// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/ringbuf.h" #include "driver/gpio.h" #include "driver/spi_common_internal.h" #include "hal/spi_slave_hd_hal.h" #include "driver/spi_slave_hd.h" //SPI1 can never be used as the slave #define VALID_HOST(x) (x>SPI_HOST && x<=HSPI_HOST) #define SPIHD_CHECK(cond,warn,ret) do{if(!(cond)){ESP_LOGE(TAG, warn); return ret;}} while(0) typedef struct { spi_slave_hd_hal_context_t hal; int dma_chan; intr_handle_t intr; intr_handle_t intr_dma; spi_slave_hd_callback_config_t callback; QueueHandle_t tx_trans_queue; QueueHandle_t tx_ret_queue; QueueHandle_t rx_trans_queue; QueueHandle_t rx_ret_queue; spi_slave_hd_data_t* tx_desc; spi_slave_hd_data_t* rx_desc; uint32_t flags; int max_transfer_sz; portMUX_TYPE int_spinlock; #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif } spi_slave_hd_slot_t; static spi_slave_hd_slot_t *spihost[SOC_SPI_PERIPH_NUM]; static const char TAG[] = "slave_hd"; static void spi_slave_hd_intr(void* arg); esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *bus_config, const spi_slave_hd_slot_config_t *config) { bool spi_chan_claimed, dma_chan_claimed; esp_err_t ret = ESP_OK; SPIHD_CHECK(VALID_HOST(host_id), "invalid host", ESP_ERR_INVALID_ARG); SPIHD_CHECK(config->dma_chan == 0 || config->dma_chan == host_id, "invalid dma channel", ESP_ERR_INVALID_ARG); spi_chan_claimed = spicommon_periph_claim(host_id, "slave_hd"); SPIHD_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE); if ( config->dma_chan != 0 ) { dma_chan_claimed = spicommon_dma_chan_claim(config->dma_chan); if (!dma_chan_claimed) { spicommon_periph_free(host_id); SPIHD_CHECK(dma_chan_claimed, "dma channel already in use", ESP_ERR_INVALID_STATE); } } spi_slave_hd_slot_t* host = malloc(sizeof(spi_slave_hd_slot_t)); if (host == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } spihost[host_id] = host; memset(host, 0, sizeof(spi_slave_hd_slot_t)); host->dma_chan = config->dma_chan; host->int_spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; ret = spicommon_bus_initialize_io(host_id, bus_config, config->dma_chan, SPICOMMON_BUSFLAG_SLAVE | bus_config->flags, &host->flags); if (ret != ESP_OK) { goto cleanup; } gpio_set_direction(config->spics_io_num, GPIO_MODE_INPUT); spicommon_cs_initialize(host_id, config->spics_io_num, 0, !(bus_config->flags & SPICOMMON_BUSFLAG_NATIVE_PINS)); host->dma_chan = config->dma_chan; spi_slave_hd_hal_config_t hal_config = { .host_id = host_id, .dma_in = SPI_LL_GET_HW(host_id), .dma_out = SPI_LL_GET_HW(host_id), .tx_lsbfirst = (config->flags & SPI_SLAVE_HD_RXBIT_LSBFIRST), .rx_lsbfirst = (config->flags & SPI_SLAVE_HD_TXBIT_LSBFIRST), .dma_chan = config->dma_chan, .mode = config->mode }; spi_slave_hd_hal_init(&host->hal, &hal_config); if (config->dma_chan != 0) { //See how many dma descriptors we need and allocate them int dma_desc_ct = (bus_config->max_transfer_sz + SPI_MAX_DMA_LEN - 1) / SPI_MAX_DMA_LEN; if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given host->max_transfer_sz = dma_desc_ct * SPI_MAX_DMA_LEN; host->hal.dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); host->hal.dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); if (!host->hal.dmadesc_tx || !host->hal.dmadesc_rx ) { ret = ESP_ERR_NO_MEM; goto cleanup; } } else { //We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most. host->max_transfer_sz = 0; } #ifdef CONFIG_PM_ENABLE ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_slave", &host->pm_lock); if (ret != ESP_OK) { goto cleanup; } // Lock APB frequency while SPI slave driver is in use