// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_log.h" #include "esp_err.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/xtensa_api.h" #include "freertos/task.h" #include "soc/gpio_periph.h" #include "driver/mcpwm.h" #include "driver/periph_ctrl.h" #include "sdkconfig.h" #include "hal/mcpwm_hal.h" #include "hal/gpio_hal.h" #include "esp_rom_gpio.h" typedef struct { mcpwm_hal_context_t hal; portMUX_TYPE spinlock; } mcpwm_context_t; #define CONTEXT_INITIALIZER() { \ .spinlock = portMUX_INITIALIZER_UNLOCKED, \ .hal = { \ .prescale = MCPWM_CLK_PRESCL, \ }, \ } static const char *MCPWM_TAG = "MCPWM"; #define MCPWM_CHECK(a, str, ret_val) if (!(a)) { \ ESP_LOGE(MCPWM_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } #define MCPWM_DRIVER_INIT_ERROR "MCPWM DRIVER NOT INITIALIZED" #define MCPWM_UNIT_NUM_ERROR "MCPWM UNIT NUM ERROR" #define MCPWM_TIMER_ERROR "MCPWM TIMER NUM ERROR" #define MCPWM_PARAM_ADDR_ERROR "MCPWM PARAM ADDR ERROR" #define MCPWM_DUTY_TYPE_ERROR "MCPWM DUTY TYPE ERROR" #define MCPWM_GPIO_ERROR "MCPWM GPIO NUM ERROR" #define MCPWM_GEN_ERROR "MCPWM GENERATOR ERROR" #define MCPWM_DB_ERROR "MCPWM DEADTIME TYPE ERROR" #define MCPWM_CLK_PRESCL 15 //MCPWM clock prescale #define TIMER_CLK_PRESCALE 9 //MCPWM timer prescales #define MCPWM_CLK (MCPWM_BASE_CLK/(MCPWM_CLK_PRESCL +1)) #define MCPWM_PIN_IGNORE (-1) #define OFFSET_FOR_GPIO_IDX_1 6 #define OFFSET_FOR_GPIO_IDX_2 75 _Static_assert(SOC_MCPWM_OP_NUM >= SOC_MCPWM_TIMER_NUM, "This driver assumes the timer num equals to the operator num."); _Static_assert(SOC_MCPWM_COMPARATOR_NUM >= SOC_MCPWM_GENERATOR_NUM, "This driver assumes the generator num equals to the generator num."); _Static_assert(SOC_MCPWM_GENERATOR_NUM == 2, "This driver assumes the generator num equals to 2."); #define MCPWM_TIMER_ID_CHECK(mcpwm_num, timer_num) do {\ MCPWM_CHECK((mcpwm_num) < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); \ MCPWM_CHECK((timer_num) < SOC_MCPWM_TIMER_NUM, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG); \ } while(0) #define MCPWM_TIMER_CHECK(mcpwm_num, timer_num) do{\ MCPWM_TIMER_ID_CHECK(mcpwm_num, timer_num); \ MCPWM_CHECK(context[mcpwm_num].hal.dev != NULL, MCPWM_DRIVER_INIT_ERROR, ESP_ERR_INVALID_STATE); \ } while(0) #define MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen) do{ \ MCPWM_TIMER_CHECK(mcpwm_num, timer_num); \ MCPWM_CHECK(gen < MCPWM_GEN_MAX, MCPWM_GEN_ERROR, ESP_ERR_INVALID_ARG); \ } while(0) static mcpwm_context_t context[SOC_MCPWM_PERIPH_NUM] = { CONTEXT_INITIALIZER(), CONTEXT_INITIALIZER(), }; static inline void mcpwm_critical_enter(mcpwm_unit_t mcpwm_num) { portENTER_CRITICAL(&context[mcpwm_num].spinlock); } static inline void mcpwm_critical_exit(mcpwm_unit_t mcpwm_num) { portEXIT_CRITICAL(&context[mcpwm_num].spinlock); } esp_err_t mcpwm_gpio_init(mcpwm_unit_t mcpwm_num, mcpwm_io_signals_t io_signal, int gpio_num) { if (gpio_num == MCPWM_PIN_IGNORE) { //IGNORE return ESP_OK; } MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); MCPWM_CHECK((GPIO_IS_VALID_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG); periph_module_enable(PERIPH_PWM0_MODULE + mcpwm_num); gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO); bool mcpwm_gpio_sig = (io_signal <= MCPWM2B); if (mcpwm_num == MCPWM_UNIT_0) { if (mcpwm_gpio_sig) { MCPWM_CHECK((GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG); gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(gpio_num, PWM0_OUT0A_IDX + io_signal, 0, 0); } else { gpio_set_direction(gpio_num, GPIO_MODE_INPUT); esp_rom_gpio_connect_in_signal(gpio_num, PWM0_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_1, 0); } } else { //MCPWM_UNIT_1 if (mcpwm_gpio_sig) { MCPWM_CHECK((GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG); gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(gpio_num, PWM1_OUT0A_IDX + io_signal, 0, 0); } else if (io_signal >= MCPWM_SYNC_0 && io_signal <= MCPWM_FAULT_2) { gpio_set_direction(gpio_num, GPIO_MODE_INPUT); esp_rom_gpio_connect_in_signal(gpio_num, PWM1_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_1, 0); } else { gpio_set_direction(gpio_num, GPIO_MODE_INPUT); esp_rom_gpio_connect_in_signal(gpio_num, PWM1_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_2, 0); } } return