// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include "sdkconfig.h" #include "esp_ipc.h" #include "esp_attr.h" #include "esp_spi_flash.h" #include "esp_flash_encrypt.h" #include "esp_log.h" #include "cache_utils.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/spi_flash.h" #include "esp32/rom/cache.h" #include "esp32/spiram.h" #elif CONFIG_IDF_TARGET_ESP32S2BETA #include "esp32s2beta/rom/spi_flash.h" #include "esp32s2beta/rom/cache.h" #include "esp32s2beta/spiram.h" #endif #ifndef NDEBUG // Enable built-in checks in queue.h in debug builds #define INVARIANTS #endif #include "sys/queue.h" #define PAGES_PER_REGION 64 #ifdef CONFIG_IDF_TARGET_ESP32 #define REGIONS_COUNT 4 #define IROM0_PAGES_START 64 #define IROM0_PAGES_END 256 #define DROM0_PAGES_START 0 #define DROM0_PAGES_END 64 #define PAGE_IN_FLASH(page) (page) #elif CONFIG_IDF_TARGET_ESP32S2BETA #define REGIONS_COUNT 8 #define IROM0_PAGES_START (PRO_CACHE_IBUS0_MMU_START / sizeof(uint32_t)) #define IROM0_PAGES_END (PRO_CACHE_IBUS2_MMU_END / sizeof(uint32_t)) #define DROM0_PAGES_START (Cache_Drom0_Using_ICache()? PRO_CACHE_IBUS3_MMU_START / sizeof(uint32_t) : PRO_CACHE_DBUS3_MMU_START /sizeof(uint32_t)) #define DROM0_PAGES_END (Cache_Drom0_Using_ICache()? PRO_CACHE_IBUS3_MMU_END / sizeof(uint32_t) : PRO_CACHE_DBUS3_MMU_END / sizeof(uint32_t)) #define PAGE_IN_FLASH(page) ((page) | DPORT_MMU_ACCESS_FLASH) #endif #define MMU_ADDR_MASK DPORT_MMU_ADDRESS_MASK #define IROM0_PAGES_NUM (IROM0_PAGES_END - IROM0_PAGES_START) #define DROM0_PAGES_NUM (DROM0_PAGES_END - DROM0_PAGES_START) #define PAGES_LIMIT (IROM0_PAGES_END > DROM0_PAGES_END ? IROM0_PAGES_END:DROM0_PAGES_END) #define INVALID_ENTRY_VAL DPORT_FLASH_MMU_TABLE_INVALID_VAL #define VADDR0_START_ADDR SOC_DROM_LOW #define VADDR1_START_ADDR 0x40000000 #define VADDR1_FIRST_USABLE_ADDR SOC_IROM_LOW #define PRO_IRAM0_FIRST_USABLE_PAGE ((VADDR1_FIRST_USABLE_ADDR - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START) typedef struct mmap_entry_{ uint32_t handle; int page; int count; LIST_ENTRY(mmap_entry_) entries; } mmap_entry_t; static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head = LIST_HEAD_INITIALIZER(s_mmap_entries_head); static uint8_t s_mmap_page_refcnt[REGIONS_COUNT * PAGES_PER_REGION] = {0}; static uint32_t s_mmap_last_handle = 0; static void IRAM_ATTR spi_flash_mmap_init(void) { if (s_mmap_page_refcnt[DROM0_PAGES_START] != 0) { return; /* mmap data already initialised */ } DPORT_INTERRUPT_DISABLE(); for (int i = 0; i < REGIONS_COUNT * PAGES_PER_REGION; ++i) { uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]); #if !CONFIG_FREERTOS_UNICORE uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]); if (entry_pro != entry_app) { // clean up entries used by boot loader entry_pro = DPORT_FLASH_MMU_TABLE_INVALID_VAL; DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL; } #endif if ((entry_pro & INVALID_ENTRY_VAL) == 0 && (i == DROM0_PAGES_START || i == PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) { s_mmap_page_refcnt[i] = 1; } else { DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL; #if !CONFIG_FREERTOS_UNICORE DPORT_APP_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL; #endif } } DPORT_INTERRUPT_RESTORE(); } static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr) { if (memory == SPI_FLASH_MMAP_DATA) { // Vaddr0 *out_begin = DROM0_PAGES_START; *out_size = DROM0_PAGES_NUM; *region_addr = VADDR0_START_ADDR; } else { // only part of VAddr1 is usable, so adjust for that *out_begin = PRO_IRAM0_FIRST_USABLE_PAGE; *out_size = IROM0_PAGES_END - *out_begin; *region_addr = VADDR1_FIRST_USABLE_ADDR; } } esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory, const void** out_ptr, spi_flash_mmap_handle_t* out_handle) { esp_err_t ret; if (src_addr & 0xffff) { return ESP_ERR_INVALID_ARG; } if (src_addr + size > g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_ARG; } // region which should be mapped int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE; int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE; // prepare a linear pages array to feed into spi_flash_mmap_pages int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL); if (pages == NULL) { return ESP_ERR_NO_MEM; } for (int i = 0; i < page_count; i++) { pages[i] = (phys_page+i); } ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle); free(pages); return ret; } esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory, const void** out_ptr, spi_flash_mmap_handle_t* out_handle) { esp_err_t ret; const void* temp_ptr = *out_ptr = NULL; spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL; bool need_flush = false; if (!page_count) { return ESP_ERR_INVALID_ARG; } if (!esp_ptr_internal(pages)) { return ESP_ERR_INVALID_ARG; } for (int i = 0; i < page_count; i++) { if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_ARG; } } mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (new_entry == 0) { return ESP_ERR_NO_MEM; } spi_flash_disable_interrupts_caches_and_other_cpu(); spi_flash_mmap_init(); // figure out the memory region where we should look for pages int region_begin; // first page to check int region_size; // number of pages to check uint32_t region_addr; // base address of memory region get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr); if (region_size < page_count) { spi_flash_enable_interrupts_caches_and_other_cpu(); return ESP_ERR_NO_MEM; } // The following part searches for a range of MMU entries which can be used. // Algorithm is essentially naïve strstr algorithm, except that unused MMU // entries are treated as wildcards. int start; // the " + 1" is a fix when loop the MMU table pages, because the last MMU page // is valid as well if it have not been used int end = region_begin + region_size - page_count + 1; for (start = region_begin; start < end; ++start) { int pageno = 0; int pos; DPORT_INTERRUPT_DISABLE(); for (pos = start; pos < start + page_count; ++pos, ++pageno) { int table_val = (int) DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[pos]); uint8_t refcnt = s_mmap_page_refcnt[pos]; if (refcnt != 0 && table_val != PAGE_IN_FLASH(pages[pageno])) { break; } } DPORT_INTERRUPT_RESTORE(); // whole mapping range matched, bail out if (pos - start == page_count) { break; } } // checked all the region(s) and haven't found anything? if (start == end) { ret = ESP_ERR_NO_MEM; } else { // set up mapping using pages uint32_t pageno = 0; DPORT_INTERRUPT_DISABLE(); for (int i = start; i != start + page_count; ++i, ++pageno) { // sanity check: we won't reconfigure entries with non-zero reference count uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]); #if !CONFIG_FREERTOS_UNICORE uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]); #endif assert(s_mmap_page_refcnt[i] == 0 || (entry_pro == PAGE_IN_FLASH(pages[pageno]) #if !CONFIG_FREERTOS_UNICORE && entry_app == PAGE_IN_FLASH(pages[pageno]) #endif )); if (s_mmap_page_refcnt[i] == 0) { if (entry_pro != PAGE_IN_FLASH(pages[pageno]) #if !CONFIG_FREERTOS_UNICORE || entry_app != PAGE_IN_FLASH(pages[pageno]) #endif ) { DPORT_PRO_FLASH_MMU_TABLE[i] = PAGE_IN_FLASH(pages[pageno]); #if !CONFIG_FREERTOS_UNICORE DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno]; #endif #if CONFIG_IDF_TARGET_ESP32S2BETA Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE); #endif need_flush = true; } } ++s_mmap_page_refcnt[i]; } DPORT_INTERRUPT_RESTORE(); LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries); new_entry->page = start; new_entry->count = page_count; new_entry->handle = ++s_mmap_last_handle; temp_handle = new_entry->handle; temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE); ret = ESP_OK; } /* This is a temporary fix for an issue where some cache reads may see stale data. Working on a long term fix that doesn't require invalidating entire cache. */ if (need_flush) { #if CONFIG_IDF_TARGET_ESP32 # if CONFIG_SPIRAM esp_spiram_writeback_cache(); # endif Cache_Flush(0); # if !CONFIG_FREERTOS_UNICORE Cache_Flush(1); # endif #endif } spi_flash_enable_interrupts_caches_and_other_cpu(); if (temp_ptr == NULL) { free(new_entry); } *out_ptr = temp_ptr; *out_handle = temp_handle; return ret; } void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle) { spi_flash_disable_interrupts_caches_and_other_cpu(); mmap_entry_t* it; // look for handle in linked list for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) { if (it->handle == handle) { // for each page, decrement reference counter // if reference count is zero, disable MMU table entry to // facilitate debugging of use-after-free conditions for (int i = it->page; i < it->page + it->count; ++i) { assert(s_mmap_page_refcnt[i] > 0); if (--s_mmap_page_refcnt[i] == 0) { DPORT_PRO_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL; #if !CONFIG_FREERTOS_UNICORE DPORT_APP_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL; #endif } } LIST_REMOVE(it, entries); break; } } spi_flash_enable_interrupts_caches_and_other_cpu(); if (it == NULL) { assert(0 && "invalid handle, or handle already unmapped"); } free(it); } static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void) { spi_flash_disable_interrupts_caches_and_other_cpu(); spi_flash_mmap_init(); spi_flash_enable_interrupts_caches_and_other_cpu(); } static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index) { uint32_t value; spi_flash_disable_interrupts_caches_and_other_cpu(); value = DPORT_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[index]); spi_flash_enable_interrupts_caches_and_other_cpu(); return value; } void