/* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "esp_types.h" #include "esp_attr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_err.h" #include "esp_pm.h" #include "esp_heap_caps.h" #include "esp_rom_gpio.h" #include "esp_rom_sys.h" #include "soc/lldesc.h" #include "soc/soc_caps.h" #include "soc/spi_periph.h" #include "soc/soc_memory_layout.h" #include "hal/spi_ll.h" #include "hal/spi_slave_hal.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/task.h" #include "sdkconfig.h" #include "driver/gpio.h" #include "driver/spi_common_internal.h" #include "driver/spi_slave.h" #include "hal/spi_slave_hal.h" static const char *SPI_TAG = "spi_slave"; #define SPI_CHECK(a, str, ret_val) \ if (!(a)) { \ ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } #ifdef CONFIG_SPI_SLAVE_ISR_IN_IRAM #define SPI_SLAVE_ISR_ATTR IRAM_ATTR #else #define SPI_SLAVE_ISR_ATTR #endif #ifdef CONFIG_SPI_SLAVE_IN_IRAM #define SPI_SLAVE_ATTR IRAM_ATTR #else #define SPI_SLAVE_ATTR #endif typedef struct { int id; spi_slave_interface_config_t cfg; intr_handle_t intr; spi_slave_hal_context_t hal; spi_slave_transaction_t *cur_trans; uint32_t flags; int max_transfer_sz; QueueHandle_t trans_queue; QueueHandle_t ret_queue; bool dma_enabled; bool cs_iomux; uint32_t tx_dma_chan; uint32_t rx_dma_chan; #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif } spi_slave_t; static spi_slave_t *spihost[SOC_SPI_PERIPH_NUM]; static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg); static inline bool is_valid_host(spi_host_device_t host) { //SPI1 can be used as GPSPI only on ESP32 #if CONFIG_IDF_TARGET_ESP32 return host >= SPI1_HOST && host <= SPI3_HOST; #elif (SOC_SPI_PERIPH_NUM == 2) return host == SPI2_HOST; #elif (SOC_SPI_PERIPH_NUM == 3) return host >= SPI2_HOST && host <= SPI3_HOST; #endif } static inline bool SPI_SLAVE_ISR_ATTR bus_is_iomux(spi_slave_t *host) { return host->flags&SPICOMMON_BUSFLAG_IOMUX_PINS; } static void SPI_SLAVE_ISR_ATTR freeze_cs(spi_slave_t *host) { esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, spi_periph_signal[host->id].spics_in, false); } // Use this function instead of cs_initial to avoid overwrite the output config // This is used in test by internal gpio matrix connections static inline void SPI_SLAVE_ISR_ATTR restore_cs(spi_slave_t *host) { if (host->cs_iomux) { gpio_iomux_in(host->cfg.spics_io_num, spi_periph_signal[host->id].spics_in); } else { esp_rom_gpio_connect_in_signal(host->cfg.spics_io_num, spi_periph_signal[host->id].spics_in, false); } } esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, const spi_slave_interface_config_t *slave_config, spi_dma_chan_t dma_chan) { bool spi_chan_claimed; uint32_t actual_tx_dma_chan = 0; uint32_t actual_rx_dma_chan = 0; esp_err_t ret = ESP_OK; esp_err_t err; SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); #ifdef CONFIG_IDF_TARGET_ESP32 SPI_CHECK(dma_chan >= SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG ); #elif CONFIG_IDF_TARGET_ESP32S2 SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == (int)host || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG ); #elif SOC_GDMA_SUPPORTED SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG ); #endif SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG); #ifndef CONFIG_SPI_SLAVE_ISR_IN_IRAM SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_SLAVE_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG); #endif SPI_CHECK(slave_config->spics_io_num < 0 || GPIO_IS_VALID_GPIO(slave_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG); spi_chan_claimed=spicommon_periph_claim(host, "spi slave"); SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE); spihost[host] = malloc(sizeof(spi_slave_t)); if (spihost[host] == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } memset(spihost[host], 0, sizeof(spi_slave_t)); memcpy(&spihost[host]->cfg, slave_config, sizeof(spi_slave_interface_config_t)); spihost[host]->id = host; bool use_dma = (dma_chan != SPI_DMA_DISABLED); spihost[host]->dma_enabled = use_dma; if (use_dma) { ret = spicommon_dma_chan_alloc(host, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan); if (ret != ESP_OK) { goto cleanup; } } err = spicommon_bus_initialize_io(host, bus_config, SPICOMMON_BUSFLAG_SLAVE|bus_config->flags, &spihost[host]->flags); if (err!