/* * SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "sdkconfig.h" #include "esp_types.h" #include "esp_log.h" #include "sys/lock.h" #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "esp_pm.h" #include "esp_intr_alloc.h" #include "driver/periph_ctrl.h" #include "driver/rtc_io.h" #include "driver/rtc_cntl.h" #include "driver/gpio.h" #include "driver/adc.h" #include "esp_efuse_rtc_table.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #define ADC_CHECK_RET(fun_ret) ({ \ if (fun_ret != ESP_OK) { \ ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \ return ESP_FAIL; \ } \ }) static const char *ADC_TAG = "ADC"; #define ADC_CHECK(a, str, ret_val) ({ \ if (!(a)) { \ ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } \ }) #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG) extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) #ifdef CONFIG_PM_ENABLE static esp_pm_lock_handle_t s_adc_digi_arbiter_lock = NULL; #endif //CONFIG_PM_ENABLE esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten); /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ esp_err_t adc_digi_init(void) { adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); ADC_ENTER_CRITICAL(); adc_hal_init(); adc_hal_arbiter_config(&config); ADC_EXIT_CRITICAL(); adc_hal_calibration_init(ADC_NUM_1); adc_hal_calibration_init(ADC_NUM_2); return ESP_OK; } esp_err_t adc_digi_deinit(void) { #ifdef CONFIG_PM_ENABLE if (s_adc_digi_arbiter_lock) { esp_pm_lock_delete(s_adc_digi_arbiter_lock); s_adc_digi_arbiter_lock = NULL; } #endif adc_power_release(); ADC_ENTER_CRITICAL(); adc_hal_digi_deinit(); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_controller_config(const adc_digi_config_t *config) { #ifdef CONFIG_PM_ENABLE esp_err_t err; if (s_adc_digi_arbiter_lock == NULL) { if (config->dig_clk.use_apll) { err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "adc_dma", &s_adc_digi_arbiter_lock); } else { err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_arbiter_lock); } if (err != ESP_OK) { s_adc_digi_arbiter_lock = NULL; ESP_LOGE(ADC_TAG, "ADC-DMA pm lock error"); return err; } } #endif //CONFIG_PM_ENABLE if (config->conv_mode & ADC_CONV_SINGLE_UNIT_1) { for (int i = 0; i < config->adc1_pattern_len; i++) { adc_cal_offset(ADC_NUM_1, config->adc1_pattern[i].channel, config->adc1_pattern[i].atten); } } if (config->conv_mode & ADC_CONV_SINGLE_UNIT_2) { for (int i = 0; i < config->adc2_pattern_len; i++) { adc_cal_offset(ADC_NUM_2, config->adc2_pattern[i].channel, config->adc2_pattern[i].atten); } } /* If enable digtal controller, adc xpd should always on. */ adc_power_acquire(); ADC_ENTER_CRITICAL(); adc_hal_digi_controller_config(config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config) { if (adc_unit & ADC_UNIT_1) { return ESP_ERR_NOT_SUPPORTED; } ADC_ENTER_CRITICAL(); adc_hal_arbiter_config(config); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * @brief Set ADC module controller. * There are five SAR ADC controllers: * Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes; * Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep; * the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2. * * @note Only ADC2 support arbiter to switch controllers automatically. Access to the ADC is based on the priority of the controller. * @note For ADC1, Controller access is mutually exclusive. * * @param adc_unit ADC unit. * @param ctrl ADC controller, Refer to `adc_ll_controller_t`. * * @return * - ESP_OK Success */ esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_ll_controller_t ctrl) { adc_arbiter_t config = {0}; adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT(); if (adc_unit & ADC_UNIT_1) { adc_hal_set_controller(ADC_NUM_1, ctrl); } if (adc_unit & ADC_UNIT_2) { adc_hal_set_controller(ADC_NUM_2, ctrl); switch (ctrl) { case ADC2_CTRL_FORCE_PWDET: config.pwdet_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC2_CTRL_PWDET); break; case ADC2_CTRL_FORCE_RTC: config.rtc_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC); break; case ADC2_CTRL_FORCE_ULP: config.rtc_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_ULP); break; case ADC2_CTRL_FORCE_DIG: config.dig_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_DIG); break; default: adc_hal_arbiter_config(&cfg); break; } } return ESP_OK; } esp_err_t adc_digi_start(void) { #ifdef CONFIG_PM_ENABLE ADC_CHECK((s_adc_digi_arbiter_lock), "Should start after call `adc_digi_controller_config`", ESP_FAIL); esp_pm_lock_acquire(s_adc_digi_arbiter_lock); #endif ADC_ENTER_CRITICAL(); adc_hal_digi_enable(); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_stop(void) { #ifdef CONFIG_PM_ENABLE if (s_adc_digi_arbiter_lock) { esp_pm_lock_release(s_adc_digi_arbiter_lock); } #endif ADC_ENTER_CRITICAL(); adc_hal_digi_disable(); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * @brief Reset FSM of adc digital controller. * * @return * - ESP_OK Success */ esp_err_t adc_digi_reset(void) { ADC_ENTER_CRITICAL(); adc_hal_digi_reset(); adc_hal_digi_clear_pattern_table(ADC_NUM_1); adc_hal_digi_clear_pattern_table(ADC_NUM_2); ADC_EXIT_CRITICAL(); return ESP_OK; } /*************************************/ /* Digital controller filter setting */ /*************************************/ esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_FILTER_IDX0) { adc_hal_digi_filter_reset(ADC_NUM_1); } else if (idx == ADC_DIGI_FILTER_IDX1) { adc_hal_digi_filter_reset(ADC_NUM_2); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_FILTER_IDX0) { adc_hal_digi_filter_set_factor(ADC_NUM_1, config->mode); } else if (idx == ADC_DIGI_FILTER_IDX1) { adc_hal_digi_filter_set_factor(ADC_NUM_2, config->mode); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_FILTER_IDX0) { config->adc_unit = ADC_UNIT_1; config->channel = ADC_CHANNEL_MAX; adc_hal_digi_filter_get_factor(ADC_NUM_1, &config->mode); } else if (idx == ADC_DIGI_FILTER_IDX1) { config->adc_unit = ADC_UNIT_2; config->channel = ADC_CHANNEL_MAX; adc_hal_digi_filter_get_factor(ADC_NUM_2, &config->mode); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_FILTER_IDX0) { adc_hal_digi_filter_enable(ADC_NUM_1, enable); } else if (idx == ADC_DIGI_FILTER_IDX1) { adc_hal_digi_filter_enable(ADC_NUM_2, enable); } ADC_EXIT_CRITICAL(); return ESP_OK; } /** * @brief Get the filtered data of adc digital controller filter. For debug. * The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API. * * @note For ESP32S2, The filter will filter all the enabled channel data of the each ADC unit at the same time. * @param idx Filter index. * @return Filtered data. if <0, the read data invalid. */ int adc_digi_filter_read_data(adc_digi_filter_idx_t idx) { if (idx == ADC_DIGI_FILTER_IDX0) { return adc_hal_digi_filter_read_data(ADC_NUM_1); } else if (idx == ADC_DIGI_FILTER_IDX1) { return adc_hal_digi_filter_read_data(ADC_NUM_2); } else { return -1; } } /**************************************/ /* Digital controller monitor setting */ /**************************************/ esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_MONITOR_IDX0) { adc_hal_digi_monitor_config(ADC_NUM_1, config); } else if (idx == ADC_DIGI_MONITOR_IDX1) { adc_hal_digi_monitor_config(ADC_NUM_2, config); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable) { ADC_ENTER_CRITICAL(); if (idx == ADC_DIGI_MONITOR_IDX0) { adc_hal_digi_monitor_enable(ADC_NUM_1, enable); } else if (idx == ADC_DIGI_MONITOR_IDX1) { adc_hal_digi_monitor_enable(ADC_NUM_2, enable); } ADC_EXIT_CRITICAL(); return ESP_OK; } /**************************************/ /* Digital controller intr setting */ /**************************************/ esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_enable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_enable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_disable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_disable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_clear(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_clear(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit) { uint32_t ret = 0; ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { ret = adc_hal_digi_get_intr_status(ADC_NUM_1); } if (adc_unit & ADC_UNIT_2) { ret = adc_hal_digi_get_intr_status(ADC_NUM_2); } ADC_EXIT_CRITICAL(); return ret; } static uint8_t s_isr_registered = 0; static intr_handle_t s_adc_isr_handle = NULL; esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags) { ADC_CHECK((fn != NULL), "Parameter error", ESP_ERR_INVALID_ARG); ADC_CHECK(s_isr_registered == 0, "ADC ISR have installed, can not install again", ESP_FAIL); esp_err_t ret = esp_intr_alloc(ETS_APB_ADC_INTR_SOURCE, intr_alloc_flags, fn, arg, &s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 1; } return ret; } esp_err_t adc_digi_isr_deregister(void) { esp_err_t ret = ESP_FAIL; if (s_isr_registered) { ret = esp_intr_free(s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 0; } } return ret; } /*--------------------------------------------------------------- RTC controller setting ---------------------------------------------------------------*/ /*--------------------------------------------------------------- Calibration ---------------------------------------------------------------*/ static uint16_t s_adc_cali_param[ADC_NUM_MAX][ADC_ATTEN_MAX] = { {0}, {0} }; //NOTE: according to calibration version, different types of lock may be taken during the process: // 1. Semaphore when reading efuse // 2. Spinlock when actually doing ADC calibration //This function shoudn't be called inside critical section or ISR uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool no_cal) { #ifdef CONFIG_IDF_ENV_FPGA return 0; #endif if (s_adc_cali_param[adc_n][atten]) { ESP_LOGV(ADC_TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n, atten, s_adc_cali_param[adc_n][atten]); return (uint32_t)s_adc_cali_param[adc_n][atten]; } if (no_cal) { return 0; //indicating failure } uint32_t dout = 0; // check if we can fetch the values from eFuse. int version = esp_efuse_rtc_table_read_calib_version(); if (version == 2) { int tag = esp_efuse_rtc_table_get_tag(version, adc_n + 1, atten, RTCCALIB_V2_PARAM_VINIT); dout = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false); } else { adc_power_acquire(); ADC_ENTER_CRITICAL(); const bool internal_gnd = true; dout = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd); ADC_EXIT_CRITICAL(); adc_power_release(); } ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, dout); s_adc_cali_param[adc_n][atten] = (uint16_t)dout; return dout; } esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { adc_hal_calibration_init(adc_n); uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten, false); ADC_ENTER_CRITICAL(); adc_hal_set_calibration_param(adc_n, cal_val); ADC_EXIT_CRITICAL(); return ESP_OK; }