/* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "sdkconfig.h" #include "soc/soc_caps.h" #if CONFIG_IDF_TARGET_ESP32 # include "soc/spi_struct.h" # include "soc/spi_reg.h" /* SPI flash controller */ # define SPIFLASH SPI1 #else # include "soc/spi_mem_struct.h" # include "soc/spi_mem_reg.h" /* SPI flash controller */ # define SPIFLASH SPIMEM1 #endif #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rom/spi_flash.h" #endif #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH #define ENCRYPTION_IS_VIRTUAL 1 #else #define ENCRYPTION_IS_VIRTUAL 0 #endif #define BYTESHIFT(VAR, IDX) (((VAR) >> ((IDX) * 8)) & 0xFF) #define ISSI_ID 0x9D #define GD_Q_ID_HIGH 0xC8 #define GD_Q_ID_MID 0x40 #define GD_Q_ID_LOW 0x16 #define ESP_BOOTLOADER_SPIFLASH_BP_MASK_ISSI (BIT7 | BIT5 | BIT4 | BIT3 | BIT2) #define ESP_BOOTLOADER_SPIFLASH_QE_16B BIT9 // QE position when you write 16 bits at one time. #define ESP_BOOTLOADER_SPIFLASH_QE_8B BIT1 // QE position when you write 8 bits(for SR2) at one time. #define ESP_BOOTLOADER_SPIFLASH_WRITE_8B (8) #define ESP_BOOTLOADER_SPIFLASH_WRITE_16B (16) #ifndef BOOTLOADER_BUILD /* Normal app version maps to esp_spi_flash.h operations... */ static const char *TAG = "bootloader_mmap"; static spi_flash_mmap_handle_t map; uint32_t bootloader_mmap_get_free_pages(void) { return spi_flash_mmap_get_free_pages(SPI_FLASH_MMAP_DATA); } const void *bootloader_mmap(uint32_t src_addr, uint32_t size) { if (map) { ESP_LOGE(TAG, "tried to bootloader_mmap twice"); return NULL; /* existing mapping in use... */ } const void *result = NULL; uint32_t src_page = src_addr & ~(SPI_FLASH_MMU_PAGE_SIZE - 1); size += (src_addr - src_page); esp_err_t err = spi_flash_mmap(src_page, size, SPI_FLASH_MMAP_DATA, &result, &map); if (err != ESP_OK) { ESP_LOGE(TAG, "spi_flash_mmap failed: 0x%x", err); return NULL; } return (void *)((intptr_t)result + (src_addr - src_page)); } void bootloader_munmap(const void *mapping) { if (mapping && map) { spi_flash_munmap(map); } map = 0; } esp_err_t bootloader_flash_read(size_t src, void *dest, size_t size, bool allow_decrypt) { if (allow_decrypt && esp_flash_encryption_enabled()) { return spi_flash_read_encrypted(src, dest, size); } else { return spi_flash_read(src, dest, size); } } esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted) { if (write_encrypted && !ENCRYPTION_IS_VIRTUAL) { #if CONFIG_IDF_TARGET_ESP32 return spi_flash_write_encrypted(dest_addr, src, size); #else return esp_rom_spiflash_write_encrypted(dest_addr, src, size); #endif } else { return spi_flash_write(dest_addr, src, size); } } esp_err_t bootloader_flash_erase_sector(size_t sector) { return spi_flash_erase_sector(sector); } esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size) { return spi_flash_erase_range(start_addr, size); } #else //BOOTLOADER_BUILD /* Bootloader version, uses ROM functions only */ #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/spi_flash.h" #include "esp32/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/spi_flash.h" #include "esp32s2/rom/cache.h" #include "soc/cache_memory.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/spi_flash.h" #include "esp32s3/rom/cache.h" #include "soc/cache_memory.