache_Freeze_DCache_Enable(CACHE_FREEZE_ACK_BUSY); if (switch_down) { //enter MSPI low speed mode, extra delays should be removed mspi_timing_enter_low_speed_mode(false); } else { //enter MSPI high speed mode, extra delays should be considered mspi_timing_enter_high_speed_mode(false); } Cache_Freeze_DCache_Disable(); Cache_Freeze_ICache_Disable(); } /*------------------------------------------------------------------------------ * APIs to inform SPI1 Flash driver of necessary timing configurations *----------------------------------------------------------------------------*/ bool spi_timing_is_tuned(void) { #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING return true; #else return false; #endif } #if MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING void spi_timing_get_flash_timing_param(spi_flash_hal_timing_config_t *out_timing_config) { // Get clock configuration directly from system. out_timing_config->clock_config.spimem = mspi_timing_config_get_flash_clock_reg(); // Get extra dummy length here. Therefore, no matter what freq, or mode. // If it needs tuning, it will return correct extra dummy len. If no tuning, it will return 0. out_timing_config->extra_dummy = s_flash_best_timing_tuning_config.extra_dummy_len; // Get CS setup/hold value here. mspi_timing_config_get_cs_timing(&out_timing_config->cs_setup, &out_timing_config->cs_hold); } #else void spi_timing_get_flash_timing_param(spi_flash_hal_timing_config_t *out_timing_config) { // This function shouldn't be called if timing tuning is not used. abort(); } #endif // MSPI_TIMING_FLASH_NEEDS_TUNING || MSPI_TIMING_PSRAM_NEEDS_TUNING