/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "sdkconfig.h" #include "esp_heap_caps.h" #include "esp_heap_caps_init.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "freertos/portmacro.h" #include "esp_types.h" #include "esp_mac.h" #include "esp_random.h" #include "esp_task.h" #include "esp_attr.h" #ifdef CONFIG_ESP_PHY_ENABLED #include "esp_phy_init.h" #include "esp_private/phy.h" #endif #include "esp_bt.h" #include "esp_err.h" #include "esp_log.h" #include "esp_pm.h" #include "esp_ipc.h" #include "esp_private/periph_ctrl.h" #include "esp_private/esp_clk.h" #include "soc/soc_caps.h" #include "soc/rtc.h" #include "soc/rtc_cntl_reg.h" #include "soc/soc_memory_layout.h" #ifdef CONFIG_ESP_COEX_ENABLED #include "private/esp_coexist_internal.h" #endif #include "esp_timer.h" #include "esp_sleep.h" #include "esp_rom_sys.h" #if CONFIG_IDF_TARGET_ESP32C3 #include "riscv/interrupt.h" #include "esp32c3/rom/rom_layout.h" #else //CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/rom_layout.h" #endif #if CONFIG_BT_ENABLED /* Macro definition ************************************************************************ */ #define BT_LOG_TAG "BLE_INIT" #define BTDM_INIT_PERIOD (5000) /* ms */ /* Low Power Clock Selection */ #define BTDM_LPCLK_SEL_XTAL (0) #define BTDM_LPCLK_SEL_XTAL32K (1) #define BTDM_LPCLK_SEL_RTC_SLOW (2) #define BTDM_LPCLK_SEL_8M (3) // wakeup request sources enum { BTDM_ASYNC_WAKEUP_SRC_VHCI = 0, BTDM_ASYNC_WAKEUP_REQ_COEX, BTDM_ASYNC_WAKEUP_SRC_DISA, BTDM_ASYNC_WAKEUP_SRC_TMR, BTDM_ASYNC_WAKEUP_SRC_MAX, }; // low power control struct typedef union { struct { uint32_t enable : 1; // whether low power mode is required uint32_t lpclk_sel : 3; // low power clock source uint32_t mac_bb_pd : 1; // whether hardware(MAC, BB) force-power-down is required during sleep uint32_t wakeup_timer_required : 1; // whether system timer is needed uint32_t no_light_sleep : 1; // do not allow system to enter light sleep after bluetooth is enabled uint32_t main_xtal_pu : 1; // power up main XTAL uint32_t reserved : 24; // reserved }; uint32_t val; } btdm_lpcntl_t; // low power control status typedef union { struct { uint32_t pm_lock_released : 1; // whether power management lock is released uint32_t mac_bb_pd : 1; // whether hardware(MAC, BB) is powered down uint32_t phy_enabled : 1; // whether phy is switched on uint32_t wakeup_timer_started : 1; // whether wakeup timer is started uint32_t reserved : 28; // reserved }; uint32_t val; } btdm_lpstat_t; /* Sleep and wakeup interval control */ #define BTDM_MIN_SLEEP_DURATION (24) // threshold of interval in half slots to allow to fall into modem sleep #define BTDM_MODEM_WAKE_UP_DELAY (8) // delay in half slots of modem wake up procedure, including re-enable PHY/RF #define BT_DEBUG(...) #define BT_API_CALL_CHECK(info, api_call, ret) \ do{\ esp_err_t __err = (api_call);\ if ((ret) != __err) {\ BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\ return __err;\ }\ } while(0) #define OSI_FUNCS_TIME_BLOCKING 0xffffffff #define OSI_VERSION 0x00010008 #define OSI_MAGIC_VALUE 0xFADEBEAD /* Types definition ************************************************************************ */ /* vendor dependent signals to be posted to controller task */ typedef enum { BTDM_VND_OL_SIG_WAKEUP_TMR = 0, BTDM_VND_OL_SIG_NUM, } btdm_vnd_ol_sig_t; /* prototype of function to handle vendor dependent signals */ typedef void (* btdm_vnd_ol_task_func_t)(void *param); /* VHCI function interface */ typedef struct vhci_host_callback { void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */ int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/ } vhci_host_callback_t; typedef struct { void *handle; } btdm_queue_item_t; typedef void (* osi_intr_handler)(void); /* OSI function */ struct osi_funcs_t { uint32_t _magic; uint32_t _version; void (*_interrupt_set)(int cpu_no, int intr_source, int interrupt_no, int interrpt_prio); void (*_interrupt_clear)(int interrupt_source, int interrupt_no); void (*_interrupt_handler_set)(int interrupt_no, intr_handler_t fn, void *arg); void (*_interrupt_disable)(void); void (*_interrupt_restore)(void); void (*_task_yield)(void); void (*_task_yield_from_isr)(void); void *(*_semphr_create)(uint32_t max, uint32_t init); void (*_semphr_delete)(void *semphr); int (*_semphr_take_from_isr)(void *semphr, void *hptw); int (*_semphr_give_from_isr)(void *semphr, void *hptw); int (*_semphr_take)(void *semphr, uint32_t block_time_ms); int (*_semphr_give)(void *semphr); void *(*_mutex_create)(void); void (*_mutex_delete)(void *mutex); int (*_mutex_lock)(void *mutex); int (*_mutex_unlock)(void *mutex); void *(* _queue_create)(uint32_t queue_len, uint32_t item_size); void (* _queue_delete)(void *queue); int (* _queue_send)(void *queue, void *item, uint32_t block_time_ms); int (* _queue_send_from_isr)(void *queue, void *item, void *hptw); int (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms); int (* _queue_recv_from_isr)(void *queue, void *item, void *hptw); int (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id); void (* _task_delete)(void *task_handle); bool (* _is_in_isr)(void); int (* _cause_sw_intr_to_core)(int core_id, int intr_no); void *(* _malloc)(size_t size); void *(* _malloc_internal)(size_t size); void (* _free)(void *p); int (* _read_efuse_mac)(uint8_t mac[6]); void (* _srand)(unsigned int seed); int (* _rand)(void); uint32_t (* _btdm_lpcycles_2_hus)(uint32_t cycles, uint32_t *error_corr); uint32_t (* _btdm_hus_2_lpcycles)(uint32_t hus); bool (* _btdm_sleep_check_duration)(int32_t *slot_cnt); void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */ void (* _btdm_sleep_enter_phase2)(void); void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */ void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */ void (* _btdm_sleep_exit_phase3)(void); /* called from task */ void (* _coex_wifi_sleep_set)(bool sleep); int (* _coex_core_ble_conn_dyn_prio_get)(bool *low, bool *high); int (* _coex_schm_register_btdm_callback)(void *callback); void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status); void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status); uint32_t (* _coex_schm_interval_get)(void); uint8_t (* _coex_schm_curr_period_get)(void); void *(* _coex_schm_curr_phase_get)(void); void (* _interrupt_on)(int intr_num); void (* _interrupt_off)(int intr_num); void (* _esp_hw_power_down)(void); void (* _esp_hw_power_up)(void); void (* _ets_backup_dma_copy)(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_rem); void (* _ets_delay_us)(uint32_t us); void (* _btdm_rom_table_ready)(void); bool (* _coex_bt_wakeup_request)(void); void (* _coex_bt_wakeup_request_end)(void); }; /* External functions or values ************************************************************************ */ /* not for user call, so don't put to include file */ /* OSI */ extern int btdm_osi_funcs_register(void *osi_funcs); /* Initialise and De-initialise */ extern int btdm_controller_init(esp_bt_controller_config_t *config_opts); extern void btdm_controller_deinit(void); extern int btdm_controller_enable(esp_bt_mode_t mode); extern void btdm_controller_disable(void); extern uint8_t btdm_controller_get_mode(void); extern const char *btdm_controller_get_compile_version(void); extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled /* Sleep */ extern void btdm_controller_enable_sleep(bool enable); extern uint8_t btdm_controller_get_sleep_mode(void); extern bool btdm_power_state_active(void); extern void btdm_wakeup_request(void); extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting); /* vendor dependent tasks to be posted and handled by controller task*/ extern int btdm_vnd_offload_task_register(btdm_vnd_ol_sig_t sig, btdm_vnd_ol_task_func_t func); extern int btdm_vnd_offload_task_deregister(btdm_vnd_ol_sig_t sig); extern int r_btdm_vnd_offload_post_from_isr(btdm_vnd_ol_sig_t sig, void *param, bool need_yield); extern int r_btdm_vnd_offload_post(btdm_vnd_ol_sig_t sig, void *param); /* Low Power Clock */ extern bool btdm_lpclk_select_src(uint32_t sel); extern bool btdm_lpclk_set_div(uint32_t div); extern int btdm_hci_tl_io_event_post(int event); /* VHCI */ extern bool API_vhci_host_check_send_available(void); extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len); extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback); /* TX power */ extern int ble_txpwr_set(int power_type, int power_level); extern int ble_txpwr_get(int power_type); extern uint16_t l2c_ble_link_get_tx_buf_num(void); extern void coex_pti_v2(void); extern bool btdm_deep_sleep_mem_init(void); extern void btdm_deep_sleep_mem_deinit(void); extern void btdm_ble_power_down_dma_copy(bool copy); extern uint8_t btdm_sleep_clock_sync(void); extern void sdk_config_extend_set_pll_track(bool enable); #if CONFIG_MAC_BB_PD extern void esp_mac_bb_power_down(void); extern void esp_mac_bb_power_up(void); extern void ets_backup_dma_copy(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem); #endif extern void btdm_cca_feature_enable(void); extern uint32_t _bt_bss_start; extern uint32_t _bt_bss_end; extern uint32_t _bt_controller_bss_start; extern uint32_t _bt_controller_bss_end; extern uint32_t _bt_data_start; extern uint32_t _bt_data_end; extern uint32_t _bt_controller_data_start; extern uint32_t _bt_controller_data_end; /* Local Function Declare ********************************************************************* */ static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio); static void interrupt_clear_wrapper(int intr_source, int intr_num); static void interrupt_handler_set_wrapper(int n, intr_handler_t fn, void *arg); static void interrupt_disable(void); static void interrupt_restore(void); static void task_yield_from_isr(void); static void *semphr_create_wrapper(uint32_t max, uint32_t init); static void semphr_delete_wrapper(void *semphr); static int semphr_take_from_isr_wrapper(void *semphr, void *hptw); static int semphr_give_from_isr_wrapper(void *semphr, void *hptw); static int semphr_take_wrapper(void *semphr, uint32_t block_time_ms); static int semphr_give_wrapper(void *semphr); static void *mutex_create_wrapper(void); static void mutex_delete_wrapper(void *mutex); static int mutex_lock_wrapper(void *mutex); static int mutex_unlock_wrapper(void *mutex); static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size); static void queue_delete_wrapper(void *queue); static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms); static int queue_send_from_isr_wrapper(void *queue, void *item, void *hptw); static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms); static int queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw); static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id); static void task_delete_wrapper(void *task_handle); static bool is_in_isr_wrapper(void); static void *malloc_internal_wrapper(size_t size); static int read_mac_wrapper(uint8_t mac[6]); static void srand_wrapper(unsigned int seed); static int rand_wrapper(void); static uint32_t btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr); static uint32_t btdm_hus_2_lpcycles(uint32_t hus); static bool btdm_sleep_check_duration(int32_t *slot_cnt); static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles); static void btdm_sleep_enter_phase2_wrapper(void); static void btdm_sleep_exit_phase3_wrapper(void); static void coex_wifi_sleep_set_hook(bool sleep); static int coex_schm_register_btdm_callback_wrapper(void *callback); static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status); static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status); static uint32_t coex_schm_interval_get_wrapper(void); static uint8_t coex_schm_curr_period_get_wrapper(void); static void * coex_schm_curr_phase_get_wrapper(void); static void interrupt_on_wrapper(int intr_num); static void interrupt_off_wrapper(int intr_num); static void btdm_hw_mac_power_up_wrapper(void); static void btdm_hw_mac_power_down_wrapper(void); static void btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem); static void btdm_funcs_table_ready_wrapper(void); static