/* * SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Unlicense OR CC0-1.0 */ #include #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/timers.h" #include "nvs.h" #include "nvs_flash.h" #include "esp_system.h" #include "esp_log.h" #include "esp_bt.h" #include "bt_app_core.h" #include "esp_bt_main.h" #include "esp_bt_device.h" #include "esp_gap_bt_api.h" #include "esp_a2dp_api.h" #include "esp_avrc_api.h" /* log tags */ #define BT_AV_TAG "BT_AV" #define BT_RC_CT_TAG "RC_CT" /* device name */ #define TARGET_DEVICE_NAME "ESP_SPEAKER" #define LOCAL_DEVICE_NAME "ESP_A2DP_SRC" /* AVRCP used transaction label */ #define APP_RC_CT_TL_GET_CAPS (0) #define APP_RC_CT_TL_RN_VOLUME_CHANGE (1) enum { BT_APP_STACK_UP_EVT = 0x0000, /* event for stack up */ BT_APP_HEART_BEAT_EVT = 0xff00, /* event for heart beat */ }; /* A2DP global states */ enum { APP_AV_STATE_IDLE, APP_AV_STATE_DISCOVERING, APP_AV_STATE_DISCOVERED, APP_AV_STATE_UNCONNECTED, APP_AV_STATE_CONNECTING, APP_AV_STATE_CONNECTED, APP_AV_STATE_DISCONNECTING, }; /* sub states of APP_AV_STATE_CONNECTED */ enum { APP_AV_MEDIA_STATE_IDLE, APP_AV_MEDIA_STATE_STARTING, APP_AV_MEDIA_STATE_STARTED, APP_AV_MEDIA_STATE_STOPPING, }; /********************************* * STATIC FUNCTION DECLARATIONS ********************************/ /* handler for bluetooth stack enabled events */ static void bt_av_hdl_stack_evt(uint16_t event, void *p_param); /* avrc controller event handler */ static void bt_av_hdl_avrc_ct_evt(uint16_t event, void *p_param); /* GAP callback function */ static void bt_app_gap_cb(esp_bt_gap_cb_event_t event, esp_bt_gap_cb_param_t *param); /* callback function for A2DP source */ static void bt_app_a2d_cb(esp_a2d_cb_event_t event, esp_a2d_cb_param_t *param); /* callback function for A2DP source audio data stream */ static int32_t bt_app_a2d_data_cb(uint8_t *data, int32_t len); /* callback function for AVRCP controller */ static void bt_app_rc_ct_cb(esp_avrc_ct_cb_event_t event, esp_avrc_ct_cb_param_t *param); /* handler for heart beat timer */ static void bt_app_a2d_heart_beat(TimerHandle_t arg); /* A2DP application state machine */ static void bt_app_av_sm_hdlr(uint16_t event, void *param); /* utils for transfer BLuetooth Deveice Address into string form */ static char *bda2str(esp_bd_addr_t bda, char *str, size_t size); /* A2DP application state machine handler for each state */ static void bt_app_av_state_unconnected_hdlr(uint16_t event, void *param); static void bt_app_av_state_connecting_hdlr(uint16_t event, void *param); static void bt_app_av_state_connected_hdlr(uint16_t event, void *param); static void bt_app_av_state_disconnecting_hdlr(uint16_t event, void *param); /********************************* * STATIC VARIABLE DEFINITIONS ********************************/ static esp_bd_addr_t s_peer_bda = {0}; /* Bluetooth Device Address of peer device*/ static uint8_t s_peer_bdname[ESP_BT_GAP_MAX_BDNAME_LEN + 1]; /* Bluetooth Device Name of peer device*/ static int s_a2d_state = APP_AV_STATE_IDLE; /* A2DP global state */ static int s_media_state = APP_AV_MEDIA_STATE_IDLE; /* sub states of APP_AV_STATE_CONNECTED */ static int s_intv_cnt = 0; /* count of heart beat intervals */ static int s_connecting_intv = 0; /* count of heart beat intervals for connecting */ static uint32_t s_pkt_cnt = 0; /* count of packets */ static esp_avrc_rn_evt_cap_mask_t s_avrc_peer_rn_cap; /* AVRC target notification event capability bit mask */ static TimerHandle_t s_tmr; /* handle of heart beat timer */ /********************************* * STATIC FUNCTION DEFINITIONS ********************************/ static char *bda2str(esp_bd_addr_t bda, char *str, size_t size) { if (bda == NULL || str == NULL || size < 18) { return NULL; } sprintf(str, "%02x:%02x:%02x:%02x:%02x:%02x", bda[0], bda[1], bda[2], bda[3], bda[4], bda[5]); return str; } static bool get_name_from_eir(uint8_t *eir, uint8_t *bdname, uint8_t *bdname_len) { uint8_t *rmt_bdname = NULL; uint8_t rmt_bdname_len = 0; if (!eir) { return false; } /* get complete or short local name from eir data */ rmt_bdname = esp_bt_gap_resolve_eir_data(eir, ESP_BT_EIR_TYPE_CMPL_LOCAL_NAME, &rmt_bdname_len); if (!rmt_bdname) { rmt_bdname = esp_bt_gap_resolve_eir_data(eir, ESP_BT_EIR_TYPE_SHORT_LOCAL_NAME, &rmt_bdname_len); } if (rmt_bdname) { if (rmt_bdname_len > ESP_BT_GAP_MAX_BDNAME_LEN) { rmt_bdname_len = ESP_BT_GAP_MAX_BDNAME_LEN; } if (bdname) { memcpy(bdname, rmt_bdname, rmt_bdname_len); bdname[rmt_bdname_len] = '\0'; } if (bdname_len) { *bdname_len = rmt_bdname_len; } return true; } return false; } static void filter_inquiry_scan_result(esp_bt_gap_cb_param_t *param) { char bda_str[18]; uint32_t cod = 0; /* class of device */ int32_t rssi = -129; /* invalid value */ uint8_t *eir = NULL; esp_bt_gap_dev_prop_t *p; /* handle the discovery results */ ESP_LOGI(BT_AV_TAG, "Scanned device: %s", bda2str(param->disc_res.bda, bda_str, 18)); for (int i = 0; i < param->disc_res.num_prop; i++) { p = param->disc_res.prop + i; switch (p->type) { case ESP_BT_GAP_DEV_PROP_COD: cod = *(uint32_t *)(p->val); ESP_LOGI(BT_AV_TAG, "--Class of Device: 0x%"PRIx32, cod); break; case ESP_BT_GAP_DEV_PROP_RSSI: rssi = *(int8_t *)(p->val); ESP_LOGI(BT_AV_TAG, "--RSSI: %"PRId32, rssi); break; case ESP_BT_GAP_DEV_PROP_EIR: eir = (uint8_t *)(p->val); break; case ESP_BT_GAP_DEV_PROP_BDNAME: default: break; } } /* search for device with MAJOR service class as "rendering" in COD */ if (!esp_bt_gap_is_valid_cod(cod) || !(esp_bt_gap_get_cod_srvc(cod) & ESP_BT_COD_SRVC_RENDERING)) { return; } /* search for target device in its Extended Inqury Response */ if (eir) { get_name_from_eir(eir, s_peer_bdname, NULL); if (strcmp((char *)s_peer_bdname, TARGET_DEVICE_NAME) == 0) { ESP_LOGI(BT_AV_TAG, "Found a target device, address %s, name %s", bda_str, s_peer_bdname); s_a2d_state = APP_AV_STATE_DISCOVERED; memcpy(s_peer_bda, param->disc_res.bda, ESP_BD_ADDR_LEN); ESP_LOGI(BT_AV_TAG, "Cancel device discovery ..."); esp_bt_gap_cancel_discovery(); } } } static