// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "esp_attr.h" #include "esp_sleep.h" #include "esp_private/esp_timer_private.h" #include "esp_private/system_internal.h" #include "esp_log.h" #include "esp_newlib.h" #include "esp_timer.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "soc/soc_caps.h" #include "driver/rtc_io.h" #include "hal/rtc_io_hal.h" #include "driver/uart.h" #include "soc/cpu.h" #include "soc/rtc.h" #include "soc/soc_caps.h" #include "hal/wdt_hal.h" #include "hal/rtc_hal.h" #include "hal/uart_hal.h" #if SOC_TOUCH_SENSOR_NUM > 0 #include "hal/touch_sensor_hal.h" #include "driver/touch_sensor.h" #include "driver/touch_sensor_common.h" #endif #include "hal/clk_gate_ll.h" #include "sdkconfig.h" #include "esp_rom_uart.h" #include "brownout.h" #ifdef CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/cache.h" #include "esp32/clk.h" #include "esp32/rom/rtc.h" #include "esp_private/gpio.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/clk.h" #include "esp32s2/rom/cache.h" #include "esp32s2/rom/rtc.h" #include "soc/extmem_reg.h" #include "esp_private/gpio.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/clk.h" #include "esp32s3/rom/cache.h" #include "esp32s3/rom/rtc.h" #include "soc/extmem_reg.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/clk.h" #include "esp32s3/rom/cache.h" #include "esp32c3/rom/rtc.h" #include "soc/extmem_reg.h" #include "esp_heap_caps.h" #endif // If light sleep time is less than that, don't power down flash #define FLASH_PD_MIN_SLEEP_TIME_US 2000 // Time from VDD_SDIO power up to first flash read in ROM code #define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700 // Cycles for RTC Timer clock source (internal oscillator) calibrate #define RTC_CLK_SRC_CAL_CYCLES (10) #ifdef CONFIG_IDF_TARGET_ESP32 #define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ #define DEFAULT_SLEEP_OUT_OVERHEAD_US (212) #define DEFAULT_HARDWARE_OUT_OVERHEAD_US (60) #elif CONFIG_IDF_TARGET_ESP32S2 #define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ #define DEFAULT_SLEEP_OUT_OVERHEAD_US (147) #define DEFAULT_HARDWARE_OUT_OVERHEAD_US (28) #elif CONFIG_IDF_TARGET_ESP32S3 #define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ #define DEFAULT_SLEEP_OUT_OVERHEAD_US (0) #define DEFAULT_HARDWARE_OUT_OVERHEAD_US (0) #elif CONFIG_IDF_TARGET_ESP32C3 #define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ #define DEFAULT_SLEEP_OUT_OVERHEAD_US (105) #define DEFAULT_HARDWARE_OUT_OVERHEAD_US (37) #endif #define LIGHT_SLEEP_TIME_OVERHEAD_US DEFAULT_HARDWARE_OUT_OVERHEAD_US #if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) || \ defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS) || \ defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_CRYS) || \ defined(CONFIG_ESP32S3_RTC_CLK_SRC_EXT_CRYS) #define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / DEFAULT_CPU_FREQ_MHZ) #else #define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / DEFAULT_CPU_FREQ_MHZ) #endif #if defined(CONFIG_IDF_TARGET_ESP32) && defined(CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY) #define DEEP_SLEEP_WAKEUP_DELAY CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY #else #define DEEP_SLEEP_WAKEUP_DELAY 0 #endif extern void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time); // Minimal amount of time we can sleep for #define LIGHT_SLEEP_MIN_TIME_US 200 #define RTC_MODULE_SLEEP_PREPARE_CYCLES (6) #define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \ (source == value)) /** * Internal structure which holds all requested deep sleep parameters */ typedef struct { esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX]; uint64_t sleep_duration; uint32_t wakeup_triggers : 15; uint32_t ext1_trigger_mode : 1; uint32_t ext1_rtc_gpio_mask : 18; uint32_t ext0_trigger_level : 1; uint32_t ext0_rtc_gpio_num : 5; uint32_t gpio_wakeup_mask : 6; uint32_t gpio_trigger_mode : 6; uint32_t sleep_time_adjustment; uint32_t ccount_ticks_record; uint32_t sleep_time_overhead_out; uint32_t rtc_clk_cal_period; uint64_t rtc_ticks_at_sleep_start; #if SOC_PM_SUPPORT_CPU_PD void *cpu_pd_mem; #endif } sleep_config_t; static sleep_config_t s_config = { .pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO }, .ccount_ticks_record = 0, .sleep_time_overhead_out = DEFAULT_SLEEP_OUT_OVERHEAD_US, .wakeup_triggers = 0 }; /* Internal variable used to track if light sleep wakeup sources are to be expected when determining wakeup cause. */ static bool s_light_sleep_wakeup = false; /* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc() is not thread-safe, so we need to disable interrupts before going to deep sleep. */ static portMUX_TYPE spinlock_rtc_deep_sleep = portMUX_INITIALIZER_UNLOCKED; static const char *TAG = "sleep"; static uint32_t get_power_down_flags(void); #if SOC_PM_SUPPORT_EXT_WAKEUP static void ext0_wakeup_prepare(void); static void ext1_wakeup_prepare(void); #endif static void timer_wakeup_prepare(void); #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 static void touch_wakeup_prepare(void); #endif #if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP static void esp_deep_sleep_wakeup_prepare(void); #endif #if CONFIG_MAC_BB_PD #define MAC_BB_POWER_DOWN_CB_NO 2 #define