ESP_OK; } esp_err_t mcpwm_set_pin(mcpwm_unit_t mcpwm_num, const mcpwm_pin_config_t *mcpwm_pin) { MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); mcpwm_gpio_init(mcpwm_num, MCPWM0A, mcpwm_pin->mcpwm0a_out_num); //MCPWM0A mcpwm_gpio_init(mcpwm_num, MCPWM0B, mcpwm_pin->mcpwm0b_out_num); //MCPWM0B mcpwm_gpio_init(mcpwm_num, MCPWM1A, mcpwm_pin->mcpwm1a_out_num); //MCPWM1A mcpwm_gpio_init(mcpwm_num, MCPWM1B, mcpwm_pin->mcpwm1b_out_num); //MCPWM1B mcpwm_gpio_init(mcpwm_num, MCPWM2A, mcpwm_pin->mcpwm2a_out_num); //MCPWM2A mcpwm_gpio_init(mcpwm_num, MCPWM2B, mcpwm_pin->mcpwm2b_out_num); //MCPWM2B mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_0, mcpwm_pin->mcpwm_sync0_in_num); //SYNC0 mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_1, mcpwm_pin->mcpwm_sync1_in_num); //SYNC1 mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_2, mcpwm_pin->mcpwm_sync2_in_num); //SYNC2 mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_0, mcpwm_pin->mcpwm_fault0_in_num); //FAULT0 mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_1, mcpwm_pin->mcpwm_fault1_in_num); //FAULT1 mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_2, mcpwm_pin->mcpwm_fault2_in_num); //FAULT2 mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_0, mcpwm_pin->mcpwm_cap0_in_num); //CAP0 mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_1, mcpwm_pin->mcpwm_cap1_in_num); //CAP1 mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_2, mcpwm_pin->mcpwm_cap2_in_num); //CAP2 return ESP_OK; } esp_err_t mcpwm_start(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_hal_timer_start(&context[mcpwm_num].hal, timer_num); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_stop(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_hal_timer_stop(&context[mcpwm_num].hal, timer_num); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint32_t frequency) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); hal->timer[timer_num].freq = frequency; mcpwm_hal_timer_update_basic(hal, timer_num); //update the operator to update the duty mcpwm_hal_operator_update_basic(hal, op); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, float duty) { //the driver currently always use the timer x for operator x const int op = timer_num; //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output const int cmp = gen; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); hal->op[op].duty[cmp] = duty; mcpwm_hal_operator_update_comparator(hal, op, gen); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_duty_in_us(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, uint32_t duty_in_us) { //the driver currently always use the timer x for operator x const int op = timer_num; //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output const int cmp = gen; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); hal->op[op].duty[cmp] = (100 * duty_in_us * hal->timer[timer_num].freq) / (1000 * 1000.); mcpwm_hal_operator_update_comparator(hal, op, gen); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_duty_type(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, mcpwm_duty_type_t duty_type) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); MCPWM_CHECK(duty_type < MCPWM_DUTY_MODE_MAX, MCPWM_DUTY_TYPE_ERROR, ESP_ERR_INVALID_ARG); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) { .comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output .duty_type = duty_type, }; mcpwm_hal_operator_update_generator(hal, op, gen); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_config_t *mcpwm_conf) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_ID_CHECK(mcpwm_num, op); periph_module_enable(PERIPH_PWM0_MODULE + mcpwm_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_hal_init_config_t init_config = { .host_id = mcpwm_num, }; mcpwm_critical_enter(mcpwm_num); mcpwm_hal_init(hal, &init_config); mcpwm_hal_hw_init(hal); hal->timer[timer_num].timer_prescale = TIMER_CLK_PRESCALE; hal->timer[timer_num].freq = mcpwm_conf->frequency; hal->timer[timer_num].count_mode = mcpwm_conf->counter_mode; //the driver currently always use the timer x for operator x hal->op[op].timer = timer_num; hal->op[op].duty[0] = mcpwm_conf->cmpr_a; hal->op[op].duty[1] = mcpwm_conf->cmpr_b; mcpwm_hal_timer_update_basic(hal, timer_num); //update