void bt_app_gap_cb(esp_bt_gap_cb_event_t event, esp_bt_gap_cb_param_t *param) { switch (event) { /* when device discovered a result, this event comes */ case ESP_BT_GAP_DISC_RES_EVT: { if (s_a2d_state == APP_AV_STATE_DISCOVERING) { filter_inquiry_scan_result(param); } break; } /* when discovery state changed, this event comes */ case ESP_BT_GAP_DISC_STATE_CHANGED_EVT: { if (param->disc_st_chg.state == ESP_BT_GAP_DISCOVERY_STOPPED) { if (s_a2d_state == APP_AV_STATE_DISCOVERED) { s_a2d_state = APP_AV_STATE_CONNECTING; ESP_LOGI(BT_AV_TAG, "Device discovery stopped."); ESP_LOGI(BT_AV_TAG, "a2dp connecting to peer: %s", s_peer_bdname); /* connect source to peer device specified by Bluetooth Device Address */ esp_a2d_source_connect(s_peer_bda); } else { /* not discovered, continue to discover */ ESP_LOGI(BT_AV_TAG, "Device discovery failed, continue to discover..."); esp_bt_gap_start_discovery(ESP_BT_INQ_MODE_GENERAL_INQUIRY, 10, 0); } } else if (param->disc_st_chg.state == ESP_BT_GAP_DISCOVERY_STARTED) { ESP_LOGI(BT_AV_TAG, "Discovery started."); } break; } /* when authentication completed, this event comes */ case ESP_BT_GAP_AUTH_CMPL_EVT: { if (param->auth_cmpl.stat == ESP_BT_STATUS_SUCCESS) { ESP_LOGI(BT_AV_TAG, "authentication success: %s", param->auth_cmpl.device_name); esp_log_buffer_hex(BT_AV_TAG, param->auth_cmpl.bda, ESP_BD_ADDR_LEN); } else { ESP_LOGE(BT_AV_TAG, "authentication failed, status: %d", param->auth_cmpl.stat); } break; } /* when Legacy Pairing pin code requested, this event comes */ case ESP_BT_GAP_PIN_REQ_EVT: { ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_PIN_REQ_EVT min_16_digit: %d", param->pin_req.min_16_digit); if (param->pin_req.min_16_digit) { ESP_LOGI(BT_AV_TAG, "Input pin code: 0000 0000 0000 0000"); esp_bt_pin_code_t pin_code = {0}; esp_bt_gap_pin_reply(param->pin_req.bda, true, 16, pin_code); } else { ESP_LOGI(BT_AV_TAG, "Input pin code: 1234"); esp_bt_pin_code_t pin_code; pin_code[0] = '1'; pin_code[1] = '2'; pin_code[2] = '3'; pin_code[3] = '4'; esp_bt_gap_pin_reply(param->pin_req.bda, true, 4, pin_code); } break; } #if (CONFIG_EXAMPLE_SSP_ENABLED == true) /* when Security Simple Pairing user confirmation requested, this event comes */ case ESP_BT_GAP_CFM_REQ_EVT: ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_CFM_REQ_EVT Please compare the numeric value: %"PRIu32, param->cfm_req.num_val); esp_bt_gap_ssp_confirm_reply(param->cfm_req.bda, true); break; /* when Security Simple Pairing passkey notified, this event comes */ case ESP_BT_GAP_KEY_NOTIF_EVT: ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_KEY_NOTIF_EVT passkey: %"PRIu32, param->key_notif.passkey); break; /* when Security Simple Pairing passkey requested, this event comes */ case ESP_BT_GAP_KEY_REQ_EVT: ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_KEY_REQ_EVT Please enter passkey!"); break; #endif /* when GAP mode changed, this event comes */ case ESP_BT_GAP_MODE_CHG_EVT: ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_MODE_CHG_EVT