MAC_BB_POWER_UP_CB_NO 2 static DRAM_ATTR mac_bb_power_down_cb_t s_mac_bb_power_down_cb[MAC_BB_POWER_DOWN_CB_NO]; static DRAM_ATTR mac_bb_power_up_cb_t s_mac_bb_power_up_cb[MAC_BB_POWER_UP_CB_NO]; esp_err_t esp_register_mac_bb_pd_callback(mac_bb_power_down_cb_t cb) { int index = MAC_BB_POWER_DOWN_CB_NO; for (int i = MAC_BB_POWER_DOWN_CB_NO - 1; i >= 0; i--) { if (s_mac_bb_power_down_cb[i] == cb) { return ESP_ERR_INVALID_STATE; } if (s_mac_bb_power_down_cb[i] == NULL) { index = i; } } if (index < MAC_BB_POWER_DOWN_CB_NO) { s_mac_bb_power_down_cb[index] = cb; return ESP_OK; } return ESP_ERR_NO_MEM; } esp_err_t esp_unregister_mac_bb_pd_callback(mac_bb_power_down_cb_t cb) { for (int i = MAC_BB_POWER_DOWN_CB_NO - 1; i >= 0; i--) { if (s_mac_bb_power_down_cb[i] == cb) { s_mac_bb_power_down_cb[i] = NULL; return ESP_OK; } } return ESP_ERR_INVALID_STATE; } static IRAM_ATTR void mac_bb_power_down_cb_execute(void) { for (int i = 0; i < MAC_BB_POWER_DOWN_CB_NO; i++) { if (s_mac_bb_power_down_cb[i]) { s_mac_bb_power_down_cb[i](); } } } esp_err_t esp_register_mac_bb_pu_callback(mac_bb_power_up_cb_t cb) { int index = MAC_BB_POWER_UP_CB_NO; for (int i = MAC_BB_POWER_UP_CB_NO - 1; i >= 0; i--) { if (s_mac_bb_power_up_cb[i] == cb) { return ESP_ERR_INVALID_STATE; } if (s_mac_bb_power_up_cb[i] == NULL) { index = i; } } if (index < MAC_BB_POWER_UP_CB_NO) { s_mac_bb_power_up_cb[index] = cb; return ESP_OK; } return ESP_ERR_NO_MEM; } esp_err_t esp_unregister_mac_bb_pu_callback(mac_bb_power_up_cb_t cb) { for (int i = MAC_BB_POWER_UP_CB_NO - 1; i >= 0; i--) { if (s_mac_bb_power_up_cb[i] == cb) { s_mac_bb_power_up_cb[i] = NULL; return ESP_OK; } } return ESP_ERR_INVALID_STATE; } static IRAM_ATTR void mac_bb_power_up_cb_execute(void) { for (int i = 0; i < MAC_BB_POWER_UP_CB_NO; i++) { if (s_mac_bb_power_up_cb[i]) { s_mac_bb_power_up_cb[i](); } } } #endif ///CONFIG_MAC_BB_PD /* Wake from deep sleep stub See esp_deepsleep.h esp_wake_deep_sleep() comments for details. */ esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void) { esp_deep_sleep_wake_stub_fn_t stub_ptr = (esp_deep_sleep_wake_stub_fn_t) REG_READ(RTC_ENTRY_ADDR_REG); if (!esp_ptr_executable(stub_ptr)) { return NULL; } return stub_ptr; } void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub) { REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub); } void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) { /* Clear MMU for CPU 0 */ #if CONFIG_IDF_TARGET_ESP32 _DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG, _DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) | DPORT_PRO_CACHE_MMU_IA_CLR); _DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG, _DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) & (~DPORT_PRO_CACHE_MMU_IA_CLR)); #if DEEP_SLEEP_WAKEUP_DELAY > 0 // ROM code has not started yet, so we need to set delay factor // used by esp_rom_delay_us first. ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000); // This delay is configured in menuconfig, it can be used to give // the flash chip some time to become ready. esp_rom_delay_us(DEEP_SLEEP_WAKEUP_DELAY); #endif #elif CONFIG_IDF_TARGET_ESP32S2 REG_SET_BIT(EXTMEM_CACHE_DBG_INT_ENA_REG, EXTMEM_CACHE_DBG_EN); #endif } void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void); void esp_deep_sleep(uint64_t time_in_us) { esp_sleep_enable_timer_wakeup(time_in_us); esp_deep_sleep_start(); } // [refactor-todo] provide target logic for body of uart functions below static void IRAM_ATTR flush_uarts(void) { for (int i = 0; i < SOC_UART_NUM; ++i) { #ifdef CONFIG_IDF_TARGET_ESP32 esp_rom_uart_tx_wait_idle(i); #else if (periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) { esp_rom_uart_tx_wait_idle(i); } #endif } } static void IRAM_ATTR suspend_uarts(void) { for (int i = 0; i < SOC_UART_NUM; ++i) { #ifndef CONFIG_IDF_TARGET_ESP32 if (!periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) { continue; } #endif uart_ll_force_xoff(i); #if SOC_UART_SUPPORT_FSM_TX_WAIT_SEND uint32_t uart_fsm = 0; do { uart_fsm = uart_ll_get_fsm_status(i); } while (!(uart_fsm == UART_FSM_IDLE || uart_fsm == UART_FSM_TX_WAIT_SEND)); #else while (uart_ll_get_fsm_status(i) != 0) {} #endif } } static void IRAM_ATTR resume_uarts(void) { for (int i = 0; i < SOC_UART_NUM; ++i) { #ifndef CONFIG_IDF_TARGET_ESP32 if (!periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) { continue; } #endif uart_ll_force_xon(i); } } inline static uint32_t IRAM_ATTR call_rtc_sleep_start(uint32_t reject_triggers); #if SOC_PM_SUPPORT_CPU_PD esp_err_t esp_sleep_cpu_pd_low_init(bool enable) { if (enable) { if (s_config.cpu_pd_mem == NULL) { void *buf = heap_caps_aligned_alloc(RTC_CNTL_CPU_PD_DMA_ADDR_ALIGN, RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE + RTC_HAL_DMA_LINK_NODE_SIZE, MALLOC_CAP_RETENTION | MALLOC_CAP_DEFAULT); if (buf) { memset(buf, 0, RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE + RTC_HAL_DMA_LINK_NODE_SIZE); s_config.cpu_pd_mem = rtc_cntl_hal_dma_link_init(buf, buf + RTC_HAL_DMA_LINK_NODE_SIZE, RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE, NULL); } else { return ESP_ERR_NO_MEM; } } } else { if (s_config.cpu_pd_mem) { heap_caps_free(s_config.cpu_pd_mem); s_config.cpu_pd_mem = NULL; } } return ESP_OK; } #endif // SOC_PM_SUPPORT_CPU_PD #if SOC_GPIO_SUPPORT_SLP_SWITCH #if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL static inline void gpio_sleep_mode_config_apply(void) { for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) { if (GPIO_IS_VALID_GPIO(gpio_num)) { gpio_sleep_pupd_config_apply(gpio_num); } } } static inline void gpio_sleep_mode_config_unapply(void) { for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) { if (GPIO_IS_VALID_GPIO(gpio_num)) { gpio_sleep_pupd_config_unapply(gpio_num); } } } #endif void esp_sleep_config_gpio_isolate(void) { ESP_LOGI(TAG, "Configure to isolate all GPIO pins in sleep state"); for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) { if (GPIO_IS_VALID_GPIO(gpio_num)) { gpio_sleep_set_direction(gpio_num, GPIO_MODE_DISABLE); gpio_sleep_set_pull_mode(gpio_num, GPIO_FLOATING); } } } void esp_sleep_enable_gpio_switch(bool enable) { ESP_LOGI(TAG, "%s automatic switching of GPIO sleep configuration", enable ? "Enable" : "Disable"); for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) { if (GPIO_IS_VALID_GPIO(gpio_num)) { if (enable) { gpio_sleep_sel_en(gpio_num); } else { gpio_sleep_sel_dis(gpio_num); } } } } #endif // SOC_GPIO_SUPPORT_SLP_SWITCH static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags) { // Stop UART output so that output is not lost due to APB frequency change. // For light sleep, suspend UART output — it will resume after wakeup. // For deep sleep, wait for the contents of UART FIFO to be sent. bool deep_sleep = pd_flags & RTC_SLEEP_PD_DIG; #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32S3 && CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP /* Currently only safe to use deep sleep wake stub & RTC memory as heap in single core mode. For ESP32-S3, either disable ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP in config or find a way to set the deep sleep wake stub to NULL. */ assert(!deep_sleep || esp_get_deep_sleep_wake_stub() == NULL); #endif if (deep_sleep) { flush_uarts(); } else { suspend_uarts(); } // Save current frequency and switch to XTAL rtc_cpu_freq_config_t cpu_freq_config; rtc_clk_cpu_freq_get_config(&cpu_freq_config); rtc_clk_cpu_freq_set_xtal(); #if CONFIG_MAC_BB_PD mac_bb_power_down_cb_execute(); #endif #if SOC_PM_SUPPORT_EXT_WAKEUP // Configure pins for external wakeup if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) { ext0_wakeup_prepare(); } if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) { ext1_wakeup_prepare(); } #endif #if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP if (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN) { esp_deep_sleep_wakeup_prepare(); } #endif #ifdef CONFIG_IDF_TARGET_ESP32 // Enable ULP wakeup if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) { rtc_hal_ulp_wakeup_enable(); } #if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL gpio_sleep_mode_config_apply(); #endif #endif #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 if (deep_sleep) { if (s_config.wakeup_triggers & RTC_TOUCH_TRIG_EN) { touch_wakeup_prepare(); /* Workaround: In deep sleep, for ESP32S2, Power down the RTC_PERIPH will change the slope configuration of Touch sensor sleep pad. * The configuration change will change the reading of the sleep pad, which will cause the touch wake-up sensor to trigger falsely. */ pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH; } } else { /* In light sleep, the RTC_PERIPH power domain should be in the power-on state (Power on the touch circuit in light sleep), * otherwise the touch sensor FSM will be cleared, causing touch sensor false triggering. */ if (touch_ll_get_fsm_state()) { // Check if the touch sensor is working properly. pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH; } } #endif uint32_t reject_triggers = 0; if ((pd_flags & RTC_SLEEP_PD_DIG) == 0 && (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN)) { /* Light sleep, enable sleep reject for faster return from this function, * in case the wakeup is already triggerred. */ #if CONFIG_IDF_TARGET_ESP32 reject_triggers = RTC_CNTL_LIGHT_SLP_REJECT_EN_M | RTC_CNTL_GPIO_REJECT_EN_M; #else reject_triggers = s_config.wakeup_triggers; #endif } // Enter sleep rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags); rtc_sleep_init(config); rtc_sleep_low_init(s_config.rtc_clk_cal_period); // Set state machine time for light sleep if (!deep_sleep) { rtc_sleep_low_init(s_config.rtc_clk_cal_period); } // Configure timer wakeup if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) && s_config.sleep_duration > 0) { timer_wakeup_prepare(); } uint32_t result; if (deep_sleep) { /* Disable interrupts in case another task writes to RTC memory while we * calculate RTC memory CRC * * Note: for ESP32-S3 running in dual core mode this is currently not enough, * see the assert at top of this function. */ portENTER_CRITICAL(&spinlock_rtc_deep_sleep); #if !