bool coex_bt_wakeup_request(void); static void coex_bt_wakeup_request_end(void); static void btdm_slp_tmr_callback(void *arg); static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end); static void bt_controller_deinit_internal(void); /* Local variable definition *************************************************************************** */ /* OSI funcs */ static const struct osi_funcs_t osi_funcs_ro = { ._magic = OSI_MAGIC_VALUE, ._version = OSI_VERSION, ._interrupt_set = interrupt_set_wrapper, ._interrupt_clear = interrupt_clear_wrapper, ._interrupt_handler_set = interrupt_handler_set_wrapper, ._interrupt_disable = interrupt_disable, ._interrupt_restore = interrupt_restore, ._task_yield = vPortYield, ._task_yield_from_isr = task_yield_from_isr, ._semphr_create = semphr_create_wrapper, ._semphr_delete = semphr_delete_wrapper, ._semphr_take_from_isr = semphr_take_from_isr_wrapper, ._semphr_give_from_isr = semphr_give_from_isr_wrapper, ._semphr_take = semphr_take_wrapper, ._semphr_give = semphr_give_wrapper, ._mutex_create = mutex_create_wrapper, ._mutex_delete = mutex_delete_wrapper, ._mutex_lock = mutex_lock_wrapper, ._mutex_unlock = mutex_unlock_wrapper, ._queue_create = queue_create_wrapper, ._queue_delete = queue_delete_wrapper, ._queue_send = queue_send_wrapper, ._queue_send_from_isr = queue_send_from_isr_wrapper, ._queue_recv = queue_recv_wrapper, ._queue_recv_from_isr = queue_recv_from_isr_wrapper, ._task_create = task_create_wrapper, ._task_delete = task_delete_wrapper, ._is_in_isr = is_in_isr_wrapper, ._cause_sw_intr_to_core = NULL, ._malloc = malloc, ._malloc_internal = malloc_internal_wrapper, ._free = free, ._read_efuse_mac = read_mac_wrapper, ._srand = srand_wrapper, ._rand = rand_wrapper, ._btdm_lpcycles_2_hus = btdm_lpcycles_2_hus, ._btdm_hus_2_lpcycles = btdm_hus_2_lpcycles, ._btdm_sleep_check_duration = btdm_sleep_check_duration, ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper, ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper, ._btdm_sleep_exit_phase1 = NULL, ._btdm_sleep_exit_phase2 = NULL, ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper, ._coex_wifi_sleep_set = coex_wifi_sleep_set_hook, ._coex_core_ble_conn_dyn_prio_get = NULL, ._coex_schm_register_btdm_callback = coex_schm_register_btdm_callback_wrapper, ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper, ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper, ._coex_schm_interval_get = coex_schm_interval_get_wrapper, ._coex_schm_curr_period_get = coex_schm_curr_period_get_wrapper, ._coex_schm_curr_phase_get = coex_schm_curr_phase_get_wrapper, ._interrupt_on = interrupt_on_wrapper, ._interrupt_off = interrupt_off_wrapper, ._esp_hw_power_down = btdm_hw_mac_power_down_wrapper, ._esp_hw_power_up = btdm_hw_mac_power_up_wrapper, ._ets_backup_dma_copy = btdm_backup_dma_copy_wrapper, ._ets_delay_us = esp_rom_delay_us, ._btdm_rom_table_ready = btdm_funcs_table_ready_wrapper, ._coex_bt_wakeup_request = coex_bt_wakeup_request, ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end, }; static DRAM_ATTR struct osi_funcs_t *osi_funcs_p; /* Static variable declare */ static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE; static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED; // low power control struct static DRAM_ATTR btdm_lpcntl_t s_lp_cntl; // low power status struct static DRAM_ATTR btdm_lpstat_t s_lp_stat; // measured average low power clock period in micro seconds static DRAM_ATTR uint32_t btdm_lpcycle_us = 0; // number of fractional bit for btdm_lpcycle_us static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // semaphore used for blocking VHCI API to wait for controller to wake up static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL; // wakeup timer static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr = NULL; #ifdef CONFIG_PM_ENABLE static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock; // pm_lock to prevent light sleep due to incompatibility currently static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock; #endif void IRAM_ATTR btdm_hw_mac_power_down_wrapper(void) { #if CONFIG_MAC_BB_PD #if SOC_PM_SUPPORT_BT_PD // Bluetooth module power down SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO); SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD); #endif esp_mac_bb_power_down(); #endif } void IRAM_ATTR btdm_hw_mac_power_up_wrapper(void) { #if CONFIG_MAC_BB_PD #if SOC_PM_SUPPORT_BT_PD // Bluetooth module power up CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD); CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO); #endif esp_mac_bb_power_up(); #endif } void IRAM_ATTR btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem) { #if CONFIG_MAC_BB_PD ets_backup_dma_copy(reg, mem_addr, num, to_mem); #endif } static inline void esp_bt_power_domain_on(void) { // Bluetooth module power up #if SOC_PM_SUPPORT_BT_PD CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD); CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO); #endif esp_wifi_bt_power_domain_on(); } static inline void esp_bt_power_domain_off(void) { // Bluetooth module power down #if SOC_PM_SUPPORT_BT_PD SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO); SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD); #endif esp_wifi_bt_power_domain_off(); } static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio) { esp_rom_route_intr_matrix(cpu_no, intr_source, intr_num); #if __riscv esprv_int_set_priority(intr_num, intr_prio); esprv_int_set_type(intr_num, 0); #endif } static void interrupt_clear_wrapper(int intr_source, int intr_num) { } static void interrupt_handler_set_wrapper(int n, intr_handler_t fn, void *arg) { esp_cpu_intr_set_handler(n, fn, arg); } static void interrupt_on_wrapper(int intr_num) { esp_cpu_intr_enable(1 << intr_num); } static void interrupt_off_wrapper(int intr_num) { esp_cpu_intr_disable(1<handle = (void *)xSemaphoreCreateCounting(max, init); assert(semphr->handle); return semphr; } static void semphr_delete_wrapper(void *semphr) { if (semphr == NULL) { return; } btdm_queue_item_t *semphr_item = (btdm_queue_item_t *)semphr; if (semphr_item->handle) { vSemaphoreDelete(semphr_item->handle); } free(semphr); } static int IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw) { return (int)xSemaphoreTakeFromISR(((btdm_queue_item_t *)semphr)->handle, hptw); } static int IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw) { return (int)xSemaphoreGiveFromISR(((btdm_queue_item_t *)semphr)->handle, hptw); } static int semphr_take_wrapper(void *semphr, uint32_t block_time_ms) { if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) { return (int)xSemaphoreTake(((btdm_queue_item_t *)semphr)->handle, portMAX_DELAY); } else { return (int)xSemaphoreTake(((btdm_queue_item_t *)semphr)->handle, block_time_ms / portTICK_PERIOD_MS); } } static int semphr_give_wrapper(void *semphr) { return (int)xSemaphoreGive(((btdm_queue_item_t *)semphr)->handle); } static void *mutex_create_wrapper(void) { return (void *)xSemaphoreCreateMutex(); } static void mutex_delete_wrapper(void *mutex) { vSemaphoreDelete(mutex); } static int mutex_lock_wrapper(void *mutex) { return (int)xSemaphoreTake(mutex, portMAX_DELAY); } static int mutex_unlock_wrapper(void *mutex) { return (int)xSemaphoreGive(mutex); } static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size) { btdm_queue_item_t *queue = NULL; queue = (btdm_queue_item_t*)heap_caps_malloc(sizeof(btdm_queue_item_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); assert(queue); /* IDF FreeRTOS guarantees that all dynamic memory allocation goes to internal RAM. */ queue->handle = xQueueCreate( queue_len, item_size); assert(queue->handle); return queue; } static void queue_delete_wrapper(void *queue) { btdm_queue_item_t *queue_item = (btdm_queue_item_t *)queue; if (queue_item) { if(queue_item->handle){ vQueueDelete(queue_item->handle); } free(queue_item); } } static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms) { if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) { return (int)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY); } else { return (int)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS); } } static int IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw) { return (int)xQueueSendFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw); } static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms) { if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) { return (int)xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY); } else { return (int)xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS); } } static int IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw) { return (int)xQueueReceiveFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw); } static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id) { return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < CONFIG_FREERTOS_NUMBER_OF_CORES ? core_id : tskNO_AFFINITY)); } static void task_delete_wrapper(void *task_handle) { vTaskDelete(task_handle); } static bool IRAM_ATTR is_in_isr_wrapper(void) { return (bool)xPortInIsrContext(); } static void *malloc_internal_wrapper(size_t size) { void *p = heap_caps_malloc(size, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA); if(p == NULL) { ESP_LOGE(BT_LOG_TAG, "Malloc failed"); } return p; } static int IRAM_ATTR read_mac_wrapper(uint8_t mac[6]) { int ret = esp_read_mac(mac, ESP_MAC_BT); ESP_LOGI(BT_LOG_TAG, "Bluetooth MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); return ret; } static void IRAM_ATTR srand_wrapper(unsigned int seed) { /* empty function */ } static int IRAM_ATTR rand_wrapper(void) { return (int)esp_random(); } static uint32_t IRAM_ATTR btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr) { uint64_t local_error_corr = (error_corr == NULL) ? 0 : (uint64_t)(*error_corr); uint64_t res = (uint64_t)btdm_lpcycle_us * cycles * 2; local_error_corr += res; res = (local_error_corr >> btdm_lpcycle_us_frac); local_error_corr -= (res << btdm_lpcycle_us_frac); if (error_corr) { *error_corr = (uint32_t) local_error_corr; } return (uint32_t)res; } /* * @brief Converts a duration in half us into a number of low power clock cycles. */ static uint32_t IRAM_ATTR btdm_hus_2_lpcycles(uint32_t hus) { // The number of sleep duration(us) should not lead to overflow. Thrs: 100s // Compute the sleep duration in us to low power clock cycles, with calibration result applied // clock measurement is conducted uint64_t cycles = ((uint64_t)(hus) << btdm_lpcycle_us_frac) / btdm_lpcycle_us; cycles >>= 1; return (uint32_t)cycles; } static bool IRAM_ATTR btdm_sleep_check_duration(int32_t *half_slot_cnt) { if (*half_slot_cnt < BTDM_MIN_SLEEP_DURATION) { return false; } /* wake up in advance considering the delay in enabling PHY/RF */ *half_slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY; return true; } static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles) { if (s_lp_cntl.wakeup_timer_required == 0) { return; } uint32_t us_to_sleep = btdm_lpcycles_2_hus(lpcycles, NULL) >> 1; #define BTDM_MIN_TIMER_UNCERTAINTY_US (1800) #define BTDM_RTC_SLOW_CLK_RC_DRIFT_PERCENT 7 assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US); // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift // and set the timer in advance uint32_t uncertainty = (us_to_sleep >> 11); #if CONFIG_FREERTOS_USE_TICKLESS_IDLE if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_RC_SLOW) { uncertainty = us_to_sleep * BTDM_RTC_SLOW_CLK_RC_DRIFT_PERCENT / 100; } #endif if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) { uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US; } assert (s_lp_stat.wakeup_timer_started == 0); // start a timer to wake up and acquire the pm_lock before modem_sleep awakes if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) == ESP_OK) { s_lp_stat.wakeup_timer_started = 1; } else { ESP_LOGE(BT_LOG_TAG, "timer start failed"); assert(0); } } static void btdm_sleep_enter_phase2_wrapper(void) { if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) { if (s_lp_stat.phy_enabled) { esp_phy_disable(PHY_MODEM_BT); s_lp_stat.phy_enabled = 0; } else { assert(0); } #ifdef CONFIG_PM_ENABLE if (s_lp_stat.pm_lock_released == 0) { esp_pm_lock_release(s_pm_lock); s_lp_stat.pm_lock_released = 1; } #endif } } static void btdm_sleep_exit_phase3_wrapper(void) { #ifdef CONFIG_PM_ENABLE // If BT wakeup before esp timer coming due to timer task have no chance to run. // Then we will not run into `btdm_sleep_exit_phase0` and acquire PM lock, // Do it again here to fix this issue. if (s_lp_stat.pm_lock_released) { esp_pm_lock_acquire(s_pm_lock); s_lp_stat.pm_lock_released = 0; } #endif if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) { if (s_lp_stat.phy_enabled == 0) { esp_phy_enable(PHY_MODEM_BT); s_lp_stat.phy_enabled = 1; } } // If BT wakeup before esp timer coming due to timer task have no chance to run. // Then we will not run into `btdm_sleep_exit_phase0` and stop esp timer, // Do it again here to fix this issue. if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) { esp_timer_stop(s_btdm_slp_tmr); s_lp_stat.wakeup_timer_started = 0; } // wait for the sleep state to change // the procedure duration is at micro-second level or less while (btdm_sleep_clock_sync()) { ; } } static void IRAM_ATTR btdm_sleep_exit_phase0(void *param) { assert(s_lp_cntl.enable == 1); #ifdef CONFIG_PM_ENABLE if (s_lp_stat.pm_lock_released) { esp_pm_lock_acquire(s_pm_lock); s_lp_stat.pm_lock_released = 0; } #endif int event = (int) param; if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) { btdm_wakeup_request(); } if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) { esp_timer_stop(s_btdm_slp_tmr); s_lp_stat.wakeup_timer_started = 0; } if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) { semphr_give_wrapper(s_wakeup_req_sem); } } static void IRAM_ATTR btdm_slp_tmr_callback(void *arg) { #ifdef CONFIG_PM_ENABLE r_btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)BTDM_ASYNC_WAKEUP_SRC_TMR); #endif } static bool async_wakeup_request(int event) { if (s_lp_cntl.enable == 0) { return false; } bool do_wakeup_request = false; switch (event) { case BTDM_ASYNC_WAKEUP_SRC_VHCI: case BTDM_ASYNC_WAKEUP_SRC_DISA: btdm_in_wakeup_requesting_set(true); if (!btdm_power_state_active()) { r_btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)event); do_wakeup_request = true; semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING); } break; case BTDM_ASYNC_WAKEUP_REQ_COEX: if (!btdm_power_state_active()) { do_wakeup_request = true; #if CONFIG_PM_ENABLE if (s_lp_stat.pm_lock_released) { esp_pm_lock_acquire(s_pm_lock); s_lp_stat.pm_lock_released = 0; } #endif btdm_wakeup_request(); if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) { esp_timer_stop(s_btdm_slp_tmr); s_lp_stat.wakeup_timer_started = 0; } } default: break; } return do_wakeup_request; } static void async_wakeup_request_end(int event) { if (s_lp_cntl.enable == 0) { return; } bool allow_to_sleep; switch (event) { case BTDM_ASYNC_WAKEUP_SRC_VHCI: case BTDM_ASYNC_WAKEUP_SRC_DISA: allow_to_sleep = true; break; case BTDM_ASYNC_WAKEUP_REQ_COEX: allow_to_sleep = false; break; default: allow_to_sleep = true; break; } if (allow_to_sleep) { btdm_in_wakeup_requesting_set(false); } return; } static void btdm_funcs_table_ready_wrapper(void) { #if BT_BLE_CCA_MODE == 2 btdm_cca_feature_enable(); #endif } bool bt_async_wakeup_request(void) { return async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_VHCI); } void bt_wakeup_request_end(void) { async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_VHCI); } static bool coex_bt_wakeup_request(void) { return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX); } static void coex_bt_wakeup_request_end(void) { async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX); return; } bool esp_vhci_host_check_send_available(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return false; } return API_vhci_host_check_send_available(); } void esp_vhci_host_send_packet(uint8_t *data, uint16_t len) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return; } async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_VHCI); API_vhci_host_send_packet(data, len); async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_VHCI); } esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_FAIL; } return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL; } static void btdm_controller_mem_init(void) { extern void btdm_controller_rom_data_init(void ); btdm_controller_rom_data_init(); } /** * Release two memory areas to the heap. If both areas are consecutive, they will be released as * a single area. */ typedef struct { intptr_t start; intptr_t end; const char* name; } bt_area_t; static esp_err_t esp_bt_mem_release_area(const bt_area_t *area) { esp_err_t ret = ESP_OK; intptr_t mem_start = area->start; intptr_t mem_end = area->end; if (mem_start != mem_end) { ESP_LOGD(BT_LOG_TAG, "Release %s [0x%08x] - [0x%08x], len %d", area->name, mem_start, mem_end, mem_end - mem_start); ret = try_heap_caps_add_region(mem_start, mem_end); } return ret; } static esp_err_t esp_bt_mem_release_areas(const bt_area_t *area1, const bt_area_t *area2) { esp_err_t ret = ESP_OK; if (area1->end == area2->start) { bt_area_t merged_area = { .start = area1->start, .end = area2->end, .name = area1->name }; ret = esp_bt_mem_release_area(&merged_area); } else { esp_bt_mem_release_area(area1); ret = esp_bt_mem_release_area(area2); } return ret; } esp_err_t esp_bt_controller_rom_mem_release(esp_bt_mode_t mode) { esp_err_t ret = ESP_OK; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { return ESP_ERR_INVALID_STATE; } bt_area_t rom_btdm_data = { .start = (intptr_t) ets_rom_layout_p->data_start_btdm, .end = (intptr_t) ets_rom_layout_p->data_end_btdm, .name = "ROM btdm data", }; bt_area_t rom_btdm_bss = { .start = (intptr_t)ets_rom_layout_p->bss_start_btdm, .end = (intptr_t)ets_rom_layout_p->bss_end_btdm, .name = "ROM btdm BSS", }; bt_area_t rom_btdm_inter_data = { .start = (intptr_t) ets_rom_layout_p->data_start_interface_btdm, .end = (intptr_t) ets_rom_layout_p->data_end_interface_btdm, .name = "ROM interface btdm data", }; bt_area_t rom_btdm_inter_bss = { .start = (intptr_t)ets_rom_layout_p->bss_start_interface_btdm, .end = (intptr_t)ets_rom_layout_p->bss_end_interface_btdm, .name = "ROM interface btdm BSS", }; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { ret = ESP_ERR_INVALID_STATE; } if (mode & ESP_BT_MODE_BLE) { /* Free BTDM memory used by the ROM */ if (ret == ESP_OK) { ret = esp_bt_mem_release_areas(&rom_btdm_data, &rom_btdm_bss); } if (ret == ESP_OK) { ret = esp_bt_mem_release_areas(&rom_btdm_inter_data, &rom_btdm_inter_bss); } } return ret; } esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode) { esp_err_t ret = ESP_OK; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { return ESP_ERR_INVALID_STATE; } bt_area_t cont_bss = { .start = (intptr_t)&_bt_controller_bss_start, .end = (intptr_t)&_bt_controller_bss_end, .name = "BT Controller BSS", }; bt_area_t cont_data = { .start = (intptr_t)&_bt_controller_data_start, .end = (intptr_t)&_bt_controller_data_end, .name = "BT Controller Data" }; if (mode & ESP_BT_MODE_BLE) { /* free data and BSS section for libbtdm_app.a */ if (ret == ESP_OK) { ret = esp_bt_mem_release_areas(&cont_data, &cont_bss); } /* free data and BSS section for Bluetooth controller ROM code */ if (ret == ESP_OK) { ret = esp_bt_controller_rom_mem_release(mode); } } return ret; } esp_err_t esp_bt_mem_release(esp_bt_mode_t mode) { esp_err_t ret = ESP_OK; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { return ESP_ERR_INVALID_STATE; } bt_area_t bss = { .start = (intptr_t)&_bt_bss_start, .end = (intptr_t)&_bt_bss_end, .name = "BT BSS", }; bt_area_t cont_bss = { .start = (intptr_t)&_bt_controller_bss_start, .end = (intptr_t)&_bt_controller_bss_end, .name = "BT Controller BSS", }; bt_area_t data = { .start = (intptr_t)&_bt_data_start, .end = (intptr_t)&_bt_data_end, .name = "BT Data", }; bt_area_t cont_data = { .start = (intptr_t)&_bt_controller_data_start, .end = (intptr_t)&_bt_controller_data_end, .name = "BT Controller Data" }; if (mode & ESP_BT_MODE_BLE) { /* Start by freeing Bluetooth BSS section */ if (ret == ESP_OK) { ret = esp_bt_mem_release_areas(&bss, &cont_bss); } /* Do the same thing with the Bluetooth data section */ if (ret == ESP_OK) { ret = esp_bt_mem_release_areas(&data, &cont_data); } /* free data and BSS section for Bluetooth controller ROM code */ if (ret == ESP_OK) { ret = esp_bt_controller_rom_mem_release(mode); } } return ret; } static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end) { int ret = heap_caps_add_region(start, end); /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is * is too small to fit a heap. This cannot be termed as a fatal error and hence * we replace it by ESP_OK */ if (ret == ESP_ERR_INVALID_SIZE) { return ESP_OK; } return ret; } #if CONFIG_MAC_BB_PD static void IRAM_ATTR btdm_mac_bb_power_down_cb(void) { if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd == 0) { btdm_ble_power_down_dma_copy(true); s_lp_stat.mac_bb_pd = 1; } } static void IRAM_ATTR btdm_mac_bb_power_up_cb(void) { if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd) { btdm_ble_power_down_dma_copy(false); s_lp_stat.mac_bb_pd = 0; } } #endif // init low-power control resources static esp_err_t btdm_low_power_mode_init(esp_bt_controller_config_t *cfg) { esp_err_t err = ESP_OK; do { // set default values for global states or resources s_lp_stat.val = 0; s_lp_cntl.val = 0; s_lp_cntl.main_xtal_pu = 0; s_wakeup_req_sem = NULL; s_btdm_slp_tmr = NULL; // configure and initialize resources s_lp_cntl.enable = (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) ? 1 : 0; s_lp_cntl.lpclk_sel = (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) ? cfg->sleep_clock : ESP_BT_SLEEP_CLOCK_MAIN_XTAL; s_lp_cntl.no_light_sleep = 0; if (s_lp_cntl.enable) { #if CONFIG_MAC_BB_PD if (!btdm_deep_sleep_mem_init()) { err = ESP_ERR_NO_MEM; break; } s_lp_cntl.mac_bb_pd = 1; #endif #ifdef CONFIG_PM_ENABLE s_lp_cntl.wakeup_timer_required = 1; #endif // async wakeup semaphore for VHCI s_wakeup_req_sem = semphr_create_wrapper(1, 0); if (s_wakeup_req_sem == NULL) { err = ESP_ERR_NO_MEM; break; } btdm_vnd_offload_task_register(BTDM_VND_OL_SIG_WAKEUP_TMR, btdm_sleep_exit_phase0); if (s_lp_cntl.wakeup_timer_required) { esp_timer_create_args_t create_args = { .callback = btdm_slp_tmr_callback, .arg = NULL, .name = "btSlp", }; if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) { break; } } // set default bluetooth sleep clock cycle and its fractional bits btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT; btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac); if (s_lp_cntl.lpclk_sel == ESP_BT_SLEEP_CLOCK_EXT_32K_XTAL) { // External 32 kHz XTAL // check whether or not EXT_CRYS is working if (rtc_clk_slow_src_get() != SOC_RTC_SLOW_CLK_SRC_XTAL32K) { ESP_LOGW(BT_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock"); s_lp_cntl.lpclk_sel = ESP_BT_SLEEP_CLOCK_MAIN_XTAL; #if !CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP s_lp_cntl.no_light_sleep = 1; #endif } } else if (s_lp_cntl.lpclk_sel == ESP_BT_SLEEP_CLOCK_RTC_SLOW) { // Internal 136kHz RC oscillator if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_RC_SLOW) { ESP_LOGW(BT_LOG_TAG, "Internal 136kHz RC oscillator. The accuracy of this clock is a lot larger than 500ppm which is " "required in Bluetooth communication, so don't select this option in scenarios such as BLE connection state."); } else { ESP_LOGW(BT_LOG_TAG, "Internal 136kHz RC oscillator not detected."); assert(0); } } else if (s_lp_cntl.lpclk_sel == ESP_BT_SLEEP_CLOCK_MAIN_XTAL) { ESP_LOGI(BT_LOG_TAG, "Bluetooth will use main XTAL as Bluetooth sleep clock."); #if !CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP s_lp_cntl.no_light_sleep = 1; #endif } } else { s_lp_cntl.no_light_sleep = 1; } bool select_src_ret __attribute__((unused)); bool set_div_ret __attribute__((unused)); if (s_lp_cntl.lpclk_sel == ESP_BT_SLEEP_CLOCK_MAIN_XTAL) { #ifdef CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP ESP_ERROR_CHECK(esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON)); s_lp_cntl.main_xtal_pu = 1; #endif select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL); set_div_ret = btdm_lpclk_set_div(esp_clk_xtal_freq() / MHZ); assert(select_src_ret && set_div_ret); btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT; btdm_lpcycle_us = 1 << (btdm_lpcycle_us_frac); } else if (s_lp_cntl.lpclk_sel == ESP_BT_SLEEP_CLOCK_EXT_32K_XTAL) { select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K); set_div_ret = btdm_lpclk_set_div(0); assert(select_src_ret && set_div_ret); btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT; btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) : (1000000 >> (15 - RTC_CLK_CAL_FRACT)); assert(btdm_lpcycle_us != 0); } else if (s_lp_cntl.lpclk_sel == ESP_BT_SLEEP_CLOCK_RTC_SLOW) { select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW); set_div_ret = btdm_lpclk_set_div(0); assert(select_src_ret && set_div_ret); btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT; btdm_lpcycle_us = esp_clk_slowclk_cal_get(); } else { err = ESP_ERR_INVALID_ARG; break; } #if CONFIG_SW_COEXIST_ENABLE coex_update_lpclk_interval(); #endif #ifdef CONFIG_PM_ENABLE if (s_lp_cntl.no_light_sleep) { if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) { break; } ESP_LOGW(BT_LOG_TAG, "light sleep mode will not be able to apply when bluetooth is enabled."); } if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) { break; } else { s_lp_stat.pm_lock_released = 1; } #endif } while (0); return err; } esp_bt_sleep_clock_t esp_bt_get_lpclk_src(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED && btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_BT_SLEEP_CLOCK_NONE; } return s_lp_cntl.lpclk_sel; } esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg) { esp_err_t err = ESP_FAIL; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { return ESP_ERR_INVALID_STATE; } if (cfg == NULL) { return ESP_ERR_INVALID_ARG; } if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) { ESP_LOGE(BT_LOG_TAG, "Invalid controller task prioriy or stack size"); return ESP_ERR_INVALID_ARG; } if (cfg->bluetooth_mode != ESP_BT_MODE_BLE) { ESP_LOGE(BT_LOG_TAG, "%s controller only support BLE only mode", __func__); return ESP_ERR_NOT_SUPPORTED; } if (cfg->bluetooth_mode & ESP_BT_MODE_BLE) { if ((cfg->ble_max_act <= 0) || (cfg->ble_max_act > BT_CTRL_BLE_MAX_ACT_LIMIT)) { ESP_LOGE(BT_LOG_TAG, "Invalid value of ble_max_act"); return ESP_ERR_INVALID_ARG; } } if (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) { if (cfg->sleep_clock == ESP_BT_SLEEP_CLOCK_NONE) { ESP_LOGE(BT_LOG_TAG, "SLEEP_MODE_1 enabled but sleep clock not configured"); return ESP_ERR_INVALID_ARG; } if (cfg->sleep_clock > ESP_BT_SLEEP_CLOCK_RTC_SLOW) { ESP_LOGE(BT_LOG_TAG, "SLEEP_MODE_1 is enabled but this sleep clock is not supported"); return ESP_ERR_INVALID_ARG; } } // overwrite some parameters cfg->magic = ESP_BT_CTRL_CONFIG_MAGIC_VAL; #if CONFIG_MAC_BB_PD esp_mac_bb_pd_mem_init(); #endif esp_phy_modem_init(); esp_bt_power_domain_on(); btdm_controller_mem_init(); osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t)); if (osi_funcs_p == NULL) { return ESP_ERR_NO_MEM; } memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t)); if (btdm_osi_funcs_register(osi_funcs_p) != 0) { return ESP_ERR_INVALID_ARG; } ESP_LOGI(BT_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version()); if ((err = btdm_low_power_mode_init(cfg)) != ESP_OK) { ESP_LOGE(BT_LOG_TAG, "Low power module initialization failed"); goto error; } #if CONFIG_SW_COEXIST_ENABLE coex_init(); #endif periph_module_enable(PERIPH_BT_MODULE); periph_module_reset(PERIPH_BT_MODULE); err = btdm_controller_init(cfg); if (err != 0) { ESP_LOGE(BT_LOG_TAG, "%s %d\n",__func__,err); err = ESP_ERR_NO_MEM; goto error; } btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED; return ESP_OK; error: bt_controller_deinit_internal(); return err; } esp_err_t esp_bt_controller_deinit(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) { return ESP_ERR_INVALID_STATE; } btdm_controller_deinit(); bt_controller_deinit_internal(); return ESP_OK; } // deinit low power control resources static void btdm_low_power_mode_deinit(void) { #if CONFIG_MAC_BB_PD if (s_lp_cntl.mac_bb_pd) { btdm_deep_sleep_mem_deinit(); s_lp_cntl.mac_bb_pd = 0; } #endif #ifdef CONFIG_PM_ENABLE if (s_lp_cntl.no_light_sleep) { if (s_light_sleep_pm_lock != NULL) { esp_pm_lock_delete(s_light_sleep_pm_lock); s_light_sleep_pm_lock = NULL; } } if (s_pm_lock != NULL) { esp_pm_lock_delete(s_pm_lock); s_pm_lock = NULL; s_lp_stat.pm_lock_released = 0; } #endif if (s_lp_cntl.wakeup_timer_required && s_btdm_slp_tmr != NULL) { if (s_lp_stat.wakeup_timer_started) { esp_timer_stop(s_btdm_slp_tmr); } s_lp_stat.wakeup_timer_started = 0; esp_timer_delete(s_btdm_slp_tmr); s_btdm_slp_tmr = NULL; } if (s_lp_cntl.enable) { btdm_vnd_offload_task_deregister(BTDM_VND_OL_SIG_WAKEUP_TMR); if (s_wakeup_req_sem != NULL) { semphr_delete_wrapper(s_wakeup_req_sem); s_wakeup_req_sem = NULL; } } if (s_lp_cntl.lpclk_sel == ESP_BT_SLEEP_CLOCK_MAIN_XTAL) { #ifdef CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP if (s_lp_cntl.main_xtal_pu) { ESP_ERROR_CHECK(esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_OFF)); s_lp_cntl.main_xtal_pu = 0; } #endif btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW); btdm_lpclk_set_div(0); #if CONFIG_SW_COEXIST_ENABLE coex_update_lpclk_interval(); #endif } btdm_lpcycle_us = 0; } static void bt_controller_deinit_internal(void) { periph_module_disable(PERIPH_BT_MODULE); btdm_low_power_mode_deinit(); esp_bt_power_domain_off(); #if CONFIG_MAC_BB_PD esp_mac_bb_pd_mem_deinit(); #endif esp_phy_modem_deinit(); if (osi_funcs_p != NULL) { free(osi_funcs_p); osi_funcs_p = NULL; } btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE; } esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode) { esp_err_t ret = ESP_OK; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) { return