the comparer to keep the same duty rate mcpwm_hal_operator_update_basic(hal, op); for (int gen = 0; gen < SOC_MCPWM_GENERATOR_NUM; gen++) { hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) { .comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output .duty_type = mcpwm_conf->duty_mode, }; mcpwm_hal_operator_update_generator(hal, op, gen); } mcpwm_hal_timer_start(hal, timer_num); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } uint32_t mcpwm_get_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); return context[mcpwm_num].hal.timer[timer_num].freq; } float mcpwm_get_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); return context[mcpwm_num].hal.op[op].duty[gen]; } STATIC_HAL_REG_CHECK(MCPWM, MCPWM_GEN_A, 0); STATIC_HAL_REG_CHECK(MCPWM, MCPWM_GEN_B, 1); esp_err_t mcpwm_set_signal_high(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) { .comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output .duty_type = MCPWM_HAL_GENERATOR_MODE_FORCE_HIGH, }; mcpwm_hal_operator_update_generator(hal, op, gen); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_signal_low(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) { .comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output .duty_type = MCPWM_HAL_GENERATOR_MODE_FORCE_LOW, }; mcpwm_hal_operator_update_generator(hal, op, gen); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_enable(context[mcpwm_num].hal.dev, op, true); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_enable(context[mcpwm_num].hal.dev, op, false); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_set_period(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_period) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_set_prescale(context[mcpwm_num].hal.dev, op, carrier_period); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_set_duty_cycle(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_duty) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_set_duty(context[mcpwm_num].hal.dev, op, carrier_duty); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_oneshot_mode_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t pulse_width) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_set_oneshot_width(context[mcpwm_num].hal.dev, op, pulse_width); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_oneshot_mode_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { return mcpwm_carrier_oneshot_mode_enable(mcpwm_num, timer_num, 0); } esp_err_t mcpwm_carrier_output_invert(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_carrier_out_ivt_t carrier_ivt_mode) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_out_invert(context[mcpwm_num].hal.dev, op, carrier_ivt_mode); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_carrier_config_t *carrier_conf) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_hal_carrier_conf_t carrier = { .period = carrier_conf->carrier_period, .duty = carrier_conf->carrier_duty, .inverted = carrier_conf->carrier_ivt_mode, }; if (carrier_conf->carrier_os_mode == MCPWM_ONESHOT_MODE_EN) { carrier.oneshot_pulse_width = carrier_conf->pulse_width_in_os; } else { carrier.oneshot_pulse_width = 0; } mcpwm_critical_enter(mcpwm_num); mcpwm_hal_operator_enable_carrier(hal, op, &carrier); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_deadtime_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_deadtime_type_t dt_mode, uint32_t red, uint32_t fed) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); MCPWM_CHECK(dt_mode < MCPWM_DEADTIME_TYPE_MAX, MCPWM_DB_ERROR, ESP_ERR_INVALID_ARG); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_hal_deadzone_conf_t deadzone = { .red = red, .fed = fed, .mode = dt_mode, }; mcpwm_critical_enter(mcpwm_num); mcpwm_hal_operator_update_deadzone(hal, op, &deadzone); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_deadtime_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_hal_deadzone_conf_t deadzone = { .mode = MCPWM_DEADTIME_BYPASS }; mcpwm_critical_enter(mcpwm_num); mcpwm_hal_operator_update_deadzone(hal, op, &deadzone); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_init(mcpwm_unit_t mcpwm_num, mcpwm_fault_input_level_t intput_level, mcpwm_fault_signal_t