// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /******************************************************************************* * NOTICE * The hal is not public api, don't use in application code. * See readme.md in soc/include/hal/readme.md ******************************************************************************/ // The LL layer for ESP32 SPI register operations #pragma once #include "hal/hal_defs.h" #include "soc/spi_periph.h" #include "esp32/rom/lldesc.h" #include #include #include //for abs() /// Registers to reset during initialization. Don't use in app. #define SPI_LL_RST_MASK (SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST) /// Interrupt not used. Don't use in app. #define SPI_LL_UNUSED_INT_MASK (SPI_INT_EN | SPI_SLV_WR_STA_DONE | SPI_SLV_RD_STA_DONE | SPI_SLV_WR_BUF_DONE | SPI_SLV_RD_BUF_DONE) /// Swap the bit order to its correct place to send #define HAL_SPI_SWAP_DATA_TX(data, len) HAL_SWAP32((uint32_t)data<<(32-len)) #define SPI_LL_GET_HW(ID) ((ID)==0? &SPI1:((ID)==1? &SPI2 : &SPI3)) /** * The data structure holding calculated clock configuration. Since the * calculation needs long time, it should be calculated during initialization and * stored somewhere to be quickly used. */ typedef uint32_t spi_ll_clock_val_t; /** IO modes supported by the master. */ typedef enum { SPI_LL_IO_MODE_NORMAL = 0, ///< 1-bit mode for all phases SPI_LL_IO_MODE_DIO, ///< 2-bit mode for address and data phases, 1-bit mode for command phase SPI_LL_IO_MODE_DUAL, ///< 2-bit mode for data phases only, 1-bit mode for command and address phases SPI_LL_IO_MODE_QIO, ///< 4-bit mode for address and data phases, 1-bit mode for command phase SPI_LL_IO_MODE_QUAD, ///< 4-bit mode for data phases only, 1-bit mode for command and address phases } spi_ll_io_mode_t; /// Interrupt type for different working pattern typedef enum { SPI_LL_INT_TYPE_NORMAL = 0, ///< Typical pattern, only wait for trans done } spi_ll_slave_intr_type; /*------------------------------------------------------------------------------ * Control *----------------------------------------------------------------------------*/ /** * Initialize SPI peripheral (master). * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_master_init(spi_dev_t *hw) { //Reset DMA hw->dma_conf.val |= SPI_LL_RST_MASK; hw->dma_out_link.start = 0; hw->dma_in_link.start = 0; hw->dma_conf.val &= ~SPI_LL_RST_MASK; //Reset timing hw->ctrl2.val = 0; //use all 64 bytes of the buffer hw->user.usr_miso_highpart = 0; hw->user.usr_mosi_highpart = 0; //Disable unneeded ints hw->slave.val &= ~SPI_LL_UNUSED_INT_MASK; } /** * Initialize SPI peripheral (slave). * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_slave_init(spi_dev_t *hw) { //Configure slave hw->clock.val = 0; hw->user.val = 0; hw->ctrl.val = 0; hw->slave.wr_rd_buf_en = 1; //no sure if needed hw->user.doutdin = 1; //we only support full duplex hw->user.sio = 0; hw->slave.slave_mode = 1; hw->dma_conf.val |= SPI_LL_RST_MASK; hw->dma_out_link.start = 0; hw->dma_in_link.start = 0; hw->dma_conf.val &= ~SPI_LL_RST_MASK; hw->slave.sync_reset = 1; hw->slave.sync_reset = 0; //use all 64 bytes of the buffer hw->user.usr_miso_highpart = 0; hw->user.usr_mosi_highpart = 0; //Disable unneeded ints hw->slave.val &= ~SPI_LL_UNUSED_INT_MASK; } /** * Reset TX and RX DMAs. * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_reset_dma(spi_dev_t *hw) { //Reset DMA peripheral hw->dma_conf.val |= SPI_LL_RST_MASK; hw->dma_out_link.start = 0; hw->dma_in_link.start = 0; hw->dma_conf.val &= ~SPI_LL_RST_MASK; hw->dma_conf.out_data_burst_en = 1; hw->dma_conf.indscr_burst_en = 1; hw->dma_conf.outdscr_burst_en = 1; } /** * Start RX DMA. * * @param hw Beginning address of the peripheral registers. * @param addr Address of the beginning DMA descriptor. */ static inline void spi_ll_rxdma_start(spi_dev_t *hw, lldesc_t *addr) { hw->dma_in_link.addr = (int) addr & 0xFFFFF; hw->dma_in_link.start = 1; } /** * Start TX DMA. * * @param hw Beginning address of the peripheral registers. * @param addr Address of the beginning DMA descriptor. */ static inline void spi_ll_txdma_start(spi_dev_t *hw, lldesc_t *addr) { hw->dma_out_link.addr = (int) addr & 0xFFFFF; hw->dma_out_link.start = 1; } /** * Write to SPI buffer. * * @param hw Beginning address of the peripheral registers. * @param buffer_to_send Data address to copy to the buffer. * @param bitlen Length to copy, in bits. */ static inline void spi_ll_write_buffer(spi_dev_t *hw, const uint8_t *buffer_to_send, size_t bitlen) { for (int x = 0; x < bitlen; x += 32) { //Use memcpy to get around alignment issues for txdata uint32_t word; memcpy(&word, &buffer_to_send[x / 8], 4); hw->data_buf[(x / 32)] = word; } } /** * Read from SPI buffer. * * @param hw Beginning address of the peripheral registers. * @param buffer_to_rcv Address to copy buffer data to. * @param bitlen Length to copy, in bits. */ static inline void spi_ll_read_buffer(spi_dev_t *hw, uint8_t *buffer_to_rcv, size_t bitlen) { for (int x = 0; x < bitlen; x += 32) { //Do a memcpy to get around possible alignment issues in rx_buffer uint32_t word = hw->data_buf[x / 32]; int len = bitlen - x; if (len > 32) { len = 32; } memcpy(&buffer_to_rcv[x / 8], &word, (len + 7) / 8); } } /** * Check whether user-defined transaction is done. * * @param hw Beginning address of the peripheral registers. * * @return true if transaction is done, otherwise false. */ static inline bool spi_ll_usr_is_done(spi_dev_t *hw) { return hw->slave.trans_done; } /** * Trigger start of user-defined transaction. * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_user_start(spi_dev_t *hw) { hw->cmd.usr = 1; } /** * Get current running command bit-mask. (Preview) * * @param hw Beginning address of the peripheral registers. * * @return Bitmask of running command, see ``SPI_CMD_REG``. 0 if no in-flight command. */ static inline uint32_t spi_ll_get_running_cmd(spi_dev_t *hw) { return hw->cmd.val; } /** * Disable the trans_done interrupt. * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_disable_int(spi_dev_t *hw) { hw->slave.trans_inten = 0; } /** * Clear the trans_done interrupt. * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_clear_int_stat(spi_dev_t *hw) { hw->slave.trans_done = 0; } /** * Set the trans_done interrupt. * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_set_int_stat(spi_dev_t *hw) { hw->slave.trans_done = 1; } /** * Enable the trans_done interrupt. * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_enable_int(spi_dev_t *hw) { hw->slave.trans_inten = 1; } static inline void spi_ll_slave_set_int_type(spi_dev_t *hw, spi_ll_slave_intr_type int_type) { hw->slave.trans_inten = 1; } /*------------------------------------------------------------------------------ * Configs: mode *----------------------------------------------------------------------------*/ /** * Enable/disable the postive-cs feature. * * @param hw Beginning address of the peripheral registers. * @param cs One of the CS (0-2) to enable/disable the feature. * @param pos_cs true to enable the feature, otherwise disable (default). */ static inline void spi_ll_master_set_pos_cs(spi_dev_t *hw, int cs, uint32_t pos_cs) { if (pos_cs) { hw->pin.master_cs_pol |= (1 << cs); } else { hw->pin.master_cs_pol &= ~(1 << cs); } } /** * Enable/disable the LSBFIRST feature for TX data. * * @param hw Beginning address of the peripheral registers. * @param lsbfirst true if LSB of TX data to be sent first, otherwise MSB is sent first (default). */ static inline void spi_ll_set_tx_lsbfirst(spi_dev_t *hw, bool lsbfirst) { hw->ctrl.wr_bit_order = lsbfirst; } /** * Enable/disable the LSBFIRST feature for RX data. * * @param hw Beginning address of the peripheral registers. * @param lsbfirst true if first bit received as LSB, otherwise as MSB (default). */ static inline void spi_ll_set_rx_lsbfirst(spi_dev_t *hw, bool lsbfirst) { hw->ctrl.rd_bit_order = lsbfirst; } /** * Set SPI mode for the peripheral as master. * * @param hw Beginning address of the peripheral registers. * @param mode SPI mode to work at, 0-3. */ static inline void spi_ll_master_set_mode(spi_dev_t *hw, uint8_t mode) { //Configure polarity if (mode == 0) { hw->pin.ck_idle_edge = 0; hw->user.ck_out_edge = 0; } else if (mode == 1) { hw->pin.ck_idle_edge = 0; hw->user.ck_out_edge = 1; } else if (mode == 2) { hw->pin.ck_idle_edge = 1; hw->user.ck_out_edge = 1; } else if (mode == 3) { hw->pin.ck_idle_edge = 1; hw->user.ck_out_edge = 0; } } /** * Set SPI mode for the peripheral as slave. * * @param hw Beginning address of the peripheral registers. * @param mode SPI mode to work at, 0-3. */ static inline void spi_ll_slave_set_mode(spi_dev_t *hw, const int mode, bool dma_used) { if (mode == 0) { //The timing needs to be fixed to meet the requirements of DMA hw->pin.ck_idle_edge = 1; hw->user.ck_i_edge = 0; hw->ctrl2.miso_delay_mode = 0; hw->ctrl2.miso_delay_num = 0; hw->ctrl2.mosi_delay_mode = 2; hw->ctrl2.mosi_delay_num = 2; } else if (mode == 1) { hw->pin.ck_idle_edge = 1; hw->user.ck_i_edge = 1; hw->ctrl2.miso_delay_mode = 2; hw->ctrl2.miso_delay_num = 0; hw->ctrl2.mosi_delay_mode = 0; hw->ctrl2.mosi_delay_num = 0; } else if (mode == 2) { //The timing needs to be fixed to meet the requirements of DMA hw->pin.ck_idle_edge = 0; hw->user.ck_i_edge = 1; hw->ctrl2.miso_delay_mode = 0; hw->ctrl2.miso_delay_num = 0; hw->ctrl2.mosi_delay_mode = 1; hw->ctrl2.mosi_delay_num = 2; } else if (mode == 3) { hw->pin.ck_idle_edge = 0; hw->user.ck_i_edge = 0; hw->ctrl2.miso_delay_mode = 1; hw->ctrl2.miso_delay_num = 0; hw->ctrl2.mosi_delay_mode = 0; hw->ctrl2.mosi_delay_num = 0; } /* Silicon issues exists in mode 0 and 2 with DMA, change clock phase to * avoid dma issue. This will cause slave output to appear at most half a * spi clock before */ if (dma_used) { if (mode == 0) { hw->pin.ck_idle_edge = 0; hw->user.ck_i_edge = 1; hw->ctrl2.miso_delay_mode = 0; hw->ctrl2.miso_delay_num = 2; hw->ctrl2.mosi_delay_mode = 0; hw->ctrl2.mosi_delay_num = 3; } else if (mode == 2) { hw->pin.ck_idle_edge = 1; hw->user.ck_i_edge = 0; hw->ctrl2.miso_delay_mode = 0; hw->ctrl2.miso_delay_num = 2; hw->ctrl2.mosi_delay_mode = 0; hw->ctrl2.mosi_delay_num = 3; } } } /** * Set SPI to work in full duplex or half duplex mode. * * @param hw Beginning address of the peripheral registers. * @param half_duplex true to work in half duplex mode, otherwise in full duplex mode. */ static inline void spi_ll_set_half_duplex(spi_dev_t *hw, bool half_duplex) { hw->user.doutdin = !half_duplex; } /** * Set SPI to work in SIO mode or not. * * SIO is a mode which MOSI and MISO share a line. The device MUST work in half-duplexmode. * * @param hw Beginning address of the peripheral registers. * @param sio_mode true to work in SIO mode, otherwise false. */ static inline void spi_ll_set_sio_mode(spi_dev_t *hw, int sio_mode) { hw->user.sio = sio_mode; } /** * Configure the io mode for the master to work at. * * @param hw Beginning address of the peripheral registers. * @param io_mode IO mode to work at, see ``spi_ll_io_mode_t``. */ static inline void spi_ll_master_set_io_mode(spi_dev_t *hw, spi_ll_io_mode_t io_mode) { hw->ctrl.val &= ~(SPI_FREAD_DUAL | SPI_FREAD_QUAD | SPI_FREAD_DIO | SPI_FREAD_QIO); hw->user.val &= ~(SPI_FWRITE_DUAL | SPI_FWRITE_QUAD | SPI_FWRITE_DIO | SPI_FWRITE_QIO); switch (io_mode) { case SPI_LL_IO_MODE_DIO: hw->ctrl.fread_dio = 1; hw->user.fwrite_dio = 1; break; case SPI_LL_IO_MODE_DUAL: hw->ctrl.fread_dual = 1; hw->user.fwrite_dual = 1; break; case SPI_LL_IO_MODE_QIO: hw->ctrl.fread_qio = 1; hw->user.fwrite_qio = 1; break; case SPI_LL_IO_MODE_QUAD: hw->ctrl.fread_quad = 1; hw->user.fwrite_quad = 1; break; default: break; }; if (io_mode != SPI_LL_IO_MODE_NORMAL) { hw->ctrl.fastrd_mode = 1; } } /** * Select one of the CS to use in current transaction. * * @param hw Beginning address of the peripheral registers. * @param cs_id The cs to use, 0-2, otherwise none of them is used. */ static inline void spi_ll_master_select_cs(spi_dev_t *hw, int cs_id) { hw->pin.cs0_dis = (cs_id == 0) ? 0 : 1; hw->pin.cs1_dis = (cs_id == 1) ? 0 : 1; hw->pin.cs2_dis = (cs_id == 2) ? 0 : 1; } /*------------------------------------------------------------------------------ * Configs: parameters *----------------------------------------------------------------------------*/ /** * Set the clock for master by stored value. * * @param hw Beginning address of the peripheral registers. * @param val stored clock configuration calculated before (by ``spi_ll_cal_clock``). */ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, spi_ll_clock_val_t *val) { hw->clock.val = *(uint32_t *)val; } /** * Get the frequency of given dividers. Don't use in app. * * @param fapb APB clock of the system. * @param pre Pre devider. * @param n main divider. * * @return Frequency of given dividers. */ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n) { return (fapb / (pre * n)); } /** * Calculate the nearest frequency avaliable for master. * * @param fapb APB clock of the system. * @param hz Frequncy desired. * @param duty_cycle Duty cycle desired. * @param out_reg Output address to store the calculated clock configurations for the return frequency. * * @return Actual (nearest) frequency. */ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_ll_clock_val_t *out_reg) { typeof(SPI1.clock) reg; int eff_clk; //In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value. if (hz > ((fapb / 4) * 3)) { //Using Fapb directly will give us the best result here. reg.clkcnt_l = 0; reg.clkcnt_h = 0; reg.clkcnt_n = 0; reg.clkdiv_pre = 0; reg.clk_equ_sysclk = 1; eff_clk = fapb; } else { //For best duty cycle resolution, we want n to be as close to 32 as possible, but //we also need a pre/n combo that gets us as close as possible to the intended freq. //To do this, we bruteforce n and calculate the best pre to go along with that. //If there's a choice between pre/n combos that give the same result, use the one //with the higher n. int pre, n, h, l; int bestn = -1; int bestpre = -1; int besterr = 0; int errval; for (n = 2; n <= 64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse. //Effectively, this does pre=round((fapb/n)/hz). pre = ((fapb / n) + (hz / 2)) / hz; if (pre <= 0) { pre = 1; } if (pre > 8192) { pre = 8192; } errval = abs(spi_ll_freq_for_pre_n(fapb, pre, n) - hz); if (bestn == -1 || errval <= besterr) { besterr = errval; bestn = n; bestpre = pre; } } n = bestn; pre = bestpre; l = n; //This effectively does round((duty_cycle*n)/256) h = (duty_cycle * n + 127) / 256; if (h <= 0) { h = 1; } reg.clk_equ_sysclk = 0; reg.clkcnt_n = n - 1; reg.clkdiv_pre = pre - 1; reg.clkcnt_h = h - 1; reg.clkcnt_l = l - 1; eff_clk = spi_ll_freq_for_pre_n(fapb, pre, n); } if (out_reg != NULL) { *(uint32_t *)out_reg = reg.val; } return eff_clk; } /** * Calculate and set clock for SPI master according to desired parameters. * * This takes long, suggest to calculate the configuration during * initialization by ``spi_ll_master_cal_clock`` and store the result, then * configure the clock by stored value when used by * ``spi_ll_msater_set_clock_by_reg``. * * @param hw Beginning address of the peripheral registers. * @param fapb APB clock of the system. * @param hz Frequncy desired. * @param duty_cycle Duty cycle desired. * * @return Actual frequency that is used. */ static inline int spi_ll_master_set_clock(spi_dev_t *hw, int fapb, int hz, int duty_cycle) { spi_ll_clock_val_t reg_val; int freq = spi_ll_master_cal_clock(fapb, hz, duty_cycle, ®_val); spi_ll_master_set_clock_by_reg(hw, ®_val); return freq; } /** * Enable/disable the CK sel feature for a CS pin. * * CK sel is a feature to toggle the CS line along with the clock. * * @param hw Beginning address of the peripheral registers. * @param cs CS pin to enable/disable the feature, 0-2. * @param cksel true to enable the feature, otherwise false. */ static inline void spi_ll_master_set_cksel(spi_dev_t *hw, int cs, uint32_t cksel) { if (cksel) { hw->pin.master_ck_sel |= (1 << cs); } else { hw->pin.master_ck_sel &= ~(1 << cs); } } /** * Set the mosi delay after the output edge to the signal. (Preview) * * The delay mode/num is a Espressif conception, may change in the new chips. * * @param hw Beginning address of the peripheral registers. * @param delay_mode Delay mode, see TRM. * @param delay_num APB clocks to delay. */ static inline void spi_ll_set_mosi_delay(spi_dev_t *hw, int delay_mode, int delay_num) { hw->ctrl2.mosi_delay_mode = delay_mode; hw->ctrl2.mosi_delay_num = delay_num; } /** * Set the miso delay applied to the input signal before the internal peripheral. (Preview) * * The delay mode/num is a Espressif conception, may change in the new chips. * * @param hw Beginning address of the peripheral registers. * @param delay_mode Delay mode, see TRM. * @param delay_num APB clocks to delay. */ static inline void spi_ll_set_miso_delay(spi_dev_t *hw, int delay_mode, int delay_num) { hw->ctrl2.miso_delay_mode = delay_mode; hw->ctrl2.miso_delay_num = delay_num; } /** * Set dummy clocks to output before RX phase (master), or clocks to skip * before the data phase and after the address phase (slave). * * Note this phase is also used to compensate RX timing in half duplex mode. * * @param hw Beginning address of the peripheral registers. * @param dummy_n Dummy cycles used. 0 to disable the dummy phase. */ static inline void spi_ll_set_dummy(spi_dev_t *hw, int dummy_n) { hw->user.usr_dummy = dummy_n ? 1 : 0; hw->user1.usr_dummy_cyclelen = dummy_n - 1; } /** * Set the delay of SPI clocks before the CS inactive edge after the last SPI clock. * * @param hw Beginning address of the peripheral registers. * @param hold Delay of SPI clocks after the last clock, 0 to disable the hold phase. */ static inline void spi_ll_master_set_cs_hold(spi_dev_t *hw, int hold) { hw->ctrl2.hold_time = hold; hw->user.cs_hold = hold ? 1 : 0; } /** * Set the delay of SPI clocks before the first SPI clock after the CS active edge. * * Note ESP32 doesn't support to use this feature when command/address phases * are used in full duplex mode. * * @param hw Beginning address of the peripheral registers. * @param setup Delay of SPI clocks after the CS active edge, 0 to disable the setup phase. */ static inline void spi_ll_master_set_cs_setup(spi_dev_t *hw, uint8_t setup) { hw->ctrl2.setup_time = setup - 1; hw->user.cs_setup = setup ? 1 : 0; } /*------------------------------------------------------------------------------ * Configs: data *----------------------------------------------------------------------------*/ /** * Set the input length (master). * * @param hw Beginning address of the peripheral registers. * @param bitlen input length, in bits. */ static inline void spi_ll_set_miso_bitlen(spi_dev_t *hw, size_t bitlen) { hw->miso_dlen.usr_miso_dbitlen = bitlen - 1; } /** * Set the output length (master). * * @param hw Beginning address of the peripheral registers. * @param bitlen output length, in bits. */ static inline void spi_ll_set_mosi_bitlen(spi_dev_t *hw, size_t bitlen) { hw->mosi_dlen.usr_mosi_dbitlen = bitlen - 1; } /** * Set the maximum input length (slave). * * @param hw Beginning address of the peripheral registers. * @param bitlen input length, in bits. */ static inline void spi_ll_slave_set_rx_bitlen(spi_dev_t *hw, size_t bitlen) { hw->slv_wrbuf_dlen.bit_len = bitlen - 1; } /** * Set the maximum output length (slave). * * @param hw Beginning address of the peripheral registers. * @param bitlen output length, in bits. */ static inline void spi_ll_slave_set_tx_bitlen(spi_dev_t *hw, size_t bitlen) { hw->slv_rdbuf_dlen.bit_len = bitlen - 1; } /** * Set the length of command phase. * * When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit * command phases takes 4 cycles in 4-bit mode. * * @param hw Beginning address of the peripheral registers. * @param bitlen Length of command phase, in bits. 0 to disable the command phase. */ static inline void spi_ll_set_command_bitlen(spi_dev_t *hw, int bitlen) { hw->user2.usr_command_bitlen = bitlen - 1; hw->user.usr_command = bitlen ? 