=ESP_OK) { ret = err; goto cleanup; } if (slave_config->spics_io_num >= 0) { spicommon_cs_initialize(host, slave_config->spics_io_num, 0, !bus_is_iomux(spihost[host])); // check and save where cs line really route through spihost[host]->cs_iomux = (slave_config->spics_io_num == spi_periph_signal[host].spics0_iomux_pin) && bus_is_iomux(spihost[host]); } // The slave DMA suffers from unexpected transactions. Forbid reading if DMA is enabled by disabling the CS line. if (use_dma) freeze_cs(spihost[host]); int dma_desc_ct = 0; spihost[host]->tx_dma_chan = actual_tx_dma_chan; spihost[host]->rx_dma_chan = actual_rx_dma_chan; if (use_dma) { //See how many dma descriptors we need and allocate them dma_desc_ct = (bus_config->max_transfer_sz + SPI_MAX_DMA_LEN - 1) / SPI_MAX_DMA_LEN; if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given spihost[host]->max_transfer_sz = dma_desc_ct * SPI_MAX_DMA_LEN; } else { //We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most. spihost[host]->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE; } #ifdef CONFIG_PM_ENABLE err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_slave", &spihost[host]->pm_lock); if (err != ESP_OK) { ret = err; goto cleanup; } // Lock APB frequency while SPI slave driver is in use esp_pm_lock_acquire(spihost[host]->pm_lock); #endif //CONFIG_PM_ENABLE //Create queues spihost[host]->trans_queue = xQueueCreate(slave_config->queue_size, sizeof(spi_slave_transaction_t *)); spihost[host]->ret_queue = xQueueCreate(slave_config->queue_size, sizeof(spi_slave_transaction_t *)); if (!spihost[host]->trans_queue || !spihost[host]->ret_queue) { ret = ESP_ERR_NO_MEM; goto cleanup; } int flags = bus_config->intr_flags | ESP_INTR_FLAG_INTRDISABLED; err = esp_intr_alloc(spicommon_irqsource_for_host(host), flags, spi_intr, (void *)spihost[host], &spihost[host]->intr); if (err != ESP_OK) { ret = err; goto cleanup; } spi_slave_hal_context_t *hal = &spihost[host]->hal; //assign the SPI, RX DMA and TX DMA peripheral registers beginning address spi_slave_hal_config_t hal_config = { .host_id = host, .dma_in = SPI_LL_GET_HW(host), .dma_out = SPI_LL_GET_HW(host) }; spi_slave_hal_init(hal, &hal_config); if (dma_desc_ct) { hal->dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); hal->dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); if (!hal->dmadesc_tx || !hal->dmadesc_rx) { ret = ESP_ERR_NO_MEM; goto cleanup; } } hal->dmadesc_n = dma_desc_ct; hal->rx_lsbfirst = (slave_config->flags & SPI_SLAVE_RXBIT_LSBFIRST) ? 1 : 0; hal->tx_lsbfirst = (slave_config->flags & SPI_SLAVE_TXBIT_LSBFIRST) ? 1 : 0; hal->mode = slave_config->mode; hal->use_dma = use_dma; hal->tx_dma_chan = actual_tx_dma_chan; hal->rx_dma_chan = actual_rx_dma_chan; spi_slave_hal_setup_device(hal); return ESP_OK; cleanup: if (spihost[host]) { if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue); if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue); free(spihost[host]->hal.dmadesc_tx); free(spihost[host]->hal.dmadesc_rx); #ifdef CONFIG_PM_ENABLE if (spihost[host]->pm_lock) { esp_pm_lock_release(spihost[host]->pm_lock); esp_pm_lock_delete(spihost[host]->pm_lock); } #endif } spi_slave_hal_deinit(&spihost[host]->hal); if (spihost[host]->dma_enabled) { spicommon_dma_chan_free(host); } free(spihost[host]); spihost[host] = NULL; spicommon_periph_free(host); return ret; } esp_err_t spi_slave_free(spi_host_device_t host) { SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue); if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue); if (spihost[host]->dma_enabled) { spicommon_dma_chan_free(host); } free(spihost[host]->hal.dmadesc_tx); free(spihost[host]->hal.dmadesc_rx); esp_intr_free(spihost[host]->intr); #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(spihost[host]->pm_lock); esp_pm_lock_delete(spihost[host]->pm_lock); #endif //CONFIG_PM_ENABLE free(spihost[host]); spihost[host] = NULL; spicommon_periph_free(host); return ESP_OK; } esp_err_t SPI_SLAVE_ATTR spi_slave_queue_trans(spi_host_device_t host, const spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait) { BaseType_t r; SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host]->dma_enabled == 0 || trans_desc->tx_buffer==NULL || esp_ptr_dma_capable(trans_desc->tx_buffer), "txdata not in DMA-capable memory", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host]->dma_enabled == 0 || trans_desc->rx_buffer==NULL || (esp_ptr_dma_capable(trans_desc->rx_buffer) && esp_ptr_word_aligned(trans_desc->rx_buffer) && (trans_desc->length%4==0)), "rxdata not in DMA-capable memory or not WORD aligned", ESP_ERR_INVALID_ARG); SPI_CHECK(trans_desc->length <= spihost[host]->max_transfer_sz * 8, "data transfer > host maximum", ESP_ERR_INVALID_ARG); r = xQueueSend(spihost[host]->trans_queue, (void *)&trans_desc, ticks_to_wait); if (!r) return ESP_ERR_TIMEOUT; esp_intr_enable(spihost[host]->intr); return ESP_OK; } esp_err_t SPI_SLAVE_ATTR spi_slave_get_trans_result(spi_host_device_t host, spi_slave_transaction_t **trans_desc, TickType_t ticks_to_wait) { BaseType_t r; SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); r = xQueueReceive(spihost[host]->ret_queue, (void *)trans_desc, ticks_to_wait); if (!r) return ESP_ERR_TIMEOUT; return ESP_OK; } esp_err_t SPI_SLAVE_ATTR spi_slave_transmit(spi_host_device_t host, spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait) { esp_err_t ret; spi_slave_transaction_t *ret_trans; //ToDo: check if any spi transfers in flight ret = spi_slave_queue_trans(host, trans_desc, ticks_to_wait); if (ret != ESP_OK) return ret; ret = spi_slave_get_trans_result(host, &ret_trans, ticks_to_wait); if (ret != ESP_OK) return ret; assert(ret_trans == trans_desc); return ESP_OK; } static void SPI_SLAVE_ISR_ATTR spi_slave_restart_after_dmareset(void *arg) { spi_slave_t *host = (spi_slave_t *)arg; esp_intr_enable(host->intr); } //This is run in interrupt context and apart from initialization and destruction, this is the only code //touching the host (=spihost[x]) variable. The rest of the data arrives in queues. That is why there are //no muxes in this code. static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg) { BaseType_t r; BaseType_t do_yield = pdFALSE; spi_slave_transaction_t *trans = NULL; spi_slave_t *host = (spi_slave_t *)arg; spi_slave_hal_context_t *hal = &host->hal; assert(spi_slave_hal_usr_is_done(hal)); bool use_dma = host->dma_enabled; if (host->cur_trans) { // When DMA is enabled, the slave rx dma suffers from unexpected transactions. Forbid reading until transaction ready. if (use_dma) freeze_cs(host); spi_slave_hal_store_result(hal); host->cur_trans->trans_len = spi_slave_hal_get_rcv_bitlen(hal); if (spi_slave_hal_dma_need_reset(hal)) { //On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same spicommon_dmaworkaround_req_reset(host->tx_dma_chan, spi_slave_restart_after_dmareset, host); } if (host->cfg.post_trans_cb) host->cfg.post_trans_cb(host->cur_trans); //Okay, transaction is done. //Return transaction descriptor. xQueueSendFromISR(host->ret_queue, &host->cur_trans, &do_yield); host->cur_trans = NULL; } if (use_dma) { //On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same spicommon_dmaworkaround_idle(host->tx_dma_chan); if (spicommon_dmaworkaround_reset_in_progress()) { //We need to wait for the reset to complete. Disable int (will be re-enabled on reset callback) and exit isr. esp_intr_disable(host->intr); if (do_yield) portYIELD_FROM_ISR(); return; } } //Disable interrupt before checking to avoid concurrency issue. esp_intr_disable(host->intr); //Grab next transaction r = xQueueReceiveFromISR(host->trans_queue, &trans, &do_yield); if (r) { //enable the interrupt again if there is packet to send esp_intr_enable(host->intr); //We have a transaction. Send it. host->cur_trans = trans; hal->bitlen = trans->length; hal->rx_buffer = trans->rx_buffer; hal->tx_buffer = trans->tx_buffer; if (use_dma) { //On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same spicommon_dmaworkaround_transfer_active(host->tx_dma_chan); } spi_slave_hal_prepare_data(hal); //The slave rx dma get disturbed by unexpected transaction. Only connect the CS when slave is ready. if (use_dma) { restore_cs(host); } //Kick off transfer spi_slave_hal_user_start(hal); if (host->cfg.post_setup_cb) host->cfg.post_setup_cb(trans); } if (do_yield) portYIELD_FROM_ISR(); }