ESP_ERR_INVALID_STATE; } //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init() if (mode != btdm_controller_get_mode()) { ESP_LOGE(BT_LOG_TAG, "invalid mode %d, controller support mode is %d", mode, btdm_controller_get_mode()); return ESP_ERR_INVALID_ARG; } /* Enable PHY when enabling controller to reduce power dissipation after controller init * Notice the init order: esp_phy_enable() -> bt_bb_v2_init_cmplx() -> coex_pti_v2() */ esp_phy_enable(PHY_MODEM_BT); s_lp_stat.phy_enabled = 1; #if CONFIG_SW_COEXIST_ENABLE coex_enable(); #endif // enable low power mode do { #ifdef CONFIG_PM_ENABLE if (s_lp_cntl.no_light_sleep) { esp_pm_lock_acquire(s_light_sleep_pm_lock); } esp_pm_lock_acquire(s_pm_lock); s_lp_stat.pm_lock_released = 0; #endif #if CONFIG_MAC_BB_PD if (esp_register_mac_bb_pd_callback(btdm_mac_bb_power_down_cb) != 0) { ret = ESP_ERR_INVALID_ARG; goto error; } if (esp_register_mac_bb_pu_callback(btdm_mac_bb_power_up_cb) != 0) { ret = ESP_ERR_INVALID_ARG; goto error; } #endif if (s_lp_cntl.enable) { btdm_controller_enable_sleep(true); } } while (0); // Disable pll track by default in BLE controller on ESP32-C3 and ESP32-S3 sdk_config_extend_set_pll_track(false); if (btdm_controller_enable(mode) != 0) { ret = ESP_ERR_INVALID_STATE; goto error; } coex_pti_v2(); btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED; return ret; error: // disable low power mode do { #if CONFIG_MAC_BB_PD esp_unregister_mac_bb_pd_callback(btdm_mac_bb_power_down_cb); esp_unregister_mac_bb_pu_callback(btdm_mac_bb_power_up_cb); #endif btdm_controller_enable_sleep(false); #ifdef CONFIG_PM_ENABLE if (s_lp_cntl.no_light_sleep) { esp_pm_lock_release(s_light_sleep_pm_lock); } if (s_lp_stat.pm_lock_released == 0) { esp_pm_lock_release(s_pm_lock); s_lp_stat.pm_lock_released = 1; } #endif } while (0); #if CONFIG_SW_COEXIST_ENABLE coex_disable(); #endif if (s_lp_stat.phy_enabled) { esp_phy_disable(PHY_MODEM_BT); s_lp_stat.phy_enabled = 0; } return ret; } esp_err_t esp_bt_controller_disable(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_DISA); while (!btdm_power_state_active()){} btdm_controller_disable(); async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_DISA); #if CONFIG_SW_COEXIST_ENABLE coex_disable(); #endif if (s_lp_stat.phy_enabled) { esp_phy_disable(PHY_MODEM_BT); s_lp_stat.phy_enabled = 0; } btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED; // disable low power mode do { #if CONFIG_MAC_BB_PD esp_unregister_mac_bb_pd_callback(btdm_mac_bb_power_down_cb); esp_unregister_mac_bb_pu_callback(btdm_mac_bb_power_up_cb); #endif #ifdef CONFIG_PM_ENABLE if (s_lp_cntl.no_light_sleep) { esp_pm_lock_release(s_light_sleep_pm_lock); } if (s_lp_stat.pm_lock_released == 0) { esp_pm_lock_release(s_pm_lock); s_lp_stat.pm_lock_released = 1; } else { assert(0); } #endif } while (0); return ESP_OK; } esp_bt_controller_status_t esp_bt_controller_get_status(void) { return btdm_controller_status; } /* extra functions */ esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level) { esp_err_t stat = ESP_FAIL; switch (power_type) { case ESP_BLE_PWR_TYPE_ADV: case ESP_BLE_PWR_TYPE_SCAN: case ESP_BLE_PWR_TYPE_DEFAULT: if (ble_txpwr_set(power_type, power_level) == 0) { stat = ESP_OK; } break; default: stat = ESP_ERR_NOT_SUPPORTED; break; } return stat; } esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type) { esp_power_level_t lvl; switch (power_type) { case ESP_BLE_PWR_TYPE_ADV: case ESP_BLE_PWR_TYPE_SCAN: lvl = (esp_power_level_t)ble_txpwr_get(power_type); break; case ESP_BLE_PWR_TYPE_CONN_HDL0: case ESP_BLE_PWR_TYPE_CONN_HDL1: case ESP_BLE_PWR_TYPE_CONN_HDL2: case ESP_BLE_PWR_TYPE_CONN_HDL3: case ESP_BLE_PWR_TYPE_CONN_HDL4: case ESP_BLE_PWR_TYPE_CONN_HDL5: case ESP_BLE_PWR_TYPE_CONN_HDL6: case ESP_BLE_PWR_TYPE_CONN_HDL7: case ESP_BLE_PWR_TYPE_CONN_HDL8: case ESP_BLE_PWR_TYPE_DEFAULT: lvl = (esp_power_level_t)ble_txpwr_get(ESP_BLE_PWR_TYPE_DEFAULT); break; default: lvl = ESP_PWR_LVL_INVALID; break; } return lvl; } esp_err_t esp_bt_sleep_enable (void) { esp_err_t status; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) { btdm_controller_enable_sleep (true); status = ESP_OK; } else { status = ESP_ERR_NOT_SUPPORTED; } return status; } esp_err_t esp_bt_sleep_disable (void) { esp_err_t status; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) { btdm_controller_enable_sleep (false); status = ESP_OK; } else { status = ESP_ERR_NOT_SUPPORTED; } return status; } bool esp_bt_controller_is_sleeping(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED || btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) { return false; } return !btdm_power_state_active(); } void esp_bt_controller_wakeup_request(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED || btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) { return; } btdm_wakeup_request(); } int IRAM_ATTR esp_bt_h4tl_eif_io_event_notify(int event) { return btdm_hci_tl_io_event_post(event); } uint16_t esp_bt_get_tx_buf_num(void) { return l2c_ble_link_get_tx_buf_num(); } static void coex_wifi_sleep_set_hook(bool sleep) { } static int coex_schm_register_btdm_callback_wrapper(void *callback) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_register_callback(COEX_SCHM_CALLBACK_TYPE_BT, callback); #else return 0; #endif } static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status) { #if CONFIG_SW_COEXIST_ENABLE coex_schm_status_bit_clear(type, status); #endif } static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status) { #if CONFIG_SW_COEXIST_ENABLE coex_schm_status_bit_set(type, status); #endif } static uint32_t coex_schm_interval_get_wrapper(void) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_interval_get(); #else return 0; #endif } static uint8_t coex_schm_curr_period_get_wrapper(void) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_curr_period_get(); #else return 1; #endif } static void * coex_schm_curr_phase_get_wrapper(void) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_curr_phase_get(); #else return NULL; #endif } #endif /* CONFIG_BT_ENABLED */