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP /* If not possible stack is in RTC FAST memory, use the ROM function to calculate the CRC and save ~140 bytes IRAM */ set_rtc_memory_crc(); result = call_rtc_sleep_start(reject_triggers); #else /* Otherwise, need to call the dedicated soc function for this */ result = rtc_deep_sleep_start(s_config.wakeup_triggers, reject_triggers); #endif portEXIT_CRITICAL(&spinlock_rtc_deep_sleep); } else { result = call_rtc_sleep_start(reject_triggers); } // Restore CPU frequency rtc_clk_cpu_freq_set_config(&cpu_freq_config); if (!deep_sleep) { s_config.ccount_ticks_record = cpu_ll_get_cycle_count(); } #if SOC_PM_SUPPORT_CPU_PD rtc_cntl_hal_disable_cpu_retention(); #endif #if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL gpio_sleep_mode_config_unapply(); #endif #if CONFIG_MAC_BB_PD mac_bb_power_up_cb_execute(); #endif // re-enable UART output resume_uarts(); return result; } inline static uint32_t IRAM_ATTR call_rtc_sleep_start(uint32_t reject_triggers) { #ifdef CONFIG_IDF_TARGET_ESP32 return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers); #else return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers, 1); #endif } void IRAM_ATTR esp_deep_sleep_start(void) { #if CONFIG_IDF_TARGET_ESP32S2 /* Due to hardware limitations, on S2 the brownout detector sometimes trigger during deep sleep to circumvent this we disable the brownout detector before sleeping */ esp_brownout_disable(); #endif //CONFIG_IDF_TARGET_ESP32S2 // record current RTC time s_config.rtc_ticks_at_sleep_start = rtc_time_get(); // record current RTC time esp_sync_counters_rtc_and_frc(); // Configure wake stub if (esp_get_deep_sleep_wake_stub() == NULL) { esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep); } // Decide which power domains can be powered down uint32_t pd_flags = get_power_down_flags(); s_config.rtc_clk_cal_period = esp_clk_slowclk_cal_get(); // Correct the sleep time s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US; uint32_t force_pd_flags = RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO; #if SOC_PM_SUPPORT_WIFI_PD force_pd_flags |= RTC_SLEEP_PD_WIFI; #endif #if SOC_PM_SUPPORT_BT_PD force_pd_flags |= RTC_SLEEP_PD_BT; #endif // Enter sleep esp_sleep_start(force_pd_flags | pd_flags); // Because RTC is in a slower clock domain than the CPU, it // can take several CPU cycles for the sleep mode to start. while (1) { ; } } /** * Helper function which handles entry to and exit from light sleep * Placed into IRAM as flash may need some time to be powered on. */ static esp_err_t esp_light_sleep_inner(uint32_t pd_flags, uint32_t flash_enable_time_us, rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline)); static esp_err_t esp_light_sleep_inner(uint32_t pd_flags, uint32_t flash_enable_time_us, rtc_vddsdio_config_t vddsdio_config) { // Enter sleep esp_err_t err = esp_sleep_start(pd_flags); // If VDDSDIO regulator was controlled by RTC registers before sleep, // restore the configuration. if (vddsdio_config.force) { rtc_vddsdio_set_config(vddsdio_config); } // If SPI flash was powered down, wait for it to become ready if (pd_flags & RTC_SLEEP_PD_VDDSDIO) { // Wait for the flash chip to start up esp_rom_delay_us(flash_enable_time_us); } return err; } esp_err_t esp_light_sleep_start(void) { s_config.ccount_ticks_record = cpu_ll_get_cycle_count(); static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED; portENTER_CRITICAL(&light_sleep_lock); /* We will be calling esp_timer_private_advance inside DPORT access critical * section. Make sure the code on the other CPU is not holding esp_timer * lock, otherwise there will be deadlock. */ esp_timer_private_lock(); s_config.rtc_ticks_at_sleep_start = rtc_time_get(); uint32_t ccount_at_sleep_start = cpu_ll_get_cycle_count(); uint64_t frc_time_at_start = esp_system_get_time(); uint32_t sleep_time_overhead_in = (ccount_at_sleep_start - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL); DPORT_STALL_OTHER_CPU_START(); // Decide which power domains can be powered down uint32_t pd_flags = get_power_down_flags(); // Re-calibrate the RTC Timer clock #if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) || defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS) || defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_CRYS) uint64_t time_per_us = 1000000ULL; s_config.rtc_clk_cal_period = (time_per_us << RTC_CLK_CAL_FRACT) / rtc_clk_slow_freq_get_hz(); #elif defined(CONFIG_ESP32S2_RTC_CLK_SRC_INT_RC) s_config.rtc_clk_cal_period = rtc_clk_cal_cycling(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES); esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period); #else s_config.rtc_clk_cal_period = rtc_clk_cal(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES); esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period); #endif /* * Adjustment time consists of parts below: * 1. Hardware time waiting for internal 8M oscilate clock and XTAL; * 2. Hardware state swithing time of the rtc main state machine; * 3. Code execution time when clock is not stable; * 4. Code execution time which can be measured; */ uint32_t rtc_cntl_xtl_buf_wait_slp_cycles = rtc_time_us_to_slowclk(RTC_CNTL_XTL_BUF_WAIT_SLP_US, s_config.rtc_clk_cal_period); s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US + sleep_time_overhead_in + s_config.sleep_time_overhead_out + rtc_time_slowclk_to_us(rtc_cntl_xtl_buf_wait_slp_cycles + RTC_CNTL_CK8M_WAIT_SLP_CYCLES + RTC_CNTL_WAKEUP_DELAY_CYCLES, s_config.rtc_clk_cal_period); // Decide if VDD_SDIO needs to be powered down; // If it needs to be powered down, adjust