#include #include #include #include #include #include "unity.h" #include "esp_pm.h" #include "esp_sleep.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "esp_log.h" #include "driver/timer.h" #include "driver/rtc_io.h" #include "soc/rtc_periph.h" #include "esp_rom_sys.h" #include "sdkconfig.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/clk.h" #include "esp32/ulp.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/clk.h" #include "esp32s2/ulp.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/clk.h" #include "esp32s3/ulp.h" #endif TEST_CASE("Can dump power management lock stats", "[pm]") { esp_pm_dump_locks(stdout); } #ifdef CONFIG_PM_ENABLE static void switch_freq(int mhz) { int xtal_freq = rtc_clk_xtal_freq_get(); #if CONFIG_IDF_TARGET_ESP32 esp_pm_config_esp32_t pm_config = { #elif CONFIG_IDF_TARGET_ESP32S2 esp_pm_config_esp32s2_t pm_config = { #elif CONFIG_IDF_TARGET_ESP32S3 esp_pm_config_esp32s3_t pm_config = { #endif .max_freq_mhz = mhz, .min_freq_mhz = MIN(mhz, xtal_freq), }; ESP_ERROR_CHECK( esp_pm_configure(&pm_config) ); printf("Waiting for frequency to be set to %d MHz...\n", mhz); while (esp_clk_cpu_freq() / MHZ != mhz) { vTaskDelay(pdMS_TO_TICKS(200)); printf("Frequency is %d MHz\n", esp_clk_cpu_freq() / MHZ); } } TEST_CASE("Can switch frequency using esp_pm_configure", "[pm]") { int orig_freq_mhz = esp_clk_cpu_freq() / MHZ; switch_freq(240); switch_freq(40); switch_freq(160); switch_freq(240); switch_freq(80); switch_freq(40); switch_freq(240); switch_freq(40); switch_freq(80); switch_freq(10); switch_freq(80); switch_freq(20); switch_freq(40); switch_freq(orig_freq_mhz); } #if CONFIG_FREERTOS_USE_TICKLESS_IDLE static void light_sleep_enable(void) { int cur_freq_mhz = esp_clk_cpu_freq() / MHZ; int xtal_freq = (int) rtc_clk_xtal_freq_get(); #if CONFIG_IDF_TARGET_ESP32 esp_pm_config_esp32_t pm_config = { #elif CONFIG_IDF_TARGET_ESP32S2 esp_pm_config_esp32s2_t pm_config = { #elif CONFIG_IDF_TARGET_ESP32S3 esp_pm_config_esp32s3_t pm_config = { #endif .max_freq_mhz = cur_freq_mhz, .min_freq_mhz = xtal_freq, .light_sleep_enable = true }; ESP_ERROR_CHECK( esp_pm_configure(&pm_config) ); } static void light_sleep_disable(void) { int cur_freq_mhz = esp_clk_cpu_freq() / MHZ; #if CONFIG_IDF_TARGET_ESP32 esp_pm_config_esp32_t pm_config = { #elif CONFIG_IDF_TARGET_ESP32S2 esp_pm_config_esp32s2_t pm_config = { #elif CONFIG_IDF_TARGET_ESP32S3 esp_pm_config_esp32s3_t pm_config = { #endif .max_freq_mhz = cur_freq_mhz, .min_freq_mhz = cur_freq_mhz, }; ESP_ERROR_CHECK( esp_pm_configure(&pm_config) ); } TEST_CASE("Automatic light occurs when tasks are suspended", "[pm]") { /* To figure out if light sleep takes place, use Timer Group timer. * It will stop working while in light sleep. */ timer_config_t config = { .counter_dir = TIMER_COUNT_UP, .divider = 80 /* 1 us per tick */ }; timer_init(TIMER_GROUP_0, TIMER_0, &config); timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0); timer_start(TIMER_GROUP_0, TIMER_0); light_sleep_enable(); for (int ticks_to_delay = CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP; ticks_to_delay < CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP * 10; ++ticks_to_delay) { /* Wait until next tick */ vTaskDelay(1); /* The following delay should cause light sleep to start */ uint64_t count_start; timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_start); vTaskDelay(ticks_to_delay); uint64_t count_end; timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_end); int timer_diff_us = (int) (count_end - count_start); const int us_per_tick = 1 * portTICK_PERIOD_MS * 1000; printf("%d %d\n", ticks_to_delay * us_per_tick, timer_diff_us); TEST_ASSERT(timer_diff_us < ticks_to_delay * us_per_tick); } light_sleep_disable(); } #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3) TEST_CASE("Can wake up from automatic light sleep by GPIO", "[pm]") { #if CONFIG_IDF_TARGET_ESP32 assert(CONFIG_ESP32_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig"); #elif CONFIG_IDF_TARGET_ESP32S2 assert(CONFIG_ESP32S2_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig"); #elif CONFIG_IDF_TARGET_ESP32S3 assert(CONFIG_ESP32S3_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig"); #endif /* Set up GPIO used to wake up RTC */ const int ext1_wakeup_gpio = 25; const int ext_rtc_io = RTCIO_GPIO25_CHANNEL; TEST_ESP_OK(rtc_gpio_init(ext1_wakeup_gpio)); rtc_gpio_set_direction(ext1_wakeup_gpio, RTC_GPIO_MODE_INPUT_OUTPUT); rtc_gpio_set_level(ext1_wakeup_gpio, 0); /* Enable wakeup */ TEST_ESP_OK(esp_sleep_enable_ext1_wakeup(1ULL << ext1_wakeup_gpio, ESP_EXT1_WAKEUP_ANY_HIGH)); /* To simplify test environment, we'll use a ULP program to set GPIO high */ ulp_insn_t ulp_code[] = { I_DELAY(65535), /* about 8ms, given 8MHz ULP clock */ I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 