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/spi_flash.h" #include "esp32c3/rom/cache.h" #include "soc/cache_memory.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rom/spi_flash.h" #include "esp32h2/rom/cache.h" #include "soc/cache_memory.h" #endif static const char *TAG = "bootloader_flash"; #if CONFIG_IDF_TARGET_ESP32 /* Use first 50 blocks in MMU for bootloader_mmap, 50th block for bootloader_flash_read */ #define MMU_BLOCK0_VADDR SOC_DROM_LOW #define MMU_SIZE (0x320000) #define MMU_BLOCK50_VADDR (MMU_BLOCK0_VADDR + MMU_SIZE) #define FLASH_READ_VADDR MMU_BLOCK50_VADDR #else // !CONFIG_IDF_TARGET_ESP32 /* Use first 63 blocks in MMU for bootloader_mmap, 63th block for bootloader_flash_read */ #define MMU_BLOCK0_VADDR SOC_DROM_LOW #define MMU_SIZE (0x3f0000) #define MMU_BLOCK63_VADDR (MMU_BLOCK0_VADDR + MMU_SIZE) #define FLASH_READ_VADDR MMU_BLOCK63_VADDR #endif #define MMU_FREE_PAGES (MMU_SIZE / FLASH_BLOCK_SIZE) static bool mapped; // Current bootloader mapping (ab)used for bootloader_read() static uint32_t current_read_mapping = UINT32_MAX; uint32_t bootloader_mmap_get_free_pages(void) { /** * Allow mapping up to 50 of the 51 available MMU blocks (last one used for reads) * Since, bootloader_mmap function below assumes it to be 0x320000 (50 pages), we can safely do this. */ return MMU_FREE_PAGES; } const void *bootloader_mmap(uint32_t src_addr, uint32_t size) { if (mapped) { ESP_LOGE(TAG, "tried to bootloader_mmap twice"); return NULL; /* can't map twice */ } if (size > MMU_SIZE) { ESP_LOGE(TAG, "bootloader_mmap excess size %x", size); return NULL; } uint32_t src_addr_aligned = src_addr & MMU_FLASH_MASK; uint32_t count = bootloader_cache_pages_to_map(size, src_addr); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Disable(0); Cache_Flush(0); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #elif CONFIG_IDF_TARGET_ESP32S3 uint32_t autoload = Cache_Suspend_DCache(); Cache_Invalidate_DCache_All(); #elif CONFIG_IDF_TARGET_ESP32C3 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #elif CONFIG_IDF_TARGET_ESP32H2 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #endif ESP_LOGD(TAG, "mmu set paddr=%08x count=%d size=%x src_addr=%x src_addr_aligned=%x", src_addr & MMU_FLASH_MASK, count, size, src_addr, src_addr_aligned ); #if CONFIG_IDF_TARGET_ESP32 int e = cache_flash_mmu_set(0, 0, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count); #elif CONFIG_IDF_TARGET_ESP32S2 int e = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count, 0); #else // S3, C3, H2 int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count, 0); #endif if (e != 0) { ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d\n", e); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32H2 Cache_Resume_ICache(autoload); #endif return NULL; } #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32H2 Cache_Resume_ICache(autoload); #endif mapped = true; return (void *)(MMU_BLOCK0_VADDR + (src_addr - src_addr_aligned)); } void bootloader_munmap(const void *mapping) { if (mapped) { #if CONFIG_IDF_TARGET_ESP32 /* Full MMU reset */ Cache_Read_Disable(0); Cache_Flush(0); mmu_init(0); #elif CONFIG_IDF_TARGET_ESP32S2 //TODO, save the autoload value. Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); Cache_MMU_Init(); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Suspend_DCache(); Cache_Invalidate_DCache_All(); Cache_MMU_Init(); #elif CONFIG_IDF_TARGET_ESP32C3 //TODO, save the autoload value. Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); Cache_MMU_Init(); #elif CONFIG_IDF_TARGET_ESP32H2 Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); Cache_MMU_Init(); #endif mapped = false; current_read_mapping = UINT32_MAX; } } static esp_err_t spi_to_esp_err(esp_rom_spiflash_result_t r) { switch (r) { case ESP_ROM_SPIFLASH_RESULT_OK: return ESP_OK; case ESP_ROM_SPIFLASH_RESULT_ERR: return ESP_ERR_FLASH_OP_FAIL; case ESP_ROM_SPIFLASH_RESULT_TIMEOUT: return ESP_ERR_FLASH_OP_TIMEOUT; default: return ESP_FAIL; } } static esp_err_t bootloader_flash_read_no_decrypt(size_t src_addr, void *dest, size_t size) { #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Disable(0); Cache_Flush(0); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t autoload = Cache_Suspend_ICache(); #elif CONFIG_IDF_TARGET_ESP32S3 uint32_t autoload = Cache_Suspend_DCache(); #elif CONFIG_IDF_TARGET_ESP32C3 uint32_t autoload = Cache_Suspend_ICache(); #elif CONFIG_IDF_TARGET_ESP32H2 uint32_t autoload = Cache_Suspend_ICache(); #endif esp_rom_spiflash_result_t r = esp_rom_spiflash_read(src_addr, dest, size); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32H2 Cache_Resume_ICache(autoload); #endif return spi_to_esp_err(r); } static esp_err_t bootloader_flash_read_allow_decrypt(size_t src_addr, void *dest, size_t size) { uint32_t *dest_words = (uint32_t *)dest; for (size_t word = 0; word < size / 4; word++) { uint32_t word_src = src_addr + word * 4; /* Read this offset from flash */ uint32_t map_at = word_src & MMU_FLASH_MASK; /* Map this 64KB block from flash */ uint32_t *map_ptr; if (map_at != current_read_mapping) { /* Move the 64KB mmu mapping window to fit map_at */ #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Disable(0); Cache_Flush(0); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #elif CONFIG_IDF_TARGET_ESP32S3 uint32_t autoload = Cache_Suspend_DCache(); Cache_Invalidate_DCache_All(); #elif CONFIG_IDF_TARGET_ESP32C3 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #elif CONFIG_IDF_TARGET_ESP32H2 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #endif ESP_LOGD(TAG, "mmu set block paddr=0x%08x (was 0x%08x)", map_at, current_read_mapping); #if CONFIG_IDF_TARGET_ESP32 int e = cache_flash_mmu_set(0, 0, FLASH_READ_VADDR, map_at, 64, 1); #elif CONFIG_IDF_TARGET_ESP32S2 int e = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0); #elif CONFIG_IDF_TARGET_ESP32S3 int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0); #elif CONFIG_IDF_TARGET_ESP32C3 int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0); #elif CONFIG_IDF_TARGET_ESP32H2 int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0); #endif if (e != 0) { ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d\n", e); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32H2 Cache_Resume_ICache(autoload); #endif return ESP_FAIL; } current_read_mapping = map_at; #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32H2 Cache_Resume_ICache(autoload); #endif } map_ptr = (uint32_t *)(FLASH_READ_VADDR + (word_src - map_at)); dest_words[word] = *map_ptr; } return ESP_OK; } esp_err_t bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt) { if (src_addr & 3) { ESP_LOGE(TAG, "bootloader_flash_read src_addr 0x%x not 4-byte aligned", src_addr); return ESP_FAIL; } if (size & 3) { ESP_LOGE(TAG, "bootloader_flash_read size 0x%x not 4-byte aligned", size); return ESP_FAIL; } if ((intptr_t)dest & 3) { ESP_LOGE(TAG, "bootloader_flash_read dest 0x%x not 4-byte aligned", (intptr_t)dest); return ESP_FAIL; } if (allow_decrypt) { return bootloader_flash_read_allow_decrypt(src_addr, dest, size); } else { return bootloader_flash_read_no_decrypt(src_addr, dest, size); } } esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted) { esp_err_t err; size_t alignment = write_encrypted ? 32 : 4; if ((dest_addr % alignment) != 0) { ESP_LOGE(TAG, "bootloader_flash_write dest_addr 0x%x not %d-byte aligned", dest_addr, alignment); return ESP_FAIL; } if ((size % alignment) != 0) { ESP_LOGE(TAG, "bootloader_flash_write size 0x%x not %d-byte aligned", size, alignment); return ESP_FAIL; } if (((intptr_t)src % 4) != 0) { ESP_LOGE(TAG, "bootloader_flash_write src 0x%x not 4 byte aligned", (intptr_t)src); return ESP_FAIL; } err = bootloader_flash_unlock(); if (err != ESP_OK) { return err; } if (write_encrypted && !ENCRYPTION_IS_VIRTUAL) { return spi_to_esp_err(esp_rom_spiflash_write_encrypted(dest_addr, src, size)); } else { return spi_to_esp_err(esp_rom_spiflash_write(dest_addr, src, size)); } } esp_err_t bootloader_flash_erase_sector(size_t sector) { return spi_to_esp_err(esp_rom_spiflash_erase_sector(sector)); } esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size) { if (start_addr % FLASH_SECTOR_SIZE != 0) { return ESP_ERR_INVALID_ARG; } if (size % FLASH_SECTOR_SIZE != 0) { return ESP_ERR_INVALID_SIZE; } size_t start = start_addr / FLASH_SECTOR_SIZE; size_t end = start + size / FLASH_SECTOR_SIZE; const size_t sectors_per_block = FLASH_BLOCK_SIZE / FLASH_SECTOR_SIZE; esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK; for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) { if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) { rc = esp_rom_spiflash_erase_block(sector / sectors_per_block); sector += sectors_per_block; } else { rc = esp_rom_spiflash_erase_sector(sector); ++sector; } } return spi_to_esp_err(rc); } #endif // BOOTLOADER_BUILD FORCE_INLINE_ATTR bool is_issi_chip(const esp_rom_spiflash_chip_t* chip) { return BYTESHIFT(chip->device_id, 2) == ISSI_ID; } // For GD25Q32, GD25Q64, GD25Q127C, GD25Q128, which use single command to read/write different SR. FORCE_INLINE_ATTR bool is_gd_q_chip(const esp_rom_spiflash_chip_t* chip) { return BYTESHIFT(chip->device_id, 2) == GD_Q_ID_HIGH && BYTESHIFT(chip->device_id, 1) == GD_Q_ID_MID && BYTESHIFT(chip->device_id, 0) >= GD_Q_ID_LOW; } esp_err_t IRAM_ATTR __attribute__((weak)) bootloader_flash_unlock(void) { uint16_t status = 0; // status for SR1 or SR1+SR2 if writing SR with 01H + 2Bytes. uint16_t new_status = 0; uint8_t status_sr2 = 0; // status_sr2 for SR2. uint8_t new_status_sr2 = 0; uint8_t write_sr_bit = 0; esp_err_t err = ESP_OK; esp_rom_spiflash_wait_idle(&g_rom_flashchip); if (is_issi_chip(&g_rom_flashchip)) { write_sr_bit = ESP_BOOTLOADER_SPIFLASH_WRITE_8B; // ISSI chips have different QE position status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8); /* Clear all bits in the mask. (This is different from ROM esp_rom_spiflash_unlock, which keeps all bits as-is.) */ new_status = status & (~ESP_BOOTLOADER_SPIFLASH_BP_MASK_ISSI); // Skip if nothing needs to be cleared. Otherwise will waste time waiting for the flash to clear nothing. } else if (is_gd_q_chip(&g_rom_flashchip)) { /* The GD chips behaviour is to clear all bits in SR1 and clear bits in SR2 except QE bit. Use 01H to write SR1 and 31H to write SR2. */ write_sr_bit = ESP_BOOTLOADER_SPIFLASH_WRITE_8B; status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8); new_status = 0; status_sr2 = bootloader_execute_flash_command(CMD_RDSR2, 0, 0, 8); new_status_sr2 = status_sr2 & ESP_BOOTLOADER_SPIFLASH_QE_8B; } else { /* For common behaviour, like XMC chips, Use 01H+2Bytes to write both SR1 and SR2*/ write_sr_bit = ESP_BOOTLOADER_SPIFLASH_WRITE_16B; status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8) | (bootloader_execute_flash_command(CMD_RDSR2, 0, 0, 8) << 8); /* Clear all bits except QE, if it is set. (This is different from ROM esp_rom_spiflash_unlock, which keeps all bits as-is.) */ new_status = status & ESP_BOOTLOADER_SPIFLASH_QE_16B; } if (status != new_status) { /* if the status in SR not equal to the ideal status, the status need to be updated */ esp_rom_spiflash_wait_idle(&g_rom_flashchip); bootloader_execute_flash_command(CMD_WREN, 0, 0, 0); esp_rom_spiflash_wait_idle(&g_rom_flashchip); bootloader_execute_flash_command(CMD_WRSR, new_status, write_sr_bit, 0); esp_rom_spiflash_wait_idle(&g_rom_flashchip); } if (status_sr2 != new_status_sr2) { /* If the status in SR2 not equal to the ideal status, the status need to be updated. It doesn't need to be updated if status in SR2 is 0. Note: if we need to update both SR1 and SR2, the `CMD_WREN` needs to be sent again. */ esp_rom_spiflash_wait_idle(&g_rom_flashchip); bootloader_execute_flash_command(CMD_WREN, 0, 0, 0); esp_rom_spiflash_wait_idle(&g_rom_flashchip); bootloader_execute_flash_command(CMD_WRSR2, new_status_sr2, write_sr_bit, 0); esp_rom_spiflash_wait_idle(&g_rom_flashchip); } bootloader_execute_flash_command(CMD_WRDI, 0, 0, 0); esp_rom_spiflash_wait_idle(&g_rom_flashchip); return err; } /* dummy_len_plus values defined in ROM for SPI flash configuration */ #ifndef g_rom_spiflash_dummy_len_plus // ESP32-C3 uses a macro to access ROM data here extern uint8_t g_rom_spiflash_dummy_len_plus[]; #endif IRAM_ATTR static uint32_t bootloader_flash_execute_command_common( uint8_t command, uint32_t addr_len, uint32_t address, uint8_t dummy_len, uint8_t mosi_len, uint32_t mosi_data, uint8_t miso_len) { assert(mosi_len <= 32); assert(miso_len <= 32); uint32_t old_ctrl_reg = SPIFLASH.ctrl.val; uint32_t old_user_reg = SPIFLASH.user.val; uint32_t old_user1_reg = SPIFLASH.user1.val; #if CONFIG_IDF_TARGET_ESP32 SPIFLASH.ctrl.val = SPI_WP_REG_M; // keep WP high