/* * SPDX-FileCopyrightText: 2010-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "esp_log.h" #include "esp_memory_utils.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "freertos/ringbuf.h" #include "driver/gpio.h" #include "esp_private/spi_common_internal.h" #include "driver/spi_slave_hd.h" #include "hal/spi_slave_hd_hal.h" #if (SOC_SPI_PERIPH_NUM == 2) #define VALID_HOST(x) ((x) == SPI2_HOST) #elif (SOC_SPI_PERIPH_NUM == 3) #define VALID_HOST(x) ((x) >= SPI2_HOST && (x) <= SPI3_HOST) #endif #define SPIHD_CHECK(cond,warn,ret) do{if(!(cond)){ESP_LOGE(TAG, warn); return ret;}} while(0) typedef struct { bool dma_enabled; int max_transfer_sz; uint32_t flags; portMUX_TYPE int_spinlock; intr_handle_t intr; #if SOC_GDMA_SUPPORTED gdma_channel_handle_t gdma_handle_tx; //varible for storge gdma handle gdma_channel_handle_t gdma_handle_rx; #endif intr_handle_t intr_dma; spi_slave_hd_callback_config_t callback; spi_slave_hd_hal_context_t hal; bool append_mode; QueueHandle_t tx_trans_queue; QueueHandle_t tx_ret_queue; QueueHandle_t rx_trans_queue; QueueHandle_t rx_ret_queue; SemaphoreHandle_t tx_cnting_sem; SemaphoreHandle_t rx_cnting_sem; spi_slave_hd_data_t *tx_desc; spi_slave_hd_data_t *rx_desc; #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif } spi_slave_hd_slot_t; static spi_slave_hd_slot_t *spihost[SOC_SPI_PERIPH_NUM]; static const char TAG[] = "slave_hd"; #if SOC_GDMA_SUPPORTED static bool spi_gdma_tx_channel_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data); #endif // SOC_GDMA_SUPPORTED static void spi_slave_hd_intr_append(void *arg); static void spi_slave_hd_intr_segment(void *arg); esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *bus_config, const spi_slave_hd_slot_config_t *config) { bool spi_chan_claimed; bool append_mode = (config->flags & SPI_SLAVE_HD_APPEND_MODE); uint32_t actual_tx_dma_chan = 0; uint32_t actual_rx_dma_chan = 0; esp_err_t ret = ESP_OK; SPIHD_CHECK(VALID_HOST(host_id), "invalid host", ESP_ERR_INVALID_ARG); #if CONFIG_IDF_TARGET_ESP32S2 SPIHD_CHECK(config->dma_chan == SPI_DMA_DISABLED || config->dma_chan == (int)host_id || config->dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG); #elif SOC_GDMA_SUPPORTED SPIHD_CHECK(config->dma_chan == SPI_DMA_DISABLED || config->dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG); #endif spi_chan_claimed = spicommon_periph_claim(host_id, "slave_hd"); SPIHD_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE); spi_slave_hd_slot_t *host = heap_caps_calloc(1, sizeof(spi_slave_hd_slot_t), MALLOC_CAP_INTERNAL); if (host == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } spihost[host_id] = host; host->int_spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; host->dma_enabled = (config->dma_chan != SPI_DMA_DISABLED); if (host->dma_enabled) { ret = spicommon_dma_chan_alloc(host_id, config->dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan); if (ret != ESP_OK) { goto cleanup; } } ret = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_SLAVE | bus_config->flags, &host->flags); if (ret != ESP_OK) { goto cleanup; } gpio_set_direction(config->spics_io_num, GPIO_MODE_INPUT); spicommon_cs_initialize(host_id, config->spics_io_num, 0, !(bus_config->flags & SPICOMMON_BUSFLAG_NATIVE_PINS)); host->append_mode = append_mode; spi_slave_hd_hal_config_t hal_config = { .host_id = host_id, .dma_in = SPI_LL_GET_HW(host_id), .dma_out = SPI_LL_GET_HW(host_id), .dma_enabled = host->dma_enabled, .tx_dma_chan = actual_tx_dma_chan, .rx_dma_chan = actual_rx_dma_chan, .append_mode = append_mode, .mode = config->mode, .tx_lsbfirst = (config->flags & SPI_SLAVE_HD_RXBIT_LSBFIRST), .rx_lsbfirst = (config->flags & SPI_SLAVE_HD_TXBIT_LSBFIRST), }; if (host->dma_enabled) { //Malloc for all the DMA descriptors uint32_t total_desc_size = spi_slave_hd_hal_get_total_desc_size(&host->hal, bus_config->max_transfer_sz); host->hal.dmadesc_tx = heap_caps_malloc(total_desc_size, MALLOC_CAP_DMA); host->hal.dmadesc_rx = heap_caps_malloc(total_desc_size, MALLOC_CAP_DMA); if (!host->hal.dmadesc_tx || !host->hal.dmadesc_rx) { ret = ESP_ERR_NO_MEM; goto cleanup; } //Get the actual SPI bus transaction size in bytes. host->max_transfer_sz = spi_salve_hd_hal_get_max_bus_size(&host->hal); } else { //We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most. host->max_transfer_sz = 0; } //Init the hal according to the hal_config set above spi_slave_hd_hal_init(&host->hal, &hal_config); #ifdef CONFIG_PM_ENABLE ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_slave", &host->pm_lock); if (ret != ESP_OK) { goto cleanup; } // Lock APB frequency while SPI slave driver is in use esp_pm_lock_acquire(host->pm_lock); #endif //CONFIG_PM_ENABLE //Create Queues and Semaphores host->tx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); host->rx_ret_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); if (!host->append_mode) { host->tx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); host->rx_trans_queue = xQueueCreate(config->queue_size, sizeof(spi_slave_hd_data_t *)); if (!host->tx_trans_queue || !host->rx_trans_queue) { ret = ESP_ERR_NO_MEM; goto cleanup; } } else { host->tx_cnting_sem = xSemaphoreCreateCounting(config->queue_size, config->queue_size); host->rx_cnting_sem = xSemaphoreCreateCounting(config->queue_size, config->queue_size); if (!host->tx_cnting_sem || !host->rx_cnting_sem) { ret = ESP_ERR_NO_MEM; goto cleanup; } } //Alloc intr if (!host->append_mode) { //Seg mode ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_segment, (void *)host, &host->intr); if (ret != ESP_OK) { goto cleanup; } ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_segment, (void *)host, &host->intr_dma); if (ret != ESP_OK) { goto cleanup; } } else { //Append mode //On ESP32S2, `cmd7` and `cmd8` interrupts registered as spi rx & tx interrupt are from SPI DMA interrupt source. //although the `cmd7` and `cmd8` interrupt on spi are registered independently here ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_append, (void *)host, &host->intr); if (ret != ESP_OK) { goto cleanup; } #if SOC_GDMA_SUPPORTED // config gmda and ISR callback for gdma supported chip spicommon_gdma_get_handle(host_id, &host->gdma_handle_tx, GDMA_CHANNEL_DIRECTION_TX); gdma_tx_event_callbacks_t tx_cbs = { .on_trans_eof = spi_gdma_tx_channel_callback }; gdma_register_tx_event_callbacks(host->gdma_handle_tx, &tx_cbs, host); #else ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_append, (void *)host, &host->intr_dma); if (ret != ESP_OK) { goto cleanup; } #endif //#if SOC_GDMA_SUPPORTED } //Init callbacks memcpy((uint8_t *)&host->callback, (uint8_t *)&config->cb_config, sizeof(spi_slave_hd_callback_config_t)); spi_event_t event = 0; if (host->callback.cb_buffer_tx != NULL) event |= SPI_EV_BUF_TX; if (host->callback.cb_buffer_rx != NULL) event |= SPI_EV_BUF_RX; if (host->callback.cb_cmd9 != NULL) event |= SPI_EV_CMD9; if (host->callback.cb_cmdA != NULL) event |= SPI_EV_CMDA; spi_slave_hd_hal_enable_event_intr(&host->hal, event); return ESP_OK; cleanup: // Memory free is in the deinit function spi_slave_hd_deinit(host_id); return ret; } esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id) { spi_slave_hd_slot_t *host = spihost[host_id]; if (host == NULL) return ESP_ERR_INVALID_ARG; if (host->tx_trans_queue) vQueueDelete(host->tx_trans_queue); if (host->tx_ret_queue) vQueueDelete(host->tx_ret_queue); if (host->rx_trans_queue) vQueueDelete(host->rx_trans_queue); if (host->rx_ret_queue) vQueueDelete(host->rx_ret_queue); if (host->tx_cnting_sem) vSemaphoreDelete(host->tx_cnting_sem); if (host->rx_cnting_sem) vSemaphoreDelete(host->rx_cnting_sem); if (host) { free(host->hal.dmadesc_tx); free(host->hal.dmadesc_rx); esp_intr_free(host->intr); esp_intr_free(host->intr_dma); #ifdef CONFIG_PM_ENABLE if (host->pm_lock) { esp_pm_lock_release(host->pm_lock); esp_pm_lock_delete(host->pm_lock); } #endif } spicommon_periph_free(host_id); if (host->dma_enabled) { spicommon_dma_chan_free(host_id); } free(host); spihost[host_id] = NULL; return ESP_OK; } static void tx_invoke(spi_slave_hd_slot_t *host) { portENTER_CRITICAL(&host->int_spinlock); spi_slave_hd_hal_invoke_event_intr(&host->hal, SPI_EV_SEND); portEXIT_CRITICAL(&host->int_spinlock); } static void rx_invoke(spi_slave_hd_slot_t *host) { portENTER_CRITICAL(&host->int_spinlock); spi_slave_hd_hal_invoke_event_intr(&host->hal, SPI_EV_RECV); portEXIT_CRITICAL(&host->int_spinlock); } static inline IRAM_ATTR BaseType_t intr_check_clear_callback(spi_slave_hd_slot_t *host, spi_event_t ev, slave_cb_t cb) { BaseType_t cb_awoken = pdFALSE; if (spi_slave_hd_hal_check_clear_event(&host->hal, ev) && cb) { spi_slave_hd_event_t event = {.event = ev}; cb(host->callback.arg, &event, &cb_awoken); } return cb_awoken; } static IRAM_ATTR void spi_slave_hd_intr_segment(void *arg) { spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t *)arg; spi_slave_hd_callback_config_t *callback = &host->callback; spi_slave_hd_hal_context_t *hal = &host->hal; BaseType_t awoken = pdFALSE; BaseType_t ret; awoken |= intr_check_clear_callback(host, SPI_EV_BUF_TX, callback->cb_buffer_tx); awoken |= intr_check_clear_callback(host, SPI_EV_BUF_RX, callback->cb_buffer_rx); awoken |= intr_check_clear_callback(host, SPI_EV_CMD9, callback->cb_cmd9); awoken |= intr_check_clear_callback(host, SPI_EV_CMDA, callback->cb_cmdA); bool tx_done = false, rx_done = false; bool tx_event = false, rx_event = false; portENTER_CRITICAL_ISR(&host->int_spinlock); tx_event = spi_slave_hd_hal_check_disable_event(hal, SPI_EV_SEND); rx_event = spi_slave_hd_hal_check_disable_event(hal, SPI_EV_RECV); tx_done = host->tx_desc && tx_event; rx_done = host->rx_desc && rx_event; portEXIT_CRITICAL_ISR(&host->int_spinlock); if (tx_done) { bool ret_queue = true; if (callback->cb_sent) { spi_slave_hd_event_t ev = { .event = SPI_EV_SEND, .trans = host->tx_desc, }; BaseType_t cb_awoken = pdFALSE; ret_queue = callback->cb_sent(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } if (ret_queue) { ret = xQueueSendFromISR(host->tx_ret_queue, &host->tx_desc, &awoken); // The return queue is full. All the data remian in send_queue + ret_queue should not be more than the queue length. assert(ret == pdTRUE); } host->tx_desc = NULL; } if (rx_done) { bool ret_queue = true; host->rx_desc->trans_len = spi_slave_hd_hal_rxdma_seg_get_len(hal); if (callback->cb_recv) { spi_slave_hd_event_t ev = { .event = SPI_EV_RECV, .trans = host->rx_desc, }; BaseType_t cb_awoken = pdFALSE; ret_queue = callback->cb_recv(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } if (ret_queue) { ret = xQueueSendFromISR(host->rx_ret_queue, &host->rx_desc, &awoken); // The return queue is full. All the data remian in send_queue + ret_queue should not be more than the queue length. assert(ret == pdTRUE); } host->rx_desc = NULL; } bool tx_sent = false; bool rx_sent = false; if (!host->tx_desc) { ret = xQueueReceiveFromISR(host->tx_trans_queue, &host->tx_desc, &awoken); if (ret == pdTRUE) { spi_slave_hd_hal_txdma(hal, host->tx_desc->data, host->tx_desc->len); tx_sent = true; if (callback->cb_send_dma_ready) { spi_slave_hd_event_t ev = { .event = SPI_EV_SEND_DMA_READY, .trans = host->tx_desc, }; BaseType_t cb_awoken = pdFALSE; callback->cb_send_dma_ready(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } } } if (!host->rx_desc) { ret = xQueueReceiveFromISR(host->rx_trans_queue, &host->rx_desc, &awoken); if (ret == pdTRUE) { spi_slave_hd_hal_rxdma(hal, host->rx_desc->data, host->rx_desc->len); rx_sent = true; if (callback->cb_recv_dma_ready) { spi_slave_hd_event_t