fault_sig) { MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); mcpwm_critical_enter(mcpwm_num); mcpwm_hal_fault_init(&context[mcpwm_num].hal, fault_sig, intput_level); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_deinit(mcpwm_unit_t mcpwm_num, mcpwm_fault_signal_t fault_sig) { MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); mcpwm_critical_enter(mcpwm_num); mcpwm_hal_fault_disable(&context[mcpwm_num].hal, fault_sig); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_set_cyc_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig, mcpwm_output_action_t action_on_pwmxa, mcpwm_output_action_t action_on_pwmxb) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, op); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_fault_cbc_enable_signal(hal->dev, op, fault_sig, true); mcpwm_ll_fault_oneshot_enable_signal(hal->dev, op, fault_sig, false); mcpwm_ll_fault_set_cyc_action(hal->dev, op, 0, action_on_pwmxa, action_on_pwmxa); mcpwm_ll_fault_set_cyc_action(hal->dev, op, 1, action_on_pwmxb, action_on_pwmxb); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_set_oneshot_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig, mcpwm_action_on_pwmxa_t action_on_pwmxa, mcpwm_action_on_pwmxb_t action_on_pwmxb) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, op); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_hal_fault_oneshot_clear(hal, op); mcpwm_ll_fault_cbc_enable_signal(hal->dev, op, fault_sig, false); mcpwm_ll_fault_oneshot_enable_signal(hal->dev, op, fault_sig, true); mcpwm_ll_fault_set_oneshot_action(hal->dev, op, 0, action_on_pwmxa, action_on_pwmxa); mcpwm_ll_fault_set_oneshot_action(hal->dev, op, 1, action_on_pwmxb, action_on_pwmxb); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_capture_enable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig, mcpwm_capture_on_edge_t cap_edge, uint32_t num_of_pulse) { MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); mcpwm_hal_init_config_t init_config = { .host_id = mcpwm_num, }; mcpwm_hal_capture_config_t cap_conf = { .cap_edge = cap_edge, .prescale = num_of_pulse, }; mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); //We have to do this here, since there is no standalone init function //without enabling any PWM channels. mcpwm_hal_init(hal, &init_config); mcpwm_hal_hw_init(hal); mcpwm_hal_capture_enable(hal, cap_sig, &cap_conf); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_capture_disable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig) { MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); mcpwm_critical_enter(mcpwm_num); mcpwm_hal_capture_disable(&context[mcpwm_num].hal, cap_sig); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } uint32_t mcpwm_capture_signal_get_value(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig) { MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); uint32_t captured_value; mcpwm_hal_capture_get_result(&context[mcpwm_num].hal, cap_sig, &captured_value, NULL); return captured_value; } uint32_t mcpwm_capture_signal_get_edge(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig) { MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); mcpwm_capture_on_edge_t edge; mcpwm_hal_capture_get_result(&context[mcpwm_num].hal, cap_sig, NULL, &edge); return (edge == MCPWM_NEG_EDGE ? 2 : 1); } esp_err_t mcpwm_sync_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_sync_signal_t sync_sig, uint32_t phase_val) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_hal_sync_config_t sync_config = { .reload_permillage = phase_val, .sync_sig = sync_sig, }; mcpwm_critical_enter(mcpwm_num); mcpwm_hal_timer_enable_sync(hal, timer_num, &sync_config); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_sync_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_hal_timer_disable_sync(&context[mcpwm_num].hal, timer_num); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_isr_register(mcpwm_unit_t mcpwm_num, void (*fn)(void *), void *arg, int intr_alloc_flags, intr_handle_t *handle) { esp_err_t ret; MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); MCPWM_CHECK(fn != NULL, MCPWM_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG); ret = esp_intr_alloc((ETS_PWM0_INTR_SOURCE + mcpwm_num), intr_alloc_flags, fn, arg, handle); return ret; }