0), I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 1), I_DELAY(1000), I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 0), I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 1), I_END(), I_HALT() }; TEST_ESP_OK(ulp_set_wakeup_period(0, 1000 /* us */)); size_t size = sizeof(ulp_code)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, ulp_code, &size)); light_sleep_enable(); int rtcio_num = rtc_io_number_get(ext1_wakeup_gpio); for (int i = 0; i < 10; ++i) { /* Set GPIO low */ REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force); rtc_gpio_set_level(ext1_wakeup_gpio, 0); REG_SET_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force); /* Wait for the next tick */ vTaskDelay(1); /* Start ULP program */ ulp_run(0); const int delay_ms = 200; const int delay_ticks = delay_ms / portTICK_PERIOD_MS; int64_t start_rtc = esp_clk_rtc_time(); int64_t start_hs = esp_timer_get_time(); uint32_t start_tick = xTaskGetTickCount(); /* Will enter sleep here */ vTaskDelay(delay_ticks); int64_t end_rtc = esp_clk_rtc_time(); int64_t end_hs = esp_timer_get_time(); uint32_t end_tick = xTaskGetTickCount(); printf("%lld %lld %u\n", end_rtc - start_rtc, end_hs - start_hs, end_tick - start_tick); TEST_ASSERT_INT32_WITHIN(3, delay_ticks, end_tick - start_tick); TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_hs - start_hs); TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_rtc - start_rtc); } REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force); rtc_gpio_deinit(ext1_wakeup_gpio); light_sleep_disable(); } #endif typedef struct { int delay_us; int result; SemaphoreHandle_t done; } delay_test_arg_t; static void test_delay_task(void* p) { delay_test_arg_t* arg = (delay_test_arg_t*) p; vTaskDelay(1); uint64_t start = esp_clk_rtc_time(); vTaskDelay(arg->delay_us / portTICK_PERIOD_MS / 1000); uint64_t stop = esp_clk_rtc_time(); arg->result = (int) (stop - start); xSemaphoreGive(arg->done); vTaskDelete(NULL); } TEST_CASE("vTaskDelay duration is correct with light sleep enabled", "[pm]") { light_sleep_enable(); delay_test_arg_t args = { .done = xSemaphoreCreateBinary() }; const int delays[] = { 10, 20, 50, 100, 150, 200, 250 }; const int delays_count = sizeof(delays) / sizeof(delays[0]); for (int i = 0; i < delays_count; ++i) { int delay_ms = delays[i]; args.delay_us = delay_ms * 1000; xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 0); TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) ); printf("CPU0: %d %d\n", args.delay_us, args.result); TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result); #if portNUM_PROCESSORS == 2 xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 1); TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) ); printf("CPU1: %d %d\n", args.delay_us, args.result); TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result); #endif } vSemaphoreDelete(args.done); light_sleep_disable(); } /* This test is similar to the one in test_esp_timer.c, but since we can't use * ref_clock, this test uses RTC clock for timing. Also enables automatic * light sleep. */ TEST_CASE("esp_timer produces correct delays with light sleep", "[pm]") { // no, we can't make this a const size_t (ยง6.7.5.2) #define NUM_INTERVALS 16 typedef struct { esp_timer_handle_t timer; size_t cur_interval; int intervals[NUM_INTERVALS]; int64_t t_start; SemaphoreHandle_t done; } test_args_t; void timer_func(void* arg) { test_args_t* p_args = (test_args_t*) arg; int64_t t_end = esp_clk_rtc_time(); int32_t ms_diff = (t_end - p_args->t_start) / 1000; printf("timer #%d %dms\n", p_args->cur_interval, ms_diff); p_args->intervals[p_args->cur_interval++] = ms_diff; // Deliberately make timer handler run longer. // We check that this doesn't affect the result. esp_rom_delay_us(10*1000); if (p_args->cur_interval == NUM_INTERVALS) { printf("done\n"); TEST_ESP_OK(esp_timer_stop(p_args->timer)); xSemaphoreGive(p_args->done); } } light_sleep_enable(); const int delay_ms = 100; test_args_t args = {0}; esp_timer_handle_t timer1; esp_timer_create_args_t create_args = { .callback = &timer_func, .arg = &args, .name = "timer1", }; TEST_ESP_OK(esp_timer_create(&create_args, &timer1)); args.timer = timer1; args.t_start = esp_clk_rtc_time(); args.done = xSemaphoreCreateBinary(); TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000)); TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2)); TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval); for (size_t i = 0; i < NUM_INTERVALS; ++i) { TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]); } TEST_ESP_OK( esp_timer_dump(stdout) ); TEST_ESP_OK( esp_timer_delete(timer1) ); vSemaphoreDelete(args.done); light_sleep_disable(); #undef NUM_INTERVALS } #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE #endif // CONFIG_PM_ENABLE