/* * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "sdkconfig.h" #if CONFIG_I2S_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "soc/lldesc.h" #include "driver/gpio.h" #include "hal/gpio_hal.h" #include "driver/i2s_types_legacy.h" #include "hal/i2s_hal.h" #if SOC_I2S_SUPPORTS_DAC #include "driver/dac.h" #include "esp_private/adc_private.h" #include "adc1_private.h" #include "driver/adc_i2s_legacy.h" #include "driver/adc_types_legacy.h" #endif // SOC_I2S_SUPPORTS_ADC #if SOC_GDMA_SUPPORTED #include "esp_private/gdma.h" #endif #include "clk_ctrl_os.h" #include "esp_intr_alloc.h" #include "esp_err.h" #include "esp_check.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_pm.h" #include "esp_efuse.h" #include "esp_rom_gpio.h" #include "esp_private/periph_ctrl.h" static const char *TAG = "i2s(legacy)"; #define I2S_ENTER_CRITICAL_ISR(i2s_num) portENTER_CRITICAL_ISR(&i2s_spinlock[i2s_num]) #define I2S_EXIT_CRITICAL_ISR(i2s_num) portEXIT_CRITICAL_ISR(&i2s_spinlock[i2s_num]) #define I2S_ENTER_CRITICAL(i2s_num) portENTER_CRITICAL(&i2s_spinlock[i2s_num]) #define I2S_EXIT_CRITICAL(i2s_num) portEXIT_CRITICAL(&i2s_spinlock[i2s_num]) #define I2S_DMA_BUFFER_MAX_SIZE 4092 #if SOC_I2S_SUPPORTS_ADC_DