/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Unlicense OR CC0-1.0 */ /* This file contains tests only runnable on the chip targets */ #include #include #include "esp_event.h" #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_log.h" #include "driver/gptimer.h" #include "esp_event.h" #include "esp_event_private.h" #include "esp_event_internal.h" #include "esp_heap_caps.h" #include "esp_timer.h" #include "sdkconfig.h" #include "unity.h" #include "unity_test_utils_memory.h" #include "test_utils.h" static const char* TAG = "test_event"; static const TickType_t ZERO_DELAY = 0; #define TEST_CONFIG_ITEMS_TO_REGISTER 5 #define TEST_CONFIG_TASKS_TO_SPAWN 2 _Static_assert(TEST_CONFIG_TASKS_TO_SPAWN >= 2); // some tests test simultaneous posting of events, etc. /* Time used in tearDown function to wait for cleaning up memory in background tasks */ #define TEST_CONFIG_TEARDOWN_WAIT 30 typedef struct { void* data; SemaphoreHandle_t start; SemaphoreHandle_t done; } task_arg_t; typedef struct { esp_event_base_t base; int32_t id; esp_event_handler_t* handles; int32_t num; esp_event_loop_handle_t loop; bool is_registration; } handler_registration_data_t; typedef struct { esp_event_base_t base; int32_t id; esp_event_loop_handle_t loop; int32_t num; } post_event_data_t; typedef struct { int performed; int expected; SemaphoreHandle_t done; } performance_data_t; typedef struct { void* data; SemaphoreHandle_t mutex; } simple_arg_t; ESP_EVENT_DECLARE_BASE(s_test_base1); enum { TEST_EVENT_BASE1_EV1, TEST_EVENT_BASE1_MAX }; static BaseType_t get_other_core(void) { return (xPortGetCoreID() + 1) % portNUM_PROCESSORS; } static esp_event_loop_args_t test_event_get_default_loop_args(void) { esp_event_loop_args_t loop_config = { .queue_size = CONFIG_ESP_SYSTEM_EVENT_QUEUE_SIZE, .task_name = "loop", .task_priority = uxTaskPriorityGet(NULL), .task_stack_size = 2048, .task_core_id = get_other_core() }; return loop_config; } static void test_event_simple_handler(void* event_handler_arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { if (!event_handler_arg) { return; } simple_arg_t* arg = (simple_arg_t*) event_handler_arg; xSemaphoreTake(arg->mutex, portMAX_DELAY); int* count = (int*) arg->data; if (event_data == NULL) { (*count)++; } else { (*count) += *((int*) event_data); } xSemaphoreGive(arg->mutex); } static void test_event_performance_handler(void* event_handler_arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { performance_data_t* data = (performance_data_t*) event_handler_arg; data->performed++; if (data->performed >= data->expected) { xSemaphoreGive(data->done); } } static void test_event_post_task(void* args) { task_arg_t* arg = (task_arg_t*) args; post_event_data_t* data = arg->data; xSemaphoreTake(arg->start, portMAX_DELAY); for (int i = 0; i < data->num; i++) { TEST_ESP_OK(esp_event_post_to(data->loop, data->base, data->id, NULL, 0, portMAX_DELAY)); vTaskDelay(1); } xSemaphoreGive(arg->done); vTaskDelete(NULL); } static void test_event_simple_handler_registration_task(void* args) { task_arg_t* arg = (task_arg_t*) args; handler_registration_data_t* data = (handler_registration_data_t*) arg->data; xSemaphoreTake(arg->start, portMAX_DELAY); for(int i = 0; i < data->num; i++) { if (data->is_registration) { TEST_ESP_OK(esp_event_handler_register_with(data->loop, data->base, data->id, data->handles[i], NULL)); } else { TEST_ESP_OK(esp_event_handler_unregister_with(data->loop, data->base, data->id, data->handles[i])); } vTaskDelay(1); } xSemaphoreGive(arg->done); vTaskDelete(NULL); } // Ignore this test on QEMU for now since it relies on esp_timer which is based on the host run time on ESP32-QEMU TEST_CASE("can exit running loop at approximately the set amount of time", "[event][qemu-ignore]") { /* this test aims to verify that running loop does not block indefinitely in cases where * events are posted frequently */ esp_event_loop_handle_t loop; esp_event_loop_args_t loop_args = test_event_get_default_loop_args(); loop_args.task_name = NULL; TEST_ESP_OK(esp_event_loop_create(&loop_args, &loop)); performance_data_t handler_data = { .performed = 0, .expected = INT32_MAX, .done = xSemaphoreCreateBinary() }; TEST_ESP_OK(esp_event_handler_register_with(loop, s_test_base1, TEST_EVENT_BASE1_EV1, test_event_performance_handler, &handler_data)); post_event_data_t post_event_data = { .base = s_test_base1, .id = TEST_EVENT_BASE1_EV1, .loop = loop, .num = INT32_MAX }; task_arg_t post_event_arg = { .data = &post_event_data, .done = xSemaphoreCreateBinary(), .start = xSemaphoreCreateBinary() }; TaskHandle_t post_task; xTaskCreatePinnedToCore(test_event_post_task, "post", 2048, &post_event_arg, uxTaskPriorityGet(NULL), &post_task, get_other_core()); int runtime_ms = 10; int runtime_us = runtime_ms * 1000; int64_t start, diff; start = esp_timer_get_time(); xSemaphoreGive(post_event_arg.start); // Run the loop for the runtime_ms set amount of time, regardless of whether events // are still being posted to the loop. TEST_ESP_OK(esp_event_loop_run(loop, pdMS_TO_TICKS(runtime_ms))); diff = (esp_timer_get_time() - start); // Threshold is 25 percent. TEST_ASSERT_LESS_THAN_INT(runtime_us * 1.25f, diff); // Verify that the post task still continues TEST_ASSERT_NOT_EQUAL(pdTRUE, xSemaphoreTake(post_event_arg.done, pdMS_TO_TICKS(10))); vSemaphoreDelete(post_event_arg.done); vSemaphoreDelete(post_event_arg.start); vSemaphoreDelete(handler_data.done); vTaskDelete(post_task); TEST_ESP_OK(esp_event_loop_delete(loop)); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); } TEST_CASE("can register/unregister handlers simultaneously", "[event]") { /* this test aims to verify that the event handlers list remains consistent despite * simultaneous access by differenct tasks */ const char* base = "base"; int32_t id = 0; esp_event_loop_handle_t loop; esp_event_loop_args_t loop_args = test_event_get_default_loop_args(); TEST_ESP_OK(esp_event_loop_create(&loop_args, &loop)); ESP_LOGI(TAG, "registering handlers"); handler_registration_data_t* registration_data = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*registration_data)); task_arg_t* registration_arg = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*registration_arg)); for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { registration_data[i].base = base; registration_data[i].id = id; registration_data[i].loop = loop; registration_data[i].handles = calloc(TEST_CONFIG_ITEMS_TO_REGISTER, sizeof(esp_event_handler_t)); registration_data[i].num = TEST_CONFIG_ITEMS_TO_REGISTER; registration_data[i].is_registration = true; for (int j = 0; j < TEST_CONFIG_ITEMS_TO_REGISTER; j++) { registration_data[i].handles[j] = (void*) (i * TEST_CONFIG_ITEMS_TO_REGISTER) + (j + TEST_CONFIG_ITEMS_TO_REGISTER); } registration_arg[i].start = xSemaphoreCreateBinary(); registration_arg[i].done = xSemaphoreCreateBinary(); registration_arg[i].data = ®istration_data[i]; xTaskCreatePinnedToCore(test_event_simple_handler_registration_task, "register", 2048, ®istration_arg[i], uxTaskPriorityGet(NULL), NULL, i % portNUM_PROCESSORS); } // Give the semaphores to the spawned registration task for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreGive(registration_arg[i].start); } // Take the same semaphores in order to proceed for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreTake(registration_arg[i].done, portMAX_DELAY); } ESP_LOGI(TAG, "checking consistency of handlers list"); // Check consistency of events list for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { for (int j = 0; j < TEST_CONFIG_ITEMS_TO_REGISTER; j++) { TEST_ASSERT_TRUE(esp_event_is_handler_registered(loop, base, id, registration_data[i].handles[j])); } } ESP_LOGI(TAG, "unregistering handlers"); /* Test if tasks can unregister simultaneously */ // Unregister registered events handler_registration_data_t* unregistration_data = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*unregistration_data)); task_arg_t* unregistration_arg = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*unregistration_arg)); for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { unregistration_data[i].base = base; unregistration_data[i].id = id; unregistration_data[i].loop = loop; unregistration_data[i].handles = calloc(TEST_CONFIG_ITEMS_TO_REGISTER, sizeof(esp_event_handler_t)); unregistration_data[i].num = TEST_CONFIG_ITEMS_TO_REGISTER; unregistration_data[i].is_registration = false; memcpy(unregistration_data[i].handles, registration_data[i].handles, TEST_CONFIG_ITEMS_TO_REGISTER * sizeof(esp_event_handler_t)); unregistration_arg[i].data = &unregistration_data[i]; unregistration_arg[i].start = xSemaphoreCreateBinary(); unregistration_arg[i].done = xSemaphoreCreateBinary(); xTaskCreatePinnedToCore(test_event_simple_handler_registration_task, "unregister", 2048, &unregistration_arg[i], uxTaskPriorityGet(NULL), NULL, i % portNUM_PROCESSORS); } // Give the semaphores to the spawned unregistration task for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreGive(unregistration_arg[i].start); } // Take the same semaphores in order to proceed for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreTake(unregistration_arg[i].done, portMAX_DELAY); } ESP_LOGI(TAG, "checking consistency of handlers list"); // Check consistency of events list for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { for (int j = 0; j < TEST_CONFIG_ITEMS_TO_REGISTER; j++) { TEST_ASSERT_FALSE(esp_event_is_handler_registered(loop, base, id, registration_data[i].handles[j])); } } // Do cleanup for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { free(registration_data[i].handles); vSemaphoreDelete(registration_arg[i].start); vSemaphoreDelete(registration_arg[i].done); free(unregistration_data[i].handles); vSemaphoreDelete(unregistration_arg[i].start); vSemaphoreDelete(unregistration_arg[i].done); } free(registration_data); free(unregistration_data); free(registration_arg); free(unregistration_arg); TEST_ESP_OK(esp_event_loop_delete(loop)); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); } TEST_CASE("can post and run events simultaneously", "[event]") { /* this test aims to verify that: * - multiple tasks can post to the queue simultaneously * - handlers recieve the appropriate handler arg and associated event data */ esp_event_loop_handle_t loop; esp_event_loop_args_t loop_args = test_event_get_default_loop_args(); loop_args.task_name = NULL; loop_args.queue_size = TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER; TEST_ESP_OK(esp_event_loop_create(&loop_args, &loop)); int count = 0; simple_arg_t arg = { .data = &count, .mutex = xSemaphoreCreateMutex() }; TEST_ESP_OK(esp_event_handler_register_with(loop, s_test_base1, TEST_EVENT_BASE1_EV1, test_event_simple_handler, &arg)); post_event_data_t* post_event_data = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*post_event_data)); task_arg_t* post_event_arg = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*post_event_arg)); for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { post_event_data[i].base = s_test_base1; post_event_data[i].id = TEST_EVENT_BASE1_EV1; post_event_data[i].loop = loop; post_event_data[i].num = TEST_CONFIG_ITEMS_TO_REGISTER; post_event_arg[i].data = &post_event_data[i]; post_event_arg[i].start = xSemaphoreCreateBinary(); post_event_arg[i].done = xSemaphoreCreateBinary(); xTaskCreatePinnedToCore(test_event_post_task, "post", 2048, &post_event_arg[i], uxTaskPriorityGet(NULL), NULL, i % portNUM_PROCESSORS); } for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreGive(post_event_arg[i].start); } // Execute some events as they are posted for (int i = 0; i < (TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER) / 2; i++) { TEST_ESP_OK(esp_event_loop_run(loop, pdMS_TO_TICKS(10))); } for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreTake(post_event_arg[i].done, portMAX_DELAY); } // Execute the rest for (size_t i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER; i++) { TEST_ESP_OK(esp_event_loop_run(loop, ZERO_DELAY)); } TEST_ASSERT_EQUAL(TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER, count); // Cleanup for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { vSemaphoreDelete(post_event_arg[i].start); vSemaphoreDelete(post_event_arg[i].done); } free(post_event_data); free(post_event_arg); TEST_ESP_OK(esp_event_loop_delete(loop)); vSemaphoreDelete(arg.mutex); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); } TEST_CASE("can post and run events simultaneously with instances", "[event]") { /* this test aims to verify that: * - multiple tasks can post to the queue simultaneously * - handlers recieve the appropriate handler arg and associated event data */ esp_event_loop_handle_t loop; esp_event_loop_args_t loop_args = test_event_get_default_loop_args(); loop_args.task_name = NULL; loop_args.queue_size = TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER; TEST_ESP_OK(esp_event_loop_create(&loop_args, &loop)); int count = 0; simple_arg_t arg = { .data = &count, .mutex = xSemaphoreCreateMutex() }; esp_event_handler_instance_t ctx; TEST_ESP_OK(esp_event_handler_instance_register_with(loop, s_test_base1, TEST_EVENT_BASE1_EV1, test_event_simple_handler, &arg, &ctx)); post_event_data_t* post_event_data = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*post_event_data)); task_arg_t* post_event_arg = calloc(TEST_CONFIG_TASKS_TO_SPAWN, sizeof(*post_event_arg)); for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { post_event_data[i].base = s_test_base1; post_event_data[i].id = TEST_EVENT_BASE1_EV1; post_event_data[i].loop = loop; post_event_data[i].num = TEST_CONFIG_ITEMS_TO_REGISTER; post_event_arg[i].data = &post_event_data[i]; post_event_arg[i].start = xSemaphoreCreateBinary(); post_event_arg[i].done = xSemaphoreCreateBinary(); xTaskCreatePinnedToCore(test_event_post_task, "post", 2048, &post_event_arg[i], uxTaskPriorityGet(NULL), NULL, i % portNUM_PROCESSORS); } for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreGive(post_event_arg[i].start); } // Execute some events as they are posted for (int i = 0; i < (TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER) / 2; i++) { TEST_ESP_OK(esp_event_loop_run(loop, pdMS_TO_TICKS(10))); } for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { xSemaphoreTake(post_event_arg[i].done, portMAX_DELAY); } // Execute the rest, we use the maximum number of events because we don't know // if any events have been dispatched before for (size_t i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER; i++) { TEST_ESP_OK(esp_event_loop_run(loop, ZERO_DELAY)); } TEST_ASSERT_EQUAL(TEST_CONFIG_TASKS_TO_SPAWN * TEST_CONFIG_ITEMS_TO_REGISTER, count); // Cleanup for (int i = 0; i < TEST_CONFIG_TASKS_TO_SPAWN; i++) { vSemaphoreDelete(post_event_arg[i].start); vSemaphoreDelete(post_event_arg[i].done); } free(post_event_data); free(post_event_arg); TEST_ESP_OK(esp_event_loop_delete(loop)); vSemaphoreDelete(arg.mutex); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); } static