mode: %d", param->mode_chg.mode); break; case ESP_BT_GAP_GET_DEV_NAME_CMPL_EVT: if (param->get_dev_name_cmpl.status == ESP_BT_STATUS_SUCCESS) { ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_GET_DEV_NAME_CMPL_EVT device name: %s", param->get_dev_name_cmpl.name); } else { ESP_LOGI(BT_AV_TAG, "ESP_BT_GAP_GET_DEV_NAME_CMPL_EVT failed, state: %d", param->get_dev_name_cmpl.status); } break; /* other */ default: { ESP_LOGI(BT_AV_TAG, "event: %d", event); break; } } return; } static void bt_av_hdl_stack_evt(uint16_t event, void *p_param) { ESP_LOGD(BT_AV_TAG, "%s event: %d", __func__, event); switch (event) { /* when stack up worked, this event comes */ case BT_APP_STACK_UP_EVT: { char *dev_name = LOCAL_DEVICE_NAME; esp_bt_gap_set_device_name(dev_name); esp_bt_gap_register_callback(bt_app_gap_cb); esp_avrc_ct_init(); esp_avrc_ct_register_callback(bt_app_rc_ct_cb); esp_avrc_rn_evt_cap_mask_t evt_set = {0}; esp_avrc_rn_evt_bit_mask_operation(ESP_AVRC_BIT_MASK_OP_SET, &evt_set, ESP_AVRC_RN_VOLUME_CHANGE); ESP_ERROR_CHECK(esp_avrc_tg_set_rn_evt_cap(&evt_set)); esp_a2d_source_init(); esp_a2d_register_callback(&bt_app_a2d_cb); esp_a2d_source_register_data_callback(bt_app_a2d_data_cb); /* Avoid the state error of s_a2d_state caused by the connection initiated by the peer device. */ esp_bt_gap_set_scan_mode(ESP_BT_NON_CONNECTABLE, ESP_BT_NON_DISCOVERABLE); esp_bt_gap_get_device_name(); ESP_LOGI(BT_AV_TAG, "Starting device discovery..."); s_a2d_state = APP_AV_STATE_DISCOVERING; esp_bt_gap_start_discovery(ESP_BT_INQ_MODE_GENERAL_INQUIRY, 10, 0); /* create and start heart beat timer */ do { int tmr_id = 0; s_tmr = xTimerCreate("connTmr", (10000 / portTICK_PERIOD_MS), pdTRUE, (void *) &tmr_id, bt_app_a2d_heart_beat); xTimerStart(s_tmr, portMAX_DELAY); } while (0); break; } /* other */ default: { ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event); break; } } } static void bt_app_a2d_cb(esp_a2d_cb_event_t event, esp_a2d_cb_param_t *param) { bt_app_work_dispatch(bt_app_av_sm_hdlr, event, param, sizeof(esp_a2d_cb_param_t), NULL); } /* generate some random noise to simulate source audio */ static int32_t bt_app_a2d_data_cb(uint8_t *data, int32_t len) { if (data == NULL || len < 0) { return 0; } int16_t *p_buf = (int16_t *)data; for (int i = 0; i < (len >> 1); i++) { p_buf[i] = rand() % (1 << 16); } return len; } static void bt_app_a2d_heart_beat(TimerHandle_t arg) { bt_app_work_dispatch(bt_app_av_sm_hdlr, BT_APP_HEART_BEAT_EVT, NULL, 0, NULL); } static void bt_app_av_sm_hdlr(uint16_t event, void *param) { ESP_LOGI(BT_AV_TAG, "%s state: %d, event: 0x%x", __func__, s_a2d_state, event); /* select handler according to different states */ switch (s_a2d_state) { case APP_AV_STATE_DISCOVERING: case APP_AV_STATE_DISCOVERED: break; case APP_AV_STATE_UNCONNECTED: bt_app_av_state_unconnected_hdlr(event, param); break; case APP_AV_STATE_CONNECTING: bt_app_av_state_connecting_hdlr(event, param); break; case APP_AV_STATE_CONNECTED: bt_app_av_state_connected_hdlr(event, param); break; case APP_AV_STATE_DISCONNECTING: bt_app_av_state_disconnecting_hdlr(event, param); break; default: ESP_LOGE(BT_AV_TAG, "%s invalid state: %d", __func__, s_a2d_state); break; } } static void bt_app_av_state_unconnected_hdlr(uint16_t event, void *param) { esp_a2d_cb_param_t *a2d = NULL; /* handle the events of interest in unconnected state */ switch (event) { case ESP_A2D_CONNECTION_STATE_EVT: case ESP_A2D_AUDIO_STATE_EVT: case ESP_A2D_AUDIO_CFG_EVT: case ESP_A2D_MEDIA_CTRL_ACK_EVT: break; case BT_APP_HEART_BEAT_EVT: { uint8_t *bda = s_peer_bda; ESP_LOGI(BT_AV_TAG, "a2dp connecting to peer: %02x:%02x:%02x:%02x:%02x:%02x", bda[0], bda[1], bda[2], bda[3], bda[4], bda[5]); esp_a2d_source_connect(s_peer_bda); s_a2d_state = APP_AV_STATE_CONNECTING; s_connecting_intv = 0; break; } case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); ESP_LOGI(BT_AV_TAG, "%s, delay value: %u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value); break; } default: { ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event); break; } } } static void bt_app_av_state_connecting_hdlr(uint16_t event, void *param) { esp_a2d_cb_param_t *a2d = NULL; /* handle the events of interest in connecting state */ switch (event) { case ESP_A2D_CONNECTION_STATE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_CONNECTED) { ESP_LOGI(BT_AV_TAG, "a2dp connected"); s_a2d_state = APP_AV_STATE_CONNECTED; s_media_state = APP_AV_MEDIA_STATE_IDLE; } else if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_DISCONNECTED) { s_a2d_state = APP_AV_STATE_UNCONNECTED; } break; } case ESP_A2D_AUDIO_STATE_EVT: case ESP_A2D_AUDIO_CFG_EVT: case ESP_A2D_MEDIA_CTRL_ACK_EVT: break; case BT_APP_HEART_BEAT_EVT: /** * Switch state to APP_AV_STATE_UNCONNECTED * when connecting lasts more than 2 heart beat intervals. */ if (++s_connecting_intv >= 2) { s_a2d_state = APP_AV_STATE_UNCONNECTED; s_connecting_intv = 0; } break; case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); ESP_LOGI(BT_AV_TAG, "%s, delay value: %u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value); break; } default: ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event); break; } } static void bt_app_av_media_proc(uint16_t event, void *param) { esp_a2d_cb_param_t *a2d = NULL; switch (s_media_state) { case APP_AV_MEDIA_STATE_IDLE: { if (event == BT_APP_HEART_BEAT_EVT) { ESP_LOGI(BT_AV_TAG, "a2dp media ready checking ..."); esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_CHECK_SRC_RDY); } else if (event == ESP_A2D_MEDIA_CTRL_ACK_EVT) { a2d = (esp_a2d_cb_param_t *)(param); if (a2d->media_ctrl_stat.cmd == ESP_A2D_MEDIA_CTRL_CHECK_SRC_RDY && a2d->media_ctrl_stat.status == ESP_A2D_MEDIA_CTRL_ACK_SUCCESS) { ESP_LOGI(BT_AV_TAG, "a2dp media ready, starting ..."); esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_START); s_media_state = APP_AV_MEDIA_STATE_STARTING; } } break; } case APP_AV_MEDIA_STATE_STARTING: { if (event == ESP_A2D_MEDIA_CTRL_ACK_EVT) { a2d = (esp_a2d_cb_param_t *)(param); if (a2d->media_ctrl_stat.cmd == ESP_A2D_MEDIA_CTRL_START && a2d->media_ctrl_stat.status == ESP_A2D_MEDIA_CTRL_ACK_SUCCESS) { ESP_LOGI(BT_AV_TAG, "a2dp media start successfully."); s_intv_cnt = 0; s_media_state = APP_AV_MEDIA_STATE_STARTED; } else { /* not started successfully, transfer to idle state */ ESP_LOGI(BT_AV_TAG, "a2dp media start failed."); s_media_state = APP_AV_MEDIA_STATE_IDLE; } } break; } case APP_AV_MEDIA_STATE_STARTED: { if (event == BT_APP_HEART_BEAT_EVT) { /* stop media after 10 heart beat intervals */ if (++s_intv_cnt >= 10) { ESP_LOGI(BT_AV_TAG, "a2dp media suspending..."); esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_SUSPEND); s_media_state = APP_AV_MEDIA_STATE_STOPPING; s_intv_cnt = 0; } } break; } case APP_AV_MEDIA_STATE_STOPPING: { if (event == ESP_A2D_MEDIA_CTRL_ACK_EVT) { a2d = (esp_a2d_cb_param_t *)(param); if (a2d->media_ctrl_stat.cmd == ESP_A2D_MEDIA_CTRL_SUSPEND && a2d->media_ctrl_stat.status == ESP_A2D_MEDIA_CTRL_ACK_SUCCESS) { ESP_LOGI(BT_AV_TAG, "a2dp media suspend successfully, disconnecting..."); s_media_state = APP_AV_MEDIA_STATE_IDLE; esp_a2d_source_disconnect(s_peer_bda); s_a2d_state = APP_AV_STATE_DISCONNECTING; } else { ESP_LOGI(BT_AV_TAG, "a2dp media suspending..."); esp_a2d_media_ctrl(ESP_A2D_MEDIA_CTRL_SUSPEND); } } break; } default: { break; } } } static void bt_app_av_state_connected_hdlr(uint16_t event, void *param) { esp_a2d_cb_param_t *a2d = NULL; /* handle the events of interest in connected state */ switch (event) { case ESP_A2D_CONNECTION_STATE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_DISCONNECTED) { ESP_LOGI(BT_AV_TAG, "a2dp disconnected"); s_a2d_state = APP_AV_STATE_UNCONNECTED; } break; } case ESP_A2D_AUDIO_STATE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); if (ESP_A2D_AUDIO_STATE_STARTED == a2d->audio_stat.state) { s_pkt_cnt = 0; } break; } case ESP_A2D_AUDIO_CFG_EVT: // not supposed to occur for A2DP source break; case ESP_A2D_MEDIA_CTRL_ACK_EVT: case BT_APP_HEART_BEAT_EVT: { bt_app_av_media_proc(event, param); break; } case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); ESP_LOGI(BT_AV_TAG, "%s, delay value: %u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value); break; } default: { ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event); break; } } } static void bt_app_av_state_disconnecting_hdlr(uint16_t event, void *param) { esp_a2d_cb_param_t *a2d = NULL; /* handle the events of interest in disconnecing state */ switch (event) { case ESP_A2D_CONNECTION_STATE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); if (a2d->conn_stat.state == ESP_A2D_CONNECTION_STATE_DISCONNECTED) { ESP_LOGI(BT_AV_TAG, "a2dp disconnected"); s_a2d_state = APP_AV_STATE_UNCONNECTED; } break; } case ESP_A2D_AUDIO_STATE_EVT: case ESP_A2D_AUDIO_CFG_EVT: case ESP_A2D_MEDIA_CTRL_ACK_EVT: case BT_APP_HEART_BEAT_EVT: break; case ESP_A2D_REPORT_SNK_DELAY_VALUE_EVT: { a2d = (esp_a2d_cb_param_t *)(param); ESP_LOGI(BT_AV_TAG, "%s, delay value: 0x%u * 1/10 