// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "soc/soc_caps.h" #include "hal/adc_hal.h" #include "hal/adc_hal_conf.h" #include "sdkconfig.h" #include #if CONFIG_IDF_TARGET_ESP32C3 #include "soc/gdma_channel.h" #include "soc/soc.h" #include "esp_rom_sys.h" typedef enum { ADC_EVENT_ADC1_DONE = BIT(0), ADC_EVENT_ADC2_DONE = BIT(1), } adc_hal_event_t; #endif void adc_hal_init(void) { // Set internal FSM wait time, fixed value. adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT, SOC_ADC_FSM_STANDBY_WAIT_DEFAULT); adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT); adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT); adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1)); adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2)); adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT); } void adc_hal_deinit(void) { adc_ll_set_power_manage(ADC_POWER_SW_OFF); } /*--------------------------------------------------------------- ADC calibration setting ---------------------------------------------------------------*/ #if SOC_ADC_HW_CALIBRATION_V1 // ESP32-S2 and C3 support HW offset calibration. void adc_hal_calibration_init(adc_ll_num_t adc_n) { adc_ll_calibration_init(adc_n); } static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1}; void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param) { if (param != s_previous_init_code[adc_n]) { adc_ll_set_calibration_param(adc_n, param); s_previous_init_code[adc_n] = param; } } #if CONFIG_IDF_TARGET_ESP32S2 static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd) { adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller /* Enable/disable internal connect GND (for calibration). */ if (internal_gnd) { adc_ll_rtc_disable_channel(adc_n); adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param. } else { adc_ll_rtc_enable_channel(adc_n, channel); adc_ll_set_atten(adc_n, channel, atten); } } static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel) { adc_ll_rtc_start_convert(adc_n, channel); while (adc_ll_rtc_convert_is_done(adc_n) != true); return (uint32_t)adc_ll_rtc_get_convert_value(adc_n); } #elif CONFIG_IDF_TARGET_ESP32C3 static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd) { adc_ll_onetime_sample_enable(ADC_NUM_1, false); adc_ll_onetime_sample_enable(ADC_NUM_2, false); /* Enable/disable internal connect GND (for calibration). */ if (internal_gnd) { const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1; adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan); } else { adc_ll_onetime_set_channel(adc_n, channel); } adc_ll_onetime_set_atten(atten); adc_ll_onetime_sample_enable(adc_n, true); } static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel) { adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE); adc_ll_onetime_start(false); esp_rom_delay_us(5); adc_ll_onetime_start(true); while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE)); uint32_t read_val = -1; if (adc_n == ADC_NUM_1) { read_val = adc_ll_adc1_read(); } else if (adc_n == ADC_NUM_2) { read_val = adc_ll_adc2_read(); if (adc_ll_analysis_raw_data(adc_n, read_val)) { return -1; } } return read_val; } #endif //CONFIG_IDF_TARGET_* #define ADC_HAL_CAL_TIMES (10) #define ADC_HAL_CAL_OFFSET_RANGE (4096) uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd) { if (adc_n == ADC_NUM_2) { adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config); } cal_setup(adc_n, channel, atten, internal_gnd); adc_ll_calibration_prepare(adc_n, channel, internal_gnd); uint32_t code_list[ADC_HAL_CAL_TIMES] = {0}; uint32_t code_sum = 0; uint32_t code_h = 0; uint32_t code_l = 0; uint32_t chk_code = 0; for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) { code_h = ADC_HAL_CAL_OFFSET_RANGE; code_l = 0; chk_code = (code_h + code_l) / 2; adc_ll_set_calibration_param(adc_n, chk_code); uint32_t self_cal = read_cal_channel(adc_n, channel); while (code_h - code_l > 1) { if (self_cal == 0) { code_h = chk_code; } else { code_l = chk_code; } chk_code = (code_h + code_l) / 2; adc_ll_set_calibration_param(adc_n, chk_code); self_cal = read_cal_channel(adc_n, channel); if ((code_h - code_l == 1)) { chk_code += 1; adc_ll_set_calibration_param(adc_n, chk_code); self_cal = read_cal_channel(adc_n, channel); } } code_list[rpt] = chk_code; code_sum += chk_code; } code_l = code_list[0]; code_h = code_list[0]; for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) { code_l = MIN(code_l, code_list[i]); code_h = MAX(code_h, code_list[i]); } chk_code = code_h + code_l; uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4) ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1; adc_ll_calibration_finish(adc_n); return ret; } #endif //SOC_ADC_HW_CALIBRATION_V1 #if CONFIG_IDF_TARGET_ESP32C3 //This feature is currently supported on ESP32C3, will be supported on other chips soon /*--------------------------------------------------------------- DMA setting ---------------------------------------------------------------*/ void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config) { hal->dev = &GDMA; hal->desc_dummy_head.next = hal->rx_desc; hal->desc_max_num = config->desc_max_num; hal->dma_chan = config->dma_chan; hal->eof_num = config->eof_num; } void adc_hal_digi_init(adc_hal_context_t *hal) { gdma_ll_clear_interrupt_status(hal->dev, hal->dma_chan, UINT32_MAX); gdma_ll_enable_interrupt(hal->dev, hal->dma_chan, GDMA_LL_EVENT_RX_SUC_EOF, true); adc_ll_digi_dma_set_eof_num(hal->eof_num); adc_ll_onetime_sample_enable(ADC_NUM_1, false); adc_ll_onetime_sample_enable(ADC_NUM_2, false); } void adc_hal_fifo_reset(adc_hal_context_t *hal) { adc_ll_digi_reset(); gdma_ll_rx_reset_channel(hal->dev, hal->dma_chan); } static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num) { assert(((uint32_t)data_buf % 4) == 0); assert((size % 4) == 0); uint32_t n = 0; while (num--) { desc[n].dw0.size = size; desc[n].dw0.suc_eof = 0; desc[n].dw0.owner = 1; desc[n].buffer = data_buf; desc[n].next = &desc[n+1]; data_buf += size; n++; } desc[n-1].next = NULL; } void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf) { //reset the current descriptor address hal->cur_desc_ptr = &hal->desc_dummy_head; adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num); gdma_ll_rx_set_desc_addr(hal->dev, hal->dma_chan, (uint32_t)hal->rx_desc); gdma_ll_rx_start(hal->dev, hal->dma_chan); } void adc_hal_digi_start(adc_hal_context_t *hal) { //the ADC data will be sent to the DMA adc_ll_digi_dma_enable(); //enable sar adc timer adc_ll_digi_trigger_enable(); } adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc) { assert(hal->cur_desc_ptr); if (!hal->cur_desc_ptr->next) { return ADC_HAL_DMA_DESC_NULL; } if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) { return ADC_HAL_DMA_DESC_WAITING; } hal->cur_desc_ptr = hal->cur_desc_ptr->next; *cur_desc = hal->cur_desc_ptr; return ADC_HAL_DMA_DESC_VALID; } void adc_hal_digi_rxdma_stop(adc_hal_context_t *hal) { gdma_ll_rx_stop(hal->dev, hal->dma_chan); } void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask) { gdma_ll_clear_interrupt_status(hal->dev, hal->dma_chan, mask); } void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask) { gdma_ll_enable_interrupt(hal->dev, hal->dma_chan, mask, false); } void adc_hal_digi_stop(adc_hal_context_t *hal) { //Set to 0: the ADC data won't be sent to the DMA adc_ll_digi_dma_disable(); //disable sar adc timer adc_ll_digi_trigger_disable(); } /*--------------------------------------------------------------- Single Read ---------------------------------------------------------------*/ //--------------------INTR-------------------------------// static adc_ll_intr_t get_event_intr(adc_hal_event_t event) { adc_ll_intr_t intr_mask = 0; if (event & ADC_EVENT_ADC1_DONE) { intr_mask |= ADC_LL_INTR_ADC1_DONE; } if (event & ADC_EVENT_ADC2_DONE) { intr_mask |= ADC_LL_INTR_ADC2_DONE; } return intr_mask; } static void adc_hal_intr_clear(adc_hal_event_t event) { adc_ll_intr_clear(get_event_intr(event)); } static bool adc_hal_intr_get_raw(adc_hal_event_t event) { return adc_ll_intr_get_raw(get_event_intr(event)); } //--------------------Single Read-------------------------------// static void adc_hal_onetime_start(void) { /** * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller * clock cycle. * * This limitation will be removed in hardware future versions. * */ uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1); //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough. uint32_t delay = (1000 * 1000) / digi_clk + 1; //3 ADC digital controller clock cycle delay = delay * 3; //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed. if (digi_clk >= APB_CLK_FREQ/8) { delay = 0; } adc_ll_onetime_start(false); esp_rom_delay_us(delay); adc_ll_onetime_start(true); //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr. } static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw) { if (adc_n == ADC_NUM_1) { *out_raw = adc_ll_adc1_read(); } else if (adc_n == ADC_NUM_2) { *out_raw = adc_ll_adc2_read(); if (adc_ll_analysis_raw_data(adc_n, *out_raw)) { return ESP_ERR_INVALID_STATE; } } return ESP_OK; } esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw) { esp_err_t ret; adc_hal_event_t event; if (adc_n == ADC_NUM_1) { event = ADC_EVENT_ADC1_DONE; } else { event = ADC_EVENT_ADC2_DONE; } adc_hal_intr_clear(event); adc_ll_onetime_sample_enable(ADC_NUM_1, false); adc_ll_onetime_sample_enable(ADC_NUM_2, false); adc_ll_onetime_sample_enable(adc_n, true); adc_ll_onetime_set_channel(adc_n, channel); //Trigger single read. adc_hal_onetime_start(); while (!adc_hal_intr_get_raw(event)); ret = adc_hal_single_read(adc_n, out_raw); return ret; } #else // !CONFIG_IDF_TARGET_ESP32C3 esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw) { adc_ll_rtc_enable_channel(adc_n, channel); adc_ll_rtc_start_convert(adc_n, channel); while (adc_ll_rtc_convert_is_done(adc_n) != true); *out_raw = adc_ll_rtc_get_convert_value(adc_n); if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) { return ESP_ERR_INVALID_STATE; } return ESP_OK; } #endif //#if !CONFIG_IDF_TARGET_ESP32C3