1 : 0; } /** * Set the length of address phase. * * When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit * address phases takes 4 cycles in 4-bit mode. * * @param hw Beginning address of the peripheral registers. * @param bitlen Length of address phase, in bits. 0 to disable the address phase. */ static inline void spi_ll_set_addr_bitlen(spi_dev_t *hw, int bitlen) { hw->user1.usr_addr_bitlen = bitlen - 1; hw->user.usr_addr = bitlen ? 1 : 0; } /** * Set the address value in an intuitive way. * * The length and lsbfirst is required to shift and swap the address to the right place. * * @param hw Beginning address of the peripheral registers. * @param address Address to set * @param addrlen Length of the address phase * @param lsbfirst whether the LSB first feature is enabled. */ static inline void spi_ll_set_address(spi_dev_t *hw, uint64_t addr, int addrlen, uint32_t lsbfirst) { if (lsbfirst) { /* The output address start from the LSB of the highest byte, i.e. * addr[24] -> addr[31] * ... * addr[0] -> addr[7] * slv_wr_status[24] -> slv_wr_status[31] * ... * slv_wr_status[0] -> slv_wr_status[7] * So swap the byte order to let the LSB sent first. */ addr = HAL_SWAP64(addr); hw->addr = addr >> 32; hw->slv_wr_status = addr; } else { // shift the address to MSB of addr (and maybe slv_wr_status) register. // output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register. if (addrlen > 32) { hw->addr = addr >> (addrlen - 32); hw->slv_wr_status = addr << (64 - addrlen); } else { hw->addr = addr << (32 - addrlen); } } } /** * Set the command value in an intuitive way. * * The length and lsbfirst is required to shift and swap the command to the right place. * * @param hw Beginning command of the peripheral registers. * @param command Command to set * @param addrlen Length of the command phase * @param lsbfirst whether the LSB first feature is enabled. */ static inline void spi_ll_set_command(spi_dev_t *hw, uint16_t cmd, int cmdlen, bool lsbfirst) { if (lsbfirst) { // The output command start from bit0 to bit 15, kept as is. hw->user2.usr_command_value = cmd; } else { /* Output command will be sent from bit 7 to 0 of command_value, and * then bit 15 to 8 of the same register field. Shift and swap to send * more straightly. */ hw->user2.usr_command_value = HAL_SPI_SWAP_DATA_TX(cmd, cmdlen); } } /** * Enable/disable the RX data phase. * * @param hw Beginning address of the peripheral registers. * @param enable true if RX phase exist, otherwise false. */ static inline void spi_ll_enable_miso(spi_dev_t *hw, int enable) { hw->user.usr_miso = enable; } /** * Enable/disable the TX data phase. * * @param hw Beginning address of the peripheral registers. * @param enable true if TX phase exist, otherwise false. */ static inline void spi_ll_enable_mosi(spi_dev_t *hw, int enable) { hw->user.usr_mosi = enable; } /** * Reset the slave peripheral before next transaction. * * @param hw Beginning address of the peripheral registers. */ static inline void spi_ll_slave_reset(spi_dev_t *hw) { hw->slave.sync_reset = 1; hw->slave.sync_reset = 0; } /** * Get the received bit length of the slave. * * @param hw Beginning address of the peripheral registers. * * @return Received bits of the slave. */ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw) { return hw->slv_rd_bit.slv_rdata_bit; } #undef SPI_LL_RST_MASK #undef SPI_LL_UNUSED_INT_MASK