spi_flash_mmap_dump(void) { spi_flash_protected_mmap_init(); mmap_entry_t* it; for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) { printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count); } for (int i = 0; i < REGIONS_COUNT * PAGES_PER_REGION; ++i) { if (s_mmap_page_refcnt[i] != 0) { uint32_t paddr = spi_flash_protected_read_mmu_entry(i); printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr); } } } uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory) { spi_flash_disable_interrupts_caches_and_other_cpu(); spi_flash_mmap_init(); int count = 0; int region_begin; // first page to check int region_size; // number of pages to check uint32_t region_addr; // base address of memory region get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr); DPORT_INTERRUPT_DISABLE(); for (int i = region_begin; i < region_begin + region_size; ++i) { if (s_mmap_page_refcnt[i] == 0 && DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]) == INVALID_ENTRY_VAL) { count++; } } DPORT_INTERRUPT_RESTORE(); spi_flash_enable_interrupts_caches_and_other_cpu(); return count; } uint32_t spi_flash_cache2phys(const void *cached) { intptr_t c = (intptr_t)cached; size_t cache_page; if (c >= VADDR1_START_ADDR && c < VADDR1_FIRST_USABLE_ADDR) { /* IRAM address, doesn't map to flash */ return SPI_FLASH_CACHE2PHYS_FAIL; } else if (c < VADDR1_FIRST_USABLE_ADDR) { /* expect cache is in DROM */ cache_page = (c - VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + DROM0_PAGES_START; } else { /* expect cache is in IROM */ cache_page = (c - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START; } if (cache_page >= PAGES_LIMIT) { /* cached address was not in IROM or DROM */ return SPI_FLASH_CACHE2PHYS_FAIL; } uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page); if (phys_page == INVALID_ENTRY_VAL) { /* page is not mapped */ return SPI_FLASH_CACHE2PHYS_FAIL; } uint32_t phys_offs = (phys_page & MMU_ADDR_MASK)* SPI_FLASH_MMU_PAGE_SIZE; return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1)); } const void *IRAM_ATTR spi_flash_phys2cache(uint32_t phys_offs, spi_flash_mmap_memory_t memory) { uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE; int start, end, page_delta; intptr_t base; if (memory == SPI_FLASH_MMAP_DATA) { start = DROM0_PAGES_START; end = DROM0_PAGES_END; base = VADDR0_START_ADDR; page_delta = DROM0_PAGES_START > IROM0_PAGES_START ? DROM0_PAGES_START : 0; } else { start = PRO_IRAM0_FIRST_USABLE_PAGE; end = IROM0_PAGES_END; base = VADDR1_START_ADDR; page_delta = DROM0_PAGES_START > IROM0_PAGES_START ? 0: IROM0_PAGES_START; } spi_flash_disable_interrupts_caches_and_other_cpu(); DPORT_INTERRUPT_DISABLE(); for (int i = start; i < end; i++) { if (DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]) == PAGE_IN_FLASH(phys_page)) { i -= page_delta; intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i); DPORT_INTERRUPT_RESTORE(); spi_flash_enable_interrupts_caches_and_other_cpu(); return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1))); } } DPORT_INTERRUPT_RESTORE(); spi_flash_enable_interrupts_caches_and_other_cpu(); return NULL; } static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr) { int start[2], end[2]; *out_ptr = NULL; /* SPI_FLASH_MMAP_DATA */ start[0] = DROM0_PAGES_START; end[0] = DROM0_PAGES_END; /* SPI_FLASH_MMAP_INST */ start[1] = PRO_IRAM0_FIRST_USABLE_PAGE; end[1] = IROM0_PAGES_END; DPORT_INTERRUPT_DISABLE(); for (int j = 0; j < 2; j++) { for (int i = start[j]; i < end[j]; i++) { if (DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]) == PAGE_IN_FLASH(phys_page)) { #if CONFIG_IDF_TARGET_ESP32S2BETA if (j == 0) { /* SPI_FLASH_MMAP_DATA */ *out_ptr = (const void *)(VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0])); } else { /* SPI_FLASH_MMAP_INST */ *out_ptr = (const void *)(VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1])); } #endif DPORT_INTERRUPT_RESTORE(); return true; } } } DPORT_INTERRUPT_RESTORE(); return false; } /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */ IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length) { bool ret = false; /* align start_addr & length to full MMU pages */ uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1); length += (start_addr - page_start_addr); length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1); for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) { uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE; if (page >= 256) { return false; /* invalid address */ } const void *vaddr = NULL; if (is_page_mapped_in_cache(page, &vaddr)) { #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPIRAM esp_spiram_writeback_cache(); #endif Cache_Flush(0); #ifndef CONFIG_FREERTOS_UNICORE Cache_Flush(1); #endif return true; #elif CONFIG_IDF_TARGET_ESP32S2BETA if (vaddr != NULL) { Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE); ret = true; } #endif } } return ret; }