sleep time. const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US + DEEP_SLEEP_WAKEUP_DELAY; /** * If VDD_SDIO power domain is requested to be turned off, bit `RTC_SLEEP_PD_VDDSDIO` * will be set in `pd_flags`. */ if (pd_flags & RTC_SLEEP_PD_VDDSDIO) { /* * When VDD_SDIO power domain has to be turned off, the minimum sleep time of the * system needs to meet the sum below: * 1. Wait time for the flash power-on after waking up; * 2. The execution time of codes between RTC Timer get start time * with hardware starts to switch state to sleep; * 3. The hardware state switching time of the rtc state machine during * sleep and wake-up. This process requires 6 cycles to complete. * The specific hardware state switching process and the cycles * consumed are rtc_cpu_run_stall(1), cut_pll_rtl(2), cut_8m(1), * min_protect(2); * 4. All the adjustment time which is s_config.sleep_time_adjustment below. */ const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US, flash_enable_time_us + LIGHT_SLEEP_MIN_TIME_US + s_config.sleep_time_adjustment + rtc_time_slowclk_to_us(RTC_MODULE_SLEEP_PREPARE_CYCLES, s_config.rtc_clk_cal_period)); if (s_config.sleep_duration > vddsdio_pd_sleep_duration) { if (s_config.sleep_time_overhead_out < flash_enable_time_us) { s_config.sleep_time_adjustment += flash_enable_time_us; } } else { /** * Minimum sleep time is not enough, then keep the VDD_SDIO power * domain on. */ pd_flags &= ~RTC_SLEEP_PD_VDDSDIO; if (s_config.sleep_time_overhead_out > flash_enable_time_us) { s_config.sleep_time_adjustment -= flash_enable_time_us; } } } periph_inform_out_light_sleep_overhead(s_config.sleep_time_adjustment - sleep_time_overhead_in); #if SOC_PM_SUPPORT_CPU_PD rtc_cntl_hal_enable_cpu_retention(s_config.cpu_pd_mem); #endif rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config(); // Safety net: enable WDT in case exit from light sleep fails wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL}; bool wdt_was_enabled = wdt_hal_is_enabled(&rtc_wdt_ctx); // If WDT was enabled in the user code, then do not change it here. if (!wdt_was_enabled) { wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false); uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_enable(&rtc_wdt_ctx); wdt_hal_write_protect_enable(&rtc_wdt_ctx); } // Enter sleep, then wait for flash to be ready on wakeup esp_err_t err = esp_light_sleep_inner(pd_flags, flash_enable_time_us, vddsdio_config); s_light_sleep_wakeup = true; // FRC1 has been clock gated for the duration of the sleep, correct for that. #ifdef CONFIG_IDF_TARGET_ESP32C3 /** * On esp32c3, rtc_time_get() is non-blocking, esp_system_get_time() is * blocking, and the measurement data shows that this order is better. */ uint64_t frc_time_at_end = esp_system_get_time(); uint64_t rtc_ticks_at_end = rtc_time_get(); #else uint64_t rtc_ticks_at_end = rtc_time_get(); uint64_t frc_time_at_end = esp_system_get_time(); #endif uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start, s_config.rtc_clk_cal_period); uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start; int64_t time_diff = rtc_time_diff - frc_time_diff; /* Small negative values (up to 1 RTC_SLOW clock period) are possible, * for very small values of sleep_duration. Ignore those to keep esp_timer * monotonic. */ if (time_diff > 0) { esp_timer_private_advance(time_diff); } esp_set_time_from_rtc(); esp_timer_private_unlock(); DPORT_STALL_OTHER_CPU_END(); if (!wdt_was_enabled) { wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_disable(&rtc_wdt_ctx); wdt_hal_write_protect_enable(&rtc_wdt_ctx); } portEXIT_CRITICAL(&light_sleep_lock); s_config.sleep_time_overhead_out = (cpu_ll_get_cycle_count() - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL); return err; } esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source) { // For most of sources it is enough to set trigger mask in local // configuration structure. The actual RTC wake up options // will be updated by esp_sleep_start(). if (source == ESP_SLEEP_WAKEUP_ALL) { s_config.wakeup_triggers = 0; } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) { s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN; s_config.sleep_duration = 0; #if SOC_PM_SUPPORT_EXT_WAKEUP } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) { s_config.ext0_rtc_gpio_num = 0; s_config.ext0_trigger_level = 0; s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN; } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) { s_config.ext1_rtc_gpio_mask = 0; s_config.ext1_trigger_mode = 0; s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN; #endif #if SOC_TOUCH_PAD_WAKE_SUPPORTED } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) { s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN; #endif } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_GPIO, RTC_GPIO_TRIG_EN)) { s_config.wakeup_triggers &= ~RTC_GPIO_TRIG_EN; } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_UART, (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN))) { s_config.wakeup_triggers &= ~(RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN); } #if defined(CONFIG_ESP32_ULP_COPROC_ENABLED) || defined(CONFIG_ESP32S2_ULP_COPROC_ENABLED) else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_ULP, RTC_ULP_TRIG_EN)) { s_config.wakeup_triggers &= ~RTC_ULP_TRIG_EN; } #endif else { ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source); return ESP_ERR_INVALID_STATE; } return ESP_OK; } esp_err_t esp_sleep_enable_ulp_wakeup(void) { #if CONFIG_IDF_TARGET_ESP32 #if ((defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT_V2)) ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal"); return ESP_ERR_NOT_SUPPORTED; #endif #ifdef CONFIG_ESP32_ULP_COPROC_ENABLED if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) { ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0"); return ESP_ERR_INVALID_STATE; } s_config.wakeup_triggers |= RTC_ULP_TRIG_EN; return ESP_OK; #else // CONFIG_ESP32_ULP_COPROC_ENABLED return ESP_ERR_INVALID_STATE; #endif // CONFIG_ESP32_ULP_COPROC_ENABLED #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 s_config.wakeup_triggers |= (RTC_ULP_TRIG_EN | RTC_COCPU_TRIG_EN | RTC_COCPU_TRAP_TRIG_EN); return ESP_OK; #else return ESP_ERR_NOT_SUPPORTED; #endif } esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us) { s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN; s_config.sleep_duration = time_in_us; return ESP_OK; } static void timer_wakeup_prepare(void) { int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment; if (sleep_duration < 0) { sleep_duration = 0; } int64_t ticks = rtc_time_us_to_slowclk(sleep_duration, s_config.rtc_clk_cal_period); rtc_hal_set_wakeup_timer(s_config.rtc_ticks_at_sleep_start + ticks); } #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 /* In deep sleep mode, only the sleep channel is supported, and other touch channels should be turned off. */ static void touch_wakeup_prepare(void) { uint16_t sleep_cycle = 0; uint16_t meas_times = 0; touch_pad_t touch_num = TOUCH_PAD_NUM0; touch_ll_sleep_get_channel_num(&touch_num); // Check if the sleep pad is enabled. if ((touch_num > TOUCH_PAD_NUM0) && (touch_num < TOUCH_PAD_MAX) && touch_ll_get_fsm_state()) { touch_ll_stop_fsm(); touch_ll_clear_channel_mask(TOUCH_PAD_BIT_MASK_ALL); touch_ll_intr_clear(TOUCH_PAD_INTR_MASK_ALL); // Clear state from previous wakeup touch_hal_sleep_channel_get_work_time(&sleep_cycle, &meas_times); touch_ll_set_meas_times(meas_times); touch_ll_set_sleep_time(sleep_cycle); touch_ll_set_channel_mask(BIT(touch_num)); touch_ll_start_fsm(); } } #endif #if SOC_TOUCH_SENSOR_NUM > 0 esp_err_t esp_sleep_enable_touchpad_wakeup(void) { #if ((defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT_V2)) ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal"); return ESP_ERR_NOT_SUPPORTED; #endif if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) { ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0"); return ESP_ERR_INVALID_STATE; } s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN; return ESP_OK; } touch_pad_t esp_sleep_get_touchpad_wakeup_status(void) { if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) { return TOUCH_PAD_MAX; } touch_pad_t pad_num; esp_err_t ret = touch_pad_get_wakeup_status(&pad_num); //TODO 723diff commit id:fda9ada1b assert(ret == ESP_OK && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero"); return (ret == ESP_OK) ? pad_num : TOUCH_PAD_MAX; } #endif // SOC_TOUCH_SENSOR_NUM > 0 bool esp_sleep_is_valid_wakeup_gpio(gpio_num_t gpio_num) { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED return RTC_GPIO_IS_VALID_GPIO(gpio_num); #else return GPIO_IS_DEEP_SLEEP_WAKEUP_VALID_GPIO(gpio_num); #endif // SOC_RTCIO_INPUT_OUTPUT_SUPPORTED } #if SOC_PM_SUPPORT_EXT_WAKEUP esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level) { if (level < 0 || level > 1) { return ESP_ERR_INVALID_ARG; } if (!esp_sleep_is_valid_wakeup_gpio(gpio_num)) { return ESP_ERR_INVALID_ARG; } if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) { ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP"); return ESP_ERR_INVALID_STATE; } s_config.ext0_rtc_gpio_num = rtc_io_number_get(gpio_num); s_config.ext0_trigger_level = level; s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN; return ESP_OK; } static void ext0_wakeup_prepare(void) { int rtc_gpio_num = s_config.ext0_rtc_gpio_num; rtcio_hal_ext0_set_wakeup_pin(rtc_gpio_num, s_config.ext0_trigger_level); rtcio_hal_function_select(rtc_gpio_num, RTCIO_FUNC_RTC); rtcio_hal_input_enable(rtc_gpio_num); } esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode) { if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) { return ESP_ERR_INVALID_ARG; } // Translate bit map of GPIO numbers into the bit map of RTC IO numbers uint32_t rtc_gpio_mask = 0; for (int gpio = 0; mask; ++gpio, mask >>= 1) { if ((mask & 1) == 0) { continue; } if (!esp_sleep_is_valid_wakeup_gpio(gpio)) { ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio); return ESP_ERR_INVALID_ARG; } rtc_gpio_mask |= BIT(rtc_io_number_get(gpio)); } s_config.ext1_rtc_gpio_mask = rtc_gpio_mask; s_config.ext1_trigger_mode = mode; s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN; return ESP_OK; } static void ext1_wakeup_prepare(void) { // Configure all RTC IOs selected as ext1 wakeup inputs uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask; for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) { int rtc_pin = rtc_io_number_get(gpio); if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) { continue; } #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED // Route pad to RTC rtcio_hal_function_select(rtc_pin, RTCIO_FUNC_RTC); // set input enable in sleep mode rtcio_hal_input_enable(rtc_pin); #endif // Pad configuration depends on RTC_PERIPH state in sleep mode if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED // RTC_PERIPH will be powered down, so RTC_IO_ registers will // loose their state. Lock pad configuration. // Pullups/pulldowns also need to be disabled. rtcio_hal_pullup_disable(rtc_pin); rtcio_hal_pulldown_disable(rtc_pin); #endif rtcio_hal_hold_enable(rtc_pin); } // Keep track of pins which are processed to bail out early rtc_gpio_mask &= ~BIT(rtc_pin); } // Clear state from previous wakeup rtc_hal_ext1_clear_wakeup_pins(); // Set RTC IO pins and mode (any high, all low) to be used for wakeup rtc_hal_ext1_set_wakeup_pins(s_config.ext1_rtc_gpio_mask, s_config.ext1_trigger_mode); } uint64_t esp_sleep_get_ext1_wakeup_status(void) { if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) { return 0; } uint32_t status = rtc_hal_ext1_get_wakeup_pins(); // Translate bit map of RTC IO numbers into the bit map of GPIO numbers uint64_t gpio_mask = 0; for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) { if (!esp_sleep_is_valid_wakeup_gpio(gpio)) { continue; } int rtc_pin = rtc_io_number_get(gpio); if ((status & BIT(rtc_pin)) == 0) { continue; } gpio_mask |= 1ULL << gpio; } return gpio_mask; } #endif // SOC_PM_SUPPORT_EXT_WAKEUP #if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP uint64_t esp_sleep_get_gpio_wakeup_status(void) { if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_GPIO) { return 0; } return rtc_hal_gpio_get_wakeup_pins(); } static void esp_deep_sleep_wakeup_prepare(void) { for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++) { if (((1ULL << gpio_idx) & s_config.gpio_wakeup_mask) == 0) { continue; } if (s_config.gpio_trigger_mode & BIT(gpio_idx)) { ESP_ERROR_CHECK(gpio_pullup_dis(gpio_idx)); ESP_ERROR_CHECK(gpio_pulldown_en(gpio_idx)); } else { ESP_ERROR_CHECK(gpio_pullup_en(gpio_idx)); ESP_ERROR_CHECK(gpio_pulldown_dis(gpio_idx)); } rtc_hal_gpio_set_wakeup_pins(); ESP_ERROR_CHECK(gpio_hold_en(gpio_idx)); } } esp_err_t esp_deep_sleep_enable_gpio_wakeup(uint64_t gpio_pin_mask, esp_deepsleep_gpio_wake_up_mode_t mode) { if (mode > ESP_GPIO_WAKEUP_GPIO_HIGH) { ESP_LOGE(TAG, "invalid mode"); return ESP_ERR_INVALID_ARG; } gpio_int_type_t intr_type = ((mode == ESP_GPIO_WAKEUP_GPIO_LOW) ? GPIO_INTR_LOW_LEVEL : GPIO_INTR_HIGH_LEVEL); esp_err_t err = ESP_OK; for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++, gpio_pin_mask >>= 1) { if ((gpio_pin_mask & 1) == 0) { continue; } if (!esp_sleep_is_valid_wakeup_gpio(gpio_idx)) { ESP_LOGE(TAG, "invalid mask, please ensure gpio number is no more than 5"); return ESP_ERR_INVALID_ARG; } err = gpio_deep_sleep_wakeup_enable(gpio_idx, intr_type); s_config.gpio_wakeup_mask |= BIT(gpio_idx); if (mode == ESP_GPIO_WAKEUP_GPIO_HIGH) { s_config.gpio_trigger_mode |= (mode << gpio_idx); } else { s_config.gpio_trigger_mode &= ~(mode << gpio_idx); } } s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN; rtc_hal_gpio_clear_wakeup_pins(); return err; } #endif //SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP esp_err_t esp_sleep_enable_gpio_wakeup(void) { #if CONFIG_IDF_TARGET_ESP32 if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) { ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP"); return ESP_ERR_INVALID_STATE; } #endif s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN; return ESP_OK; } esp_err_t esp_sleep_enable_uart_wakeup(int uart_num) { if (uart_num == UART_NUM_0) { s_config.wakeup_triggers |= RTC_UART0_TRIG_EN; } else if (uart_num == UART_NUM_1) { s_config.wakeup_triggers |= RTC_UART1_TRIG_EN; } else { return ESP_ERR_INVALID_ARG; } return ESP_OK; } esp_err_t esp_sleep_enable_wifi_wakeup(void) { #if SOC_PM_SUPPORT_WIFI_WAKEUP s_config.wakeup_triggers |= RTC_WIFI_TRIG_EN; return ESP_OK; #else return ESP_ERR_NOT_SUPPORTED; #endif } esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void) { if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET && !s_light_sleep_wakeup) { return ESP_SLEEP_WAKEUP_UNDEFINED; } #ifdef CONFIG_IDF_TARGET_ESP32 uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE); #else uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_SLP_WAKEUP_CAUSE_REG, RTC_CNTL_WAKEUP_CAUSE); #endif if (wakeup_cause & RTC_TIMER_TRIG_EN) { return ESP_SLEEP_WAKEUP_TIMER; } else if (wakeup_cause & RTC_GPIO_TRIG_EN) { return ESP_SLEEP_WAKEUP_GPIO; } else if (wakeup_cause & (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN)) { return ESP_SLEEP_WAKEUP_UART; #if SOC_PM_SUPPORT_EXT_WAKEUP } else if (wakeup_cause & RTC_EXT0_TRIG_EN) { return ESP_SLEEP_WAKEUP_EXT0; } else if (wakeup_cause & RTC_EXT1_TRIG_EN) { return ESP_SLEEP_WAKEUP_EXT1; #endif #if SOC_TOUCH_PAD_WAKE_SUPPORTED } else if (wakeup_cause & RTC_TOUCH_TRIG_EN) { return ESP_SLEEP_WAKEUP_TOUCHPAD; #endif #if SOC_ULP_SUPPORTED } else if (wakeup_cause & RTC_ULP_TRIG_EN) { return ESP_SLEEP_WAKEUP_ULP; #endif #if SOC_PM_SUPPORT_WIFI_WAKEUP } else if (wakeup_cause & RTC_WIFI_TRIG_EN) { return ESP_SLEEP_WAKEUP_WIFI; #endif #if