ev = { .event = SPI_EV_RECV_DMA_READY, .trans = host->rx_desc, }; BaseType_t cb_awoken = pdFALSE; callback->cb_recv_dma_ready(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } } } portENTER_CRITICAL_ISR(&host->int_spinlock); if (tx_sent) { spi_slave_hd_hal_enable_event_intr(hal, SPI_EV_SEND); } if (rx_sent) { spi_slave_hd_hal_enable_event_intr(hal, SPI_EV_RECV); } portEXIT_CRITICAL_ISR(&host->int_spinlock); if (awoken == pdTRUE) portYIELD_FROM_ISR(); } static IRAM_ATTR void spi_slave_hd_append_tx_isr(void *arg) { spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t*)arg; spi_slave_hd_callback_config_t *callback = &host->callback; spi_slave_hd_hal_context_t *hal = &host->hal; BaseType_t awoken = pdFALSE; BaseType_t ret __attribute__((unused)); spi_slave_hd_data_t *trans_desc; while (1) { bool trans_finish = false; trans_finish = spi_slave_hd_hal_get_tx_finished_trans(hal, (void **)&trans_desc); if (!trans_finish) { break; } bool ret_queue = true; if (callback->cb_sent) { spi_slave_hd_event_t ev = { .event = SPI_EV_SEND, .trans = trans_desc, }; BaseType_t cb_awoken = pdFALSE; ret_queue = callback->cb_sent(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } if (ret_queue) { ret = xQueueSendFromISR(host->tx_ret_queue, &trans_desc, &awoken); assert(ret == pdTRUE); ret = xSemaphoreGiveFromISR(host->tx_cnting_sem, &awoken); assert(ret == pdTRUE); } } if (awoken==pdTRUE) portYIELD_FROM_ISR(); } static IRAM_ATTR void spi_slave_hd_append_rx_isr(void *arg) { spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t*)arg; spi_slave_hd_callback_config_t *callback = &host->callback; spi_slave_hd_hal_context_t *hal = &host->hal; BaseType_t awoken = pdFALSE; BaseType_t ret __attribute__((unused)); spi_slave_hd_data_t *trans_desc; size_t trans_len; while (1) { bool trans_finish = false; trans_finish = spi_slave_hd_hal_get_rx_finished_trans(hal, (void **)&trans_desc, &trans_len); if (!trans_finish) { break; } trans_desc->trans_len = trans_len; bool ret_queue = true; if (callback->cb_recv) { spi_slave_hd_event_t ev = { .event = SPI_EV_RECV, .trans = trans_desc, }; BaseType_t cb_awoken = pdFALSE; ret_queue = callback->cb_recv(callback->arg, &ev, &cb_awoken); awoken |= cb_awoken; } if (ret_queue) { ret = xQueueSendFromISR(host->rx_ret_queue, &trans_desc, &awoken); assert(ret == pdTRUE); ret = xSemaphoreGiveFromISR(host->rx_cnting_sem, &awoken); assert(ret == pdTRUE); } } if (awoken==pdTRUE) portYIELD_FROM_ISR(); } #if SOC_GDMA_SUPPORTED // 'spi_gdma_tx_channel_callback' used as spi tx interrupt of append mode on gdma supported target static IRAM_ATTR bool spi_gdma_tx_channel_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { assert(event_data); spi_slave_hd_append_tx_isr(user_data); return true; } #endif // SOC_GDMA_SUPPORTED // SPI slave hd append isr entrance static IRAM_ATTR void spi_slave_hd_intr_append(void *arg) { spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t *)arg; spi_slave_hd_hal_context_t *hal = &host->hal; bool rx_done = false; bool tx_done = false; // Append Mode portENTER_CRITICAL_ISR(&host->int_spinlock); if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_RECV)) { rx_done = true; } if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_SEND)) { // NOTE: on gdma supported chips, this flag should NOT checked out, handle entrance is only `spi_gdma_tx_channel_callback`, // otherwise, here should be target limited. tx_done = true; } portEXIT_CRITICAL_ISR(&host->int_spinlock); if (rx_done) { spi_slave_hd_append_rx_isr(arg); } if (tx_done) { spi_slave_hd_append_tx_isr(arg); } } static esp_err_t get_ret_queue_result(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout) { spi_slave_hd_slot_t *host = spihost[host_id]; spi_slave_hd_data_t *trans; BaseType_t ret; if (chan == SPI_SLAVE_CHAN_TX) { ret = xQueueReceive(host->tx_ret_queue, &trans, timeout); } else { ret = xQueueReceive(host->rx_ret_queue, &trans, timeout); } if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } *out_trans = trans; return ESP_OK; } //---------------------------------------------------------Segment Mode Transaction APIs-----------------------------------------------------------// esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t *trans, TickType_t timeout) { spi_slave_hd_slot_t *host = spihost[host_id]; SPIHD_CHECK(host->append_mode == 0, "This API should be used for SPI Slave HD Segment Mode", ESP_ERR_INVALID_STATE); SPIHD_CHECK(esp_ptr_dma_capable(trans->data), "The buffer should be DMA capable.", ESP_ERR_INVALID_ARG); SPIHD_CHECK(trans->len <= host->max_transfer_sz && trans->len > 0, "Invalid buffer size", ESP_ERR_INVALID_ARG); SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG); if (chan == SPI_SLAVE_CHAN_TX) { BaseType_t ret = xQueueSend(host->tx_trans_queue, &trans, timeout); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } tx_invoke(host); } else { //chan == SPI_SLAVE_CHAN_RX BaseType_t ret = xQueueSend(host->rx_trans_queue, &trans, timeout); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } rx_invoke(host); } return ESP_OK; } esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout) { esp_err_t ret; spi_slave_hd_slot_t *host = spihost[host_id]; SPIHD_CHECK(host->append_mode == 0, "This API should be used for SPI Slave HD Segment Mode", ESP_ERR_INVALID_STATE); SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG); ret = get_ret_queue_result(host_id, chan, out_trans, timeout); return ret; } void spi_slave_hd_read_buffer(spi_host_device_t host_id, int addr, uint8_t *out_data, size_t len) { spi_slave_hd_hal_read_buffer(&spihost[host_id]->hal, addr, out_data, len); } void spi_slave_hd_write_buffer(spi_host_device_t host_id, int addr, uint8_t *data, size_t len) { spi_slave_hd_hal_write_buffer(&spihost[host_id]->hal, addr, data, len); } //---------------------------------------------------------Append Mode Transaction APIs-----------------------------------------------------------// esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t *trans, TickType_t timeout) { esp_err_t err; spi_slave_hd_slot_t *host = spihost[host_id]; spi_slave_hd_hal_context_t *hal = &host->hal; SPIHD_CHECK(trans->len <= SPI_MAX_DMA_LEN, "Currently we only support transaction with data length within 4092 bytes", ESP_ERR_INVALID_ARG); SPIHD_CHECK(host->append_mode == 1, "This API should be used for SPI Slave HD Append Mode", ESP_ERR_INVALID_STATE); SPIHD_CHECK(esp_ptr_dma_capable(trans->data), "The buffer should be DMA capable.", ESP_ERR_INVALID_ARG); SPIHD_CHECK(trans->len <= host->max_transfer_sz && trans->len > 0, "Invalid buffer size", ESP_ERR_INVALID_ARG); SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG); if (chan == SPI_SLAVE_CHAN_TX) { BaseType_t ret = xSemaphoreTake(host->tx_cnting_sem, timeout); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } err = spi_slave_hd_hal_txdma_append(hal, trans->data, trans->len, trans); } else { BaseType_t ret = xSemaphoreTake(host->rx_cnting_sem, timeout); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } err = spi_slave_hd_hal_rxdma_append(hal, trans->data, trans->len, trans); } if (err != ESP_OK) { ESP_LOGE(TAG, "Wait until the DMA finishes its transaction"); } return err; } esp_err_t spi_slave_hd_get_append_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t **out_trans, TickType_t timeout) { esp_err_t ret; spi_slave_hd_slot_t *host = spihost[host_id]; SPIHD_CHECK(host->append_mode == 1, "This API should be used for SPI Slave HD Append Mode", ESP_ERR_INVALID_STATE); SPIHD_CHECK(chan == SPI_SLAVE_CHAN_TX || chan == SPI_SLAVE_CHAN_RX, "Invalid channel", ESP_ERR_INVALID_ARG); ret = get_ret_queue_result(host_id, chan, out_trans, timeout); return ret; }