ms", __func__, a2d->a2d_report_delay_value_stat.delay_value); break; } default: { ESP_LOGE(BT_AV_TAG, "%s unhandled event: %d", __func__, event); break; } } } /* callback function for AVRCP controller */ static void bt_app_rc_ct_cb(esp_avrc_ct_cb_event_t event, esp_avrc_ct_cb_param_t *param) { switch (event) { case ESP_AVRC_CT_CONNECTION_STATE_EVT: case ESP_AVRC_CT_PASSTHROUGH_RSP_EVT: case ESP_AVRC_CT_METADATA_RSP_EVT: case ESP_AVRC_CT_CHANGE_NOTIFY_EVT: case ESP_AVRC_CT_REMOTE_FEATURES_EVT: case ESP_AVRC_CT_GET_RN_CAPABILITIES_RSP_EVT: case ESP_AVRC_CT_SET_ABSOLUTE_VOLUME_RSP_EVT: { bt_app_work_dispatch(bt_av_hdl_avrc_ct_evt, event, param, sizeof(esp_avrc_ct_cb_param_t), NULL); break; } default: { ESP_LOGE(BT_RC_CT_TAG, "Invalid AVRC event: %d", event); break; } } } static void bt_av_volume_changed(void) { if (esp_avrc_rn_evt_bit_mask_operation(ESP_AVRC_BIT_MASK_OP_TEST, &s_avrc_peer_rn_cap, ESP_AVRC_RN_VOLUME_CHANGE)) { esp_avrc_ct_send_register_notification_cmd(APP_RC_CT_TL_RN_VOLUME_CHANGE, ESP_AVRC_RN_VOLUME_CHANGE, 0); } } void bt_av_notify_evt_handler(uint8_t event_id, esp_avrc_rn_param_t *event_parameter) { switch (event_id) { /* when volume changed locally on target, this event comes */ case ESP_AVRC_RN_VOLUME_CHANGE: { ESP_LOGI(BT_RC_CT_TAG, "Volume changed: %d", event_parameter->volume); ESP_LOGI(BT_RC_CT_TAG, "Set absolute volume: volume %d", event_parameter->volume + 5); esp_avrc_ct_send_set_absolute_volume_cmd(APP_RC_CT_TL_RN_VOLUME_CHANGE, event_parameter->volume + 5); bt_av_volume_changed(); break; } /* other */ default: break; } } /* AVRC controller event handler */ static void bt_av_hdl_avrc_ct_evt(uint16_t event, void *p_param) { ESP_LOGD(BT_RC_CT_TAG, "%s evt %d", __func__, event); esp_avrc_ct_cb_param_t *rc = (esp_avrc_ct_cb_param_t *)(p_param); switch (event) { /* when connection state changed, this event comes */ case ESP_AVRC_CT_CONNECTION_STATE_EVT: { uint8_t *bda = rc->conn_stat.remote_bda; ESP_LOGI(BT_RC_CT_TAG, "AVRC conn_state event: state %d, [%02x:%02x:%02x:%02x:%02x:%02x]", rc->conn_stat.connected, bda[0], bda[1], bda[2], bda[3], bda[4], bda[5]); if (rc->conn_stat.connected) { esp_avrc_ct_send_get_rn_capabilities_cmd(APP_RC_CT_TL_GET_CAPS); } else { s_avrc_peer_rn_cap.bits = 0; } break; } /* when passthrough responded, this event comes */ case ESP_AVRC_CT_PASSTHROUGH_RSP_EVT: { ESP_LOGI(BT_RC_CT_TAG, "AVRC passthrough response: key_code 0x%x, key_state %d, rsp_code %d", rc->psth_rsp.key_code, rc->psth_rsp.key_state, rc->psth_rsp.rsp_code); break; } /* when metadata responded, this event comes */ case ESP_AVRC_CT_METADATA_RSP_EVT: { ESP_LOGI(BT_RC_CT_TAG, "AVRC metadata response: attribute id 0x%x, %s", rc->meta_rsp.attr_id, rc->meta_rsp.attr_text); free(rc->meta_rsp.attr_text); break; } /* when notification changed, this event comes */ case ESP_AVRC_CT_CHANGE_NOTIFY_EVT: { ESP_LOGI(BT_RC_CT_TAG, "AVRC event notification: %d", rc->change_ntf.event_id); bt_av_notify_evt_handler(rc->change_ntf.event_id, &rc->change_ntf.event_parameter); break; } /* when