SOC_PM_SUPPORT_BT_WAKEUP } else if (wakeup_cause & RTC_BT_TRIG_EN) { return ESP_SLEEP_WAKEUP_BT; #endif #if CONFIG_IDF_TARGET_ESP32S2 } else if (wakeup_cause & RTC_COCPU_TRIG_EN) { return ESP_SLEEP_WAKEUP_ULP; } else if (wakeup_cause & RTC_COCPU_TRAP_TRIG_EN) { return ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG; #endif } else { return ESP_SLEEP_WAKEUP_UNDEFINED; } } esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain, esp_sleep_pd_option_t option) { if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) { return ESP_ERR_INVALID_ARG; } s_config.pd_options[domain] = option; return ESP_OK; } static uint32_t get_power_down_flags(void) { // Where needed, convert AUTO options to ON. Later interpret AUTO as OFF. // RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP // is used and RTC_SLOW_MEM is Auto. // If there is any data placed into .rtc.data or .rtc.bss segments, and // RTC_SLOW_MEM is Auto, keep it powered up as well. #if SOC_RTC_SLOW_MEM_SUPPORTED && SOC_ULP_SUPPORTED // Labels are defined in the linker script extern int _rtc_slow_length; if ((s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO) && ((size_t) &_rtc_slow_length > 0 || (s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) { s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON; } #endif #if !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP /* RTC_FAST_MEM is needed for deep sleep stub. If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub can run. In the new chip revision, deep sleep stub will be optional, and this can be changed. */ if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) { s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON; } #else /* If RTC_FAST_MEM is used for heap, force RTC_FAST_MEM to be powered on. */ s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON; #endif // RTC_PERIPH is needed for EXT0 wakeup and GPIO wakeup. // If RTC_PERIPH is auto, and EXT0/GPIO aren't enabled, power down RTC_PERIPH. if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) { #if SOC_TOUCH_PAD_WAKE_SUPPORTED uint32_t wakeup_source = RTC_TOUCH_TRIG_EN; #if SOC_ULP_SUPPORTED wakeup_source |= RTC_ULP_TRIG_EN; #endif if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN | RTC_GPIO_TRIG_EN)) { s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON; } else if (s_config.wakeup_triggers & wakeup_source) { // In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH // prevents ULP timer and touch FSMs from working correctly. s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF; } #else if (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN) { s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON; } else { s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF; } #endif // SOC_TOUCH_PAD_WAKE_SUPPORTED } #if SOC_PM_SUPPORT_CPU_PD if (s_config.cpu_pd_mem == NULL) { s_config.pd_options[ESP_PD_DOMAIN_CPU] = ESP_PD_OPTION_ON; } #else if (s_config.pd_options[ESP_PD_DOMAIN_CPU] != ESP_PD_OPTION_ON) { s_config.pd_options[ESP_PD_DOMAIN_CPU] = ESP_PD_OPTION_ON; } #endif if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) { s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF; } const char *option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */}; ESP_LOGD(TAG, "RTC_PERIPH: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]]); #if SOC_RTC_SLOW_MEM_SUPPORTED ESP_LOGD(TAG, "RTC_SLOW_MEM: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]]); #endif ESP_LOGD(TAG, "RTC_FAST_MEM: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]); // Prepare flags based on the selected options uint32_t pd_flags = 0; if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM; } #if SOC_RTC_SLOW_MEM_SUPPORTED if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM; } #endif if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_RTC_PERIPH; } #if SOC_PM_SUPPORT_CPU_PD if (s_config.pd_options[ESP_PD_DOMAIN_CPU] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_CPU; } #endif #ifdef CONFIG_IDF_TARGET_ESP32 pd_flags |= RTC_SLEEP_PD_XTAL; #endif /** * VDD_SDIO power domain shall be kept on during the light sleep * when CONFIG_ESP_SLEEP_POWER_DOWN_FLASH is not set and off when it is set. * The application can still force the power domain to remain on by calling * `esp_sleep_pd_config` before getting into light sleep mode. * * In deep sleep mode, the power domain will be turned off, regardless the * value of this field. */ if (s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] == ESP_PD_OPTION_AUTO) { #ifdef CONFIG_ESP_SLEEP_POWER_DOWN_FLASH s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] = ESP_PD_OPTION_OFF; #else s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] = ESP_PD_OPTION_ON; #endif } if (s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_VDDSDIO; } #if ((defined CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) && (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT)) if ((s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) == 0) { // If enabled EXT1 only and enable the additional current by touch, should be keep RTC_PERIPH power on. pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH; } #endif return pd_flags; } void esp_deep_sleep_disable_rom_logging(void) { rtc_suppress_rom_log(); }