void loop_run_task(void* args) { esp_event_loop_handle_t event_loop = (esp_event_loop_handle_t) args; while(1) { esp_event_loop_run(event_loop, portMAX_DELAY); } } static void performance_test(bool dedicated_task) { // rand() seems to do a one-time allocation. Call it here so that the memory it allocates // is not counted as a leak. unsigned int _rand __attribute__((unused)) = rand(); const char test_base[] = "qwertyuiopasdfghjklzxvbnmmnbvcxz"; #define TEST_CONFIG_BASES (sizeof(test_base) - 1) #define TEST_CONFIG_IDS (TEST_CONFIG_BASES / 2) // Create loop esp_event_loop_args_t loop_args = test_event_get_default_loop_args(); esp_event_loop_handle_t loop; if (!dedicated_task) { loop_args.task_name = NULL; } TEST_ESP_OK(esp_event_loop_create(&loop_args, &loop)); performance_data_t data; // Register the handlers for (int base = 0; base < TEST_CONFIG_BASES; base++) { for (int id = 0; id < TEST_CONFIG_IDS; id++) { TEST_ESP_OK(esp_event_handler_register_with(loop, test_base + base, id, test_event_performance_handler, &data)); } } TaskHandle_t mtask = NULL; if (!dedicated_task) { xTaskCreate(loop_run_task, "loop_run", loop_args.task_stack_size, (void*) loop, loop_args.task_priority, &mtask); } // Perform performance test float running_sum = 0; float running_count = 0; for (int bases = 1; bases <= TEST_CONFIG_BASES; bases *= 2) { for (int ids = 1; ids <= TEST_CONFIG_IDS; ids *= 2) { data.performed = 0; data.expected = bases * ids; data.done = xSemaphoreCreateBinary(); // Generate randomized list of posts int post_bases[TEST_CONFIG_BASES]; int post_ids[TEST_CONFIG_IDS]; for (int i = 0; i < bases; i++) { post_bases[i] = i; } for (int i = 0; i < ids; i++) { post_ids[i] = i; } for (int i = 0; i < bases; i++) { int rand_a = rand() % bases; int rand_b = rand() % bases; int temp = post_bases[rand_a]; post_bases[rand_a]= post_bases[rand_b]; post_bases[rand_b] = temp; } for (int i = 0; i < ids; i++) { int rand_a = rand() % ids; int rand_b = rand() % ids; int temp = post_ids[rand_a]; post_ids[rand_a]= post_ids[rand_b]; post_ids[rand_b] = temp; } // Post the events int64_t start = esp_timer_get_time(); for (int base = 0; base < bases; base++) { for (int id = 0; id < ids; id++) { TEST_ESP_OK(esp_event_post_to(loop, test_base + post_bases[base], post_ids[id], NULL, 0, portMAX_DELAY)); } } xSemaphoreTake(data.done, portMAX_DELAY); int64_t elapsed = esp_timer_get_time() - start; // Record data TEST_ASSERT_EQUAL(data.expected, data.performed); running_count++; running_sum += data.performed / (elapsed / (1000000.0)); vSemaphoreDelete(data.done); } } int average = (int) (running_sum / (running_count)); if (!dedicated_task) { ((esp_event_loop_instance_t*) loop)->task = mtask; } TEST_ESP_OK(esp_event_loop_delete(loop)); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); #ifdef CONFIG_ESP_EVENT_LOOP_PROFILING ESP_LOGI(TAG, "events dispatched/second with profiling enabled: %d", average); // Enabling profiling will slow down event dispatch, so the set threshold // is not valid when it is enabled. #else #ifndef CONFIG_SPIRAM TEST_PERFORMANCE_GREATER_THAN(EVENT_DISPATCH, "%d", average); #else TEST_PERFORMANCE_GREATER_THAN(EVENT_DISPATCH_PSRAM, "%d", average); #endif // CONFIG_SPIRAM #endif // CONFIG_ESP_EVENT_LOOP_PROFILING } TEST_CASE("performance test - dedicated task", "[event][qemu-ignore]") { performance_test(true); } TEST_CASE("performance test - no dedicated task", "[event][qemu-ignore]") { performance_test(false); } #if CONFIG_ESP_EVENT_POST_FROM_ISR TEST_CASE("data posted normally is correctly set internally", "[event][intr]") { esp_event_loop_handle_t loop; esp_event_loop_args_t loop_args = test_event_get_default_loop_args(); loop_args.task_name = NULL; TEST_ESP_OK(esp_event_loop_create(&loop_args, &loop)); esp_event_post_instance_t post; esp_event_loop_instance_t* loop_def = (esp_event_loop_instance_t*) loop; TEST_ESP_OK(esp_event_post_to(loop, s_test_base1, TEST_EVENT_BASE1_EV1, NULL, 0, portMAX_DELAY)); TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(loop_def->queue, &post, portMAX_DELAY)); TEST_ASSERT_EQUAL(false, post.data_set); TEST_ASSERT_EQUAL(false, post.data_allocated); TEST_ASSERT_EQUAL(NULL, post.data.ptr); TEST_ESP_OK(esp_event_loop_delete(loop)); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); } TEST_CASE("data posted from ISR is correctly set internally", "[event][intr]") { esp_event_loop_handle_t loop; esp_event_loop_args_t loop_args = test_event_get_default_loop_args(); loop_args.task_name = NULL; TEST_ESP_OK(esp_event_loop_create(&loop_args, &loop)); esp_event_post_instance_t post; esp_event_loop_instance_t* loop_def = (esp_event_loop_instance_t*) loop; int sample = 0; TEST_ESP_OK(esp_event_isr_post_to(loop, s_test_base1, TEST_EVENT_BASE1_EV1, &sample, sizeof(sample), NULL)); TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(loop_def->queue, &post, portMAX_DELAY)); TEST_ASSERT_EQUAL(true, post.data_set); TEST_ASSERT_EQUAL(false, post.data_allocated); TEST_ASSERT_EQUAL(false, post.data.val); TEST_ESP_OK(esp_event_loop_delete(loop)); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); } static void test_handler_post_from_isr(void* event_handler_arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { SemaphoreHandle_t *sem = (SemaphoreHandle_t*) event_handler_arg; // Event data is just the address value (maybe have been truncated due to casting). int *data = (int*) event_data; TEST_ASSERT_EQUAL(*data, (int) (*sem)); xSemaphoreGive(*sem); } bool test_event_on_timer_alarm(gptimer_handle_t timer, const gptimer_alarm_event_data_t *edata, void *user_ctx) { int data = (int)user_ctx; gptimer_stop(timer); // Posting events with data more than 4 bytes should fail. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_event_isr_post(s_test_base1, TEST_EVENT_BASE1_EV1, &data, 5, NULL)); // This should succeedd, as data is int-sized. The handler for the event checks that the passed event data // is correct. BaseType_t task_unblocked; TEST_ESP_OK(esp_event_isr_post(s_test_base1, TEST_EVENT_BASE1_EV1, &data, sizeof(data), &task_unblocked)); return task_unblocked == pdTRUE; } TEST_CASE("can post events from interrupt handler", "[event][intr]") { /* Lazy allocated resources in gptimer/intr_alloc */ unity_utils_set_leak_level(150); TEST_ESP_OK(esp_event_loop_create_default()); SemaphoreHandle_t sem = xSemaphoreCreateBinary(); gptimer_handle_t gptimer = NULL; /* Select and initialize basic parameters of the timer */ gptimer_config_t config = { .clk_src = GPTIMER_CLK_SRC_DEFAULT, .direction = GPTIMER_COUNT_UP, .resolution_hz = 1000000, // 1MHz, 1 tick = 1us }; TEST_ESP_OK(gptimer_new_timer(&config, &gptimer)); gptimer_alarm_config_t alarm_config = { .reload_count = 0, .alarm_count = 500000, }; gptimer_event_callbacks_t cbs = { .on_alarm = test_event_on_timer_alarm }; TEST_ESP_OK(gptimer_register_event_callbacks(gptimer, &cbs, sem)); TEST_ESP_OK(gptimer_set_alarm_action(gptimer, &alarm_config)); TEST_ESP_OK(gptimer_enable(gptimer)); TEST_ESP_OK(gptimer_start(gptimer)); TEST_ESP_OK(esp_event_handler_register(s_test_base1, TEST_EVENT_BASE1_EV1, test_handler_post_from_isr, &sem)); xSemaphoreTake(sem, portMAX_DELAY); vTaskDelay(pdMS_TO_TICKS(TEST_CONFIG_TEARDOWN_WAIT)); vSemaphoreDelete(sem); TEST_ESP_OK(gptimer_disable(gptimer)); TEST_ESP_OK(gptimer_del_timer(gptimer)); TEST_ESP_OK(esp_event_loop_delete_default()); vTaskDelay(2); } #endif // CONFIG_ESP_EVENT_POST_FROM_ISR