/* * SPDX-FileCopyrightText: 2017-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include "soc/soc.h" #include "soc/rtc.h" #include "soc/chip_revision.h" #include "hal/efuse_hal.h" #if !CONFIG_IDF_TARGET_ESP32C6 && !CONFIG_IDF_TARGET_ESP32H2 && !CONFIG_IDF_TARGET_ESP32P4 && !CONFIG_IDF_TARGET_ESP32C5 &&! CONFIG_IDF_TARGET_ESP32C61 // TODO: IDF-5645 #include "soc/rtc_cntl_reg.h" #else #include "soc/lp_wdt_reg.h" #include "soc/lp_timer_reg.h" #include "soc/lp_analog_peri_reg.h" #include "soc/pmu_reg.h" #endif #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32C5 #include "hal/clk_tree_ll.h" #endif #include "esp_rom_sys.h" #include "esp_rom_uart.h" __attribute__((weak)) void bootloader_clock_configure(void) { // ROM bootloader may have put a lot of text into UART0 FIFO. // Wait for it to be printed. // This is not needed on power on reset, when ROM bootloader is running at // 40 MHz. But in case of TG WDT reset, CPU may still be running at >80 MHZ, // and will be done with the bootloader much earlier than UART FIFO is empty. esp_rom_output_tx_wait_idle(0); /* Set CPU to a higher certain frequency. Keep other clocks unmodified. */ int cpu_freq_mhz = CPU_CLK_FREQ_MHZ_BTLD; #if CONFIG_IDF_TARGET_ESP32 /* On ESP32 rev 0, switching to 80/160 MHz if clock was previously set to * 240 MHz may cause the chip to lock up (see section 3.5 of the errata * document). For rev. 0, switch to 240 instead if it has been enabled * previously. */ if (!ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 100) && clk_ll_cpu_get_freq_mhz_from_pll() == CLK_LL_PLL_240M_FREQ_MHZ) { cpu_freq_mhz = 240; } #endif if (esp_rom_get_reset_reason(0) != RESET_REASON_CPU0_SW || rtc_clk_apb_freq_get() < APB_CLK_FREQ) { rtc_clk_config_t clk_cfg = RTC_CLK_CONFIG_DEFAULT(); clk_cfg.cpu_freq_mhz = cpu_freq_mhz; #if CONFIG_IDF_TARGET_ESP32C5 // TODO: [ESP32C5] IDF-9009 Check whether SOC_RTC_SLOW_CLK_SRC_RC_SLOW can be used on C5 MP // RC150K can't do calibrate on ESP32C5MPW so not use it clk_cfg.slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC32K; #else // Use RTC_SLOW clock source sel register field's default value, RC_SLOW, for 2nd stage bootloader // RTC_SLOW clock source will be switched according to Kconfig selection at application startup clk_cfg.slow_clk_src = rtc_clk_slow_src_get(); if (clk_cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_INVALID) { clk_cfg.slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW; } #endif //TODO: [ESP32C61] IDF-9274, basic rtc support #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61 // TODO: IDF-5781 Some of esp32c6 SOC_RTC_FAST_CLK_SRC_XTAL_D2 rtc_fast clock has timing issue // Force to use SOC_RTC_FAST_CLK_SRC_RC_FAST since 2nd stage bootloader clk_cfg.fast_clk_src = SOC_RTC_FAST_CLK_SRC_RC_FAST; #else // Use RTC_FAST clock source sel register field's default value, XTAL_DIV, for 2nd stage bootloader // RTC_FAST clock source will be switched to RC_FAST at application startup clk_cfg.fast_clk_src = rtc_clk_fast_src_get(); if (clk_cfg.fast_clk_src == SOC_RTC_FAST_CLK_SRC_INVALID) { clk_cfg.fast_clk_src = SOC_RTC_FAST_CLK_SRC_XTAL_DIV; } #endif rtc_clk_init(clk_cfg); } /* As a slight optimization, if 32k XTAL was enabled in sdkconfig, we enable * it here. Usually it needs some time to start up, so we amortize at least * part of the start up time by enabling 32k XTAL early. * App startup code will wait until the oscillator has started up. */ #if CONFIG_ESP_SYSTEM_RTC_EXT_XTAL if (!rtc_clk_32k_enabled()) { rtc_clk_32k_bootstrap(CONFIG_ESP_SYSTEM_RTC_EXT_XTAL_BOOTSTRAP_CYCLES); } #endif // CONFIG_ESP_SYSTEM_RTC_EXT_XTAL // TODO: IDF-8938 Need refactor! Does not belong to clock configuration. #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61 #if CONFIG_IDF_TARGET_ESP32C5 || CONFIG_IDF_TARGET_ESP32C61 #define LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG LP_ANA_LP_INT_ENA_REG #define LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA LP_ANA_BOD_MODE0_LP_INT_ENA #define LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG LP_ANA_LP_INT_CLR_REG #define LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR LP_ANA_BOD_MODE0_LP_INT_CLR #endif // CLR ENA CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */ CLEAR_PERI_REG_MASK(LP_TIMER_LP_INT_ENA_REG, LP_TIMER_MAIN_TIMER_LP_INT_ENA); /* MAIN_TIMER */ CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */ CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */ CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */ CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */ // SET CLR SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */ SET_PERI_REG_MASK(LP_TIMER_LP_INT_CLR_REG, LP_TIMER_MAIN_TIMER_LP_INT_CLR); /* MAIN_TIMER */ SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR); /* BROWN_OUT */ SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */ #elif CONFIG_IDF_TARGET_ESP32H2 // CLR ENA CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */ CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */ CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */ CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */ CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */ // SET CLR SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */ SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR); /* BROWN_OUT */ SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */ SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_WAKEUP_INT_CLR); /* SLP_REJECT */ SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_SLEEP_REJECT_INT_CLR); /* SLP_WAKEUP */ #elif CONFIG_IDF_TARGET_ESP32P4 // CLR ENA CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */ CLEAR_PERI_REG_MASK(LP_TIMER_LP_INT_ENA_REG, LP_TIMER_MAIN_TIMER_LP_INT_ENA); /* MAIN_TIMER */ CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_INT_ENA_REG, LP_ANALOG_PERI_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */ CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */ CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */ CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */ // SET CLR SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */ SET_PERI_REG_MASK(LP_TIMER_LP_INT_CLR_REG, LP_TIMER_MAIN_TIMER_LP_INT_CLR); /* MAIN_TIMER */ SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_INT_CLR_REG); /* BROWN_OUT */ SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */ #else REG_WRITE(RTC_CNTL_INT_ENA_REG, 0); REG_WRITE(RTC_CNTL_INT_CLR_REG, UINT32_MAX); #endif }