esp_pm_lock_acquire(host->pm_lock); #endif //CONFIG_PM_ENABLE //Create queues host->tx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); host->tx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); host->rx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); host->rx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); if (!host->tx_trans_queue || !host->tx_ret_queue || !host->rx_trans_queue || !host->rx_ret_queue) { ret = ESP_ERR_NO_MEM; goto cleanup; } ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr, (void *)host, &host->intr); if (ret != ESP_OK) { goto cleanup; } ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr, (void *)host, &host->intr_dma); if (ret != ESP_OK) { goto cleanup; } memcpy((uint8_t*)&host->callback, (uint8_t*)&config->cb_config, sizeof(spi_slave_hd_callback_config_t)); spi_event_t event = 0; if (host->callback.cb_buffer_tx!=NULL) event |= SPI_EV_BUF_TX; if (host->callback.cb_buffer_rx!=NULL) event |= SPI_EV_BUF_RX; if (host->callback.cb_cmd9!=NULL) event |= SPI_EV_CMD9; if (host->callback.cb_cmdA!=NULL) event |= SPI_EV_CMDA; spi_slave_hd_hal_enable_event_intr(&host->hal, event); return ESP_OK; cleanup: // Memory free is in the deinit function spi_slave_hd_deinit(host_id); return ret; } esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id) { spi_slave_hd_slot_t *host = spihost[host_id]; if (host == NULL) return ESP_ERR_INVALID_ARG; if (host->tx_trans_queue) vQueueDelete(host->tx_trans_queue); if (host->tx_ret_queue) vQueueDelete(host->tx_ret_queue); if (host->rx_trans_queue) vQueueDelete(host->rx_trans_queue); if (host->rx_ret_queue) vQueueDelete(host->rx_ret_queue); if (host) { free(host->hal.dmadesc_tx); free(host->hal.dmadesc_rx); esp_intr_free(host->intr); esp_intr_free(host->intr_dma); #ifdef CONFIG_PM_ENABLE if (host->pm_lock) { esp_pm_lock_release(host->pm_lock); esp_pm_lock_delete(host->pm_lock); } #endif } spicommon_periph_free(host_id); if (host->dma_chan) { spicommon_dma_chan_free(host->dma_chan); } free(host); spihost[host_id] = NULL; return ESP_OK; } static void tx_invoke(spi_slave_hd_slot_t* host) { portENTER_CRITICAL(&host->int_spinlock); spi_slave_hd_hal_invoke_event_intr(&host->hal, SPI_EV_SEND); portEXIT_CRITICAL(&host->int_spinlock); } static void rx_invoke(spi_slave_hd_slot_t* host) { portENTER_CRITICAL(&host->int_spinlock); spi_slave_hd_hal_invoke_event_intr(&host->hal, SPI_EV_RECV); portEXIT_CRITICAL(&host->int_spinlock); } static inline IRAM_ATTR BaseType_t intr_check_clear_callback(spi_slave_hd_slot_t* host, spi_event_t ev, slave_cb_t cb) { BaseType_t cb_awoken = pdFALSE; if (spi_slave_hd_hal_check_clear_event(&host->hal, ev) && cb) { spi_slave_hd_event_t event = {.event = ev}; cb(host->callback.arg, &event, &cb_awoken); } return cb_awoken; } static IRAM_ATTR void spi_slave_hd_intr(void* arg) { spi_slave_hd_slot_t* host = (spi_slave_hd_slot_t*)arg; BaseType_t awoken = pdFALSE; spi_slave_hd_callback_config_t *callback = &host->callback; ESP_EARLY_LOGV("spi_hd", "intr."); awoken |= intr_check_clear_callback(host, SPI_EV_BUF_TX, callback->cb_buffer_tx); awoken |= intr_check_clear_callback(host, SPI_EV_BUF_RX, callback->cb_buffer_rx); awoken |= intr_check_clear_callback(host, SPI_EV_CMD9, callback->cb_cmd9); awoken |= intr_check_clear_callback(host, SPI_EV_CMDA, callback->cb_cmdA); BaseType_t ret; bool tx_done = false; bool rx_done = false; portENTER_CRITICAL_ISR(&host->int_spinlock); if (host->tx_desc && spi_slave_hd_hal_check_disable_event(&host->hal, SPI_EV_SEND)) { tx_done = true; } if (host->rx_desc && spi_slave_hd_hal_check_disable_event(&host->hal, SPI_EV_RECV)) { rx_done = true; } portEXIT_CRITICAL_ISR(&host->int_spinlock); if (tx_done) { bool ret_queue = true; if (callback->cb_sent) { spi_slave_hd_event_t ev = { .event = SPI_EV_SEND, .trans = host->tx_desc, }; BaseType_t cb_awoken = pdFALSE; ret_queue = callback->cb_sent(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } if (ret_queue) { ret = xQueueSendFromISR(host->tx_ret_queue, &host->tx_desc, &awoken); // The return queue is full. All the data remian in send_queue + ret_queue should not be more than the queue length. assert(ret == pdTRUE); } host->tx_desc = NULL; } if (rx_done) { bool ret_queue = true; host->rx_desc->trans_len = spi_slave_hd_hal_rxdma_get_len(&host->hal); if (callback->cb_recv) { spi_slave_hd_event_t ev = { .event = SPI_EV_RECV, .trans = host->rx_desc, }; BaseType_t cb_awoken = pdFALSE; ret_queue = callback->cb_recv(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } if (ret_queue) { ret = xQueueSendFromISR(host->rx_ret_queue, &host->rx_desc, &awoken); // The return queue is full. All the data remian in send_queue + ret_queue should not be more than the queue length. assert(ret == pdTRUE); } host->rx_desc = NULL; } bool tx_sent = false; bool rx_sent = false; if (!host->tx_desc) { ret = xQueueReceiveFromISR(host->tx_trans_queue, &host->tx_desc, &awoken); if (ret == pdTRUE) { spi_slave_hd_hal_txdma(&host->hal, host->tx_desc->data, host->tx_desc->len); tx_sent = true; } } if (!host->rx_desc) { ret = xQueueReceiveFromISR(host->rx_trans_queue, &host->rx_desc, &awoken); if (ret == pdTRUE) { spi_slave_hd_hal_rxdma(&host->hal, host->rx_desc->data, host->rx_desc->len); rx_sent = true; } } portENTER_CRITICAL_ISR(&host->int_spinlock); if (rx_sent) { spi_slave_hd_hal_enable_event_intr(&host->hal, SPI_EV_RECV); } if (tx_sent) { spi_slave_hd_hal_enable_event_intr(&host->hal, SPI_EV_SEND); } portEXIT_CRITICAL_ISR(&host->int_spinlock); if (awoken==pdTRUE) portYIELD_FROM_ISR(); } esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t* trans, TickType_t timeout) { spi_slave_hd_slot_t* host = spihost[host_id]; SPIHD_CHECK(esp_ptr_dma_capable(trans->data), "The buffer should be DMA capable.", ESP_ERR_INVALID_ARG); SPIHD_CHECK(trans->len <= host->max_transfer_sz && trans->len > 0, "Invalid buffer size", ESP_ERR_INVALID_ARG); SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG); if (chan == SPI_SLAVE_CHAN_TX) { BaseType_t ret = xQueueSend(host->tx_trans_queue, &trans, timeout); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } tx_invoke(host); } else { //chan == SPI_SLAVE_CHAN_RX BaseType_t ret = xQueueSend(host->rx_trans_queue, &trans, timeout); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } rx_invoke(host); } return ESP_OK; } esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t** out_trans, TickType_t timeout) { SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG); spi_slave_hd_slot_t* host = spihost[host_id]; BaseType_t ret; spi_slave_hd_data_t *data; if (chan == SPI_SLAVE_CHAN_TX) { ret = xQueueReceive(host->tx_ret_queue, &data, timeout); } else { // chan == SPI_SLAVE_CHAN_RX ret = xQueueReceive(host->rx_ret_queue, &data, timeout); } if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } *out_trans = data; return ESP_OK; } void spi_slave_hd_read_buffer(spi_host_device_t host_id, int addr, uint8_t *out_data, size_t len) { spi_slave_hd_hal_read_buffer(&spihost[host_id]->hal, addr, out_data, len); } void spi_slave_hd_write_buffer(spi_host_device_t host_id, int addr, uint8_t *data, size_t len) { spi_slave_hd_hal_write_buffer(&spihost[host_id]->hal, addr, data, len); }