indicate feature of remote device, this event comes */ case ESP_AVRC_CT_REMOTE_FEATURES_EVT: { ESP_LOGI(BT_RC_CT_TAG, "AVRC remote features %"PRIx32", TG features %x", rc->rmt_feats.feat_mask, rc->rmt_feats.tg_feat_flag); break; } /* when get supported notification events capability of peer device, this event comes */ case ESP_AVRC_CT_GET_RN_CAPABILITIES_RSP_EVT: { ESP_LOGI(BT_RC_CT_TAG, "remote rn_cap: count %d, bitmask 0x%x", rc->get_rn_caps_rsp.cap_count, rc->get_rn_caps_rsp.evt_set.bits); s_avrc_peer_rn_cap.bits = rc->get_rn_caps_rsp.evt_set.bits; bt_av_volume_changed(); break; } /* when set absolute volume responded, this event comes */ case ESP_AVRC_CT_SET_ABSOLUTE_VOLUME_RSP_EVT: { ESP_LOGI(BT_RC_CT_TAG, "Set absolute volume response: volume %d", rc->set_volume_rsp.volume); break; } /* other */ default: { ESP_LOGE(BT_RC_CT_TAG, "%s unhandled event: %d", __func__, event); break; } } } /********************************* * MAIN ENTRY POINT ********************************/ void app_main(void) { char bda_str[18] = {0}; /* initialize NVS — it is used to store PHY calibration data */ esp_err_t ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_ERROR_CHECK(nvs_flash_erase()); ret = nvs_flash_init(); } ESP_ERROR_CHECK(ret); /* * This example only uses the functions of Classical Bluetooth. * So release the controller memory for Bluetooth Low Energy. */ ESP_ERROR_CHECK(esp_bt_controller_mem_release(ESP_BT_MODE_BLE)); esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT(); if (esp_bt_controller_init(&bt_cfg) != ESP_OK) { ESP_LOGE(BT_AV_TAG, "%s initialize controller failed", __func__); return; } if (esp_bt_controller_enable(ESP_BT_MODE_CLASSIC_BT) != ESP_OK) { ESP_LOGE(BT_AV_TAG, "%s enable controller failed", __func__); return; } esp_bluedroid_config_t bluedroid_cfg = BT_BLUEDROID_INIT_CONFIG_DEFAULT(); #if (CONFIG_EXAMPLE_SSP_ENABLED == false) bluedroid_cfg.ssp_en = false; #endif if ((ret = esp_bluedroid_init_with_cfg(&bluedroid_cfg)) != ESP_OK) { ESP_LOGE(BT_AV_TAG, "%s initialize bluedroid failed: %s", __func__, esp_err_to_name(ret)); return; } if (esp_bluedroid_enable() != ESP_OK) { ESP_LOGE(BT_AV_TAG, "%s enable bluedroid failed", __func__); return; } #if (CONFIG_EXAMPLE_SSP_ENABLED == true) /* set default parameters for Secure Simple Pairing */ esp_bt_sp_param_t param_type = ESP_BT_SP_IOCAP_MODE; esp_bt_io_cap_t iocap = ESP_BT_IO_CAP_IO; esp_bt_gap_set_security_param(param_type, &iocap, sizeof(uint8_t)); #endif /* * Set default parameters for Legacy Pairing * Use variable pin, input pin code when pairing */ esp_bt_pin_type_t pin_type = ESP_BT_PIN_TYPE_VARIABLE; esp_bt_pin_code_t pin_code; esp_bt_gap_set_pin(pin_type, 0, pin_code); ESP_LOGI(BT_AV_TAG, "Own address:[%s]", bda2str((uint8_t *)esp_bt_dev_get_address(), bda_str, sizeof(bda_str))); bt_app_task_start_up(); /* Bluetooth device name, connection mode and profile set up */ bt_app_work_dispatch(bt_av_hdl_stack_evt, BT_APP_STACK_UP_EVT, NULL, 0, NULL); }