while idle, otherwise leave DIO mode #else SPIFLASH.ctrl.val = SPI_MEM_WP_REG_M; // keep WP high while idle, otherwise leave DIO mode #endif //command phase SPIFLASH.user.usr_command = 1; SPIFLASH.user2.usr_command_bitlen = 7; SPIFLASH.user2.usr_command_value = command; //addr phase SPIFLASH.user.usr_addr = addr_len > 0; SPIFLASH.user1.usr_addr_bitlen = addr_len - 1; #if CONFIG_IDF_TARGET_ESP32 SPIFLASH.addr = (addr_len > 0)? (address << (32-addr_len)) : 0; #else SPIFLASH.addr = address; #endif //dummy phase if (miso_len > 0) { uint32_t total_dummy = dummy_len + g_rom_spiflash_dummy_len_plus[1]; SPIFLASH.user.usr_dummy = total_dummy > 0; SPIFLASH.user1.usr_dummy_cyclelen = total_dummy - 1; } else { SPIFLASH.user.usr_dummy = 0; SPIFLASH.user1.usr_dummy_cyclelen = 0; } //output data SPIFLASH.user.usr_mosi = mosi_len > 0; #if CONFIG_IDF_TARGET_ESP32 SPIFLASH.mosi_dlen.usr_mosi_dbitlen = mosi_len ? (mosi_len - 1) : 0; #else SPIFLASH.mosi_dlen.usr_mosi_bit_len = mosi_len ? (mosi_len - 1) : 0; #endif SPIFLASH.data_buf[0] = mosi_data; //input data SPIFLASH.user.usr_miso = miso_len > 0; #if CONFIG_IDF_TARGET_ESP32 SPIFLASH.miso_dlen.usr_miso_dbitlen = miso_len ? (miso_len - 1) : 0; #else SPIFLASH.miso_dlen.usr_miso_bit_len = miso_len ? (miso_len - 1) : 0; #endif SPIFLASH.cmd.usr = 1; while (SPIFLASH.cmd.usr != 0) { } SPIFLASH.ctrl.val = old_ctrl_reg; SPIFLASH.user.val = old_user_reg; SPIFLASH.user1.val = old_user1_reg; uint32_t ret = SPIFLASH.data_buf[0]; if (miso_len < 32) { //set unused bits to 0 ret &= ~(UINT32_MAX << miso_len); } return ret; } uint32_t IRAM_ATTR bootloader_execute_flash_command(uint8_t command, uint32_t mosi_data, uint8_t mosi_len, uint8_t miso_len) { const uint8_t addr_len = 0; const uint8_t address = 0; const uint8_t dummy_len = 0; return bootloader_flash_execute_command_common(command, addr_len, address, dummy_len, mosi_len, mosi_data, miso_len); } // cmd(0x5A) + 24bit address + 8 cycles dummy uint32_t IRAM_ATTR bootloader_flash_read_sfdp(uint32_t sfdp_addr, unsigned int miso_byte_num) { assert(miso_byte_num <= 4); const uint8_t command = CMD_RDSFDP; const uint8_t addr_len = 24; const uint8_t dummy_len = 8; const uint8_t mosi_len = 0; const uint32_t mosi_data = 0; const uint8_t miso_len = miso_byte_num * 8; return bootloader_flash_execute_command_common(command, addr_len, sfdp_addr, dummy_len, mosi_len, mosi_data, miso_len); } void bootloader_enable_wp(void) { bootloader_execute_flash_command(CMD_WRDI, 0, 0, 0); /* Exit OTP mode */ } uint32_t IRAM_ATTR bootloader_read_flash_id(void) { uint32_t id = bootloader_execute_flash_command(CMD_RDID, 0, 0, 24); id = ((id & 0xff) << 16) | ((id >> 16) & 0xff) | (id & 0xff00); return id; } #if SOC_CACHE_SUPPORT_WRAP esp_err_t bootloader_flash_wrap_set(spi_flash_wrap_mode_t mode) { uint32_t reg_bkp_ctrl = SPIFLASH.ctrl.val; uint32_t reg_bkp_usr = SPIFLASH.user.val; SPIFLASH.user.fwrite_dio = 0; SPIFLASH.user.fwrite_dual = 0; SPIFLASH.user.fwrite_qio = 1; SPIFLASH.user.fwrite_quad = 0; SPIFLASH.ctrl.fcmd_dual = 0; SPIFLASH.ctrl.fcmd_quad = 0; SPIFLASH.user.usr_dummy = 0; SPIFLASH.user.usr_addr = 1; SPIFLASH.user.usr_command = 1; SPIFLASH.user2.usr_command_bitlen = 7; SPIFLASH.user2.usr_command_value = CMD_WRAP; SPIFLASH.user1.usr_addr_bitlen = 23; SPIFLASH.addr = 0; SPIFLASH.user.usr_miso = 0; SPIFLASH.user.usr_mosi = 1; SPIFLASH.mosi_dlen.usr_mosi_bit_len = 7; SPIFLASH.data_buf[0] = (uint32_t) mode << 4;; SPIFLASH.cmd.usr = 1; while(SPIFLASH.cmd.usr != 0) { } SPIFLASH.ctrl.val = reg_bkp_ctrl; SPIFLASH.user.val = reg_bkp_usr; return ESP_OK; } #endif //SOC_CACHE_SUPPORT_WRAP /******************************************************************************* * XMC startup flow ******************************************************************************/ #define XMC_SUPPORT CONFIG_BOOTLOADER_FLASH_XMC_SUPPORT #define XMC_VENDOR_ID 0x20 #if BOOTLOADER_BUILD #define BOOTLOADER_FLASH_LOG(level, ...) ESP_LOG##level(TAG, ##__VA_ARGS__) #else static DRAM_ATTR char bootloader_flash_tag[] = "bootloader_flash"; #define BOOTLOADER_FLASH_LOG(level, ...) ESP_DRAM_LOG##level(bootloader_flash_tag, ##__VA_ARGS__) #endif #if XMC_SUPPORT //strictly check the model static IRAM_ATTR bool is_xmc_chip_strict(uint32_t rdid) { uint32_t vendor_id = BYTESHIFT(rdid, 2); uint32_t mfid = BYTESHIFT(rdid, 1); uint32_t cpid = BYTESHIFT(rdid, 0); if (vendor_id != XMC_VENDOR_ID) { return false; } bool matched = false; if (mfid == 0x40) { if (cpid >= 0x13 && cpid <= 0x20) { matched = true; } } else if (mfid == 0x41) { if (cpid >= 0x17 && cpid <= 0x20) { matched = true; } } else if (mfid == 0x50) { if (cpid >= 0x15 && cpid <= 0x16) { matched = true; } } return matched; } esp_err_t IRAM_ATTR bootloader_flash_xmc_startup(void) { // If the RDID value is a valid XMC one, may skip the flow const bool fast_check = true; if (fast_check && is_xmc_chip_strict(g_rom_flashchip.device_id)) { BOOTLOADER_FLASH_LOG(D, "XMC chip detected by RDID (%08X), skip.", g_rom_flashchip.device_id); return ESP_OK; } // Check the Manufacturer ID in SFDP registers (JEDEC standard). If not XMC chip, no need to run the flow const int sfdp_mfid_addr = 0x10; uint8_t mf_id = (bootloader_flash_read_sfdp(sfdp_mfid_addr, 1) & 0xff); if (mf_id != XMC_VENDOR_ID) { BOOTLOADER_FLASH_LOG(D, "non-XMC chip detected by SFDP Read (%02X), skip.", mf_id); return ESP_OK; } BOOTLOADER_FLASH_LOG(I, "XM25QHxxC startup flow"); // Enter DPD bootloader_execute_flash_command(0xB9, 0, 0, 0); // Enter UDPD bootloader_execute_flash_command(0x79, 0, 0, 0); // Exit UDPD bootloader_execute_flash_command(0xFF, 0, 0, 0); // Delay tXUDPD esp_rom_delay_us(2000); // Release Power-down bootloader_execute_flash_command(0xAB, 0, 0, 0); esp_rom_delay_us(20); // Read flash ID and check again g_rom_flashchip.device_id = bootloader_read_flash_id(); if (!is_xmc_chip_strict(g_rom_flashchip.device_id)) { BOOTLOADER_FLASH_LOG(E, "XMC flash startup fail"); return ESP_FAIL; } return ESP_OK; } #else //only compare the vendor id static IRAM_ATTR bool is_xmc_chip(uint32_t rdid) { uint32_t vendor_id = (rdid >> 16) & 0xFF; return (vendor_id == XMC_VENDOR_ID); } esp_err_t IRAM_ATTR bootloader_flash_xmc_startup(void) { if (is_xmc_chip(g_rom_flashchip.device_id)) { BOOTLOADER_FLASH_LOG(E, "XMC chip detected (%08X) while support disabled.", g_rom_flashchip.device_id); return ESP_FAIL; } return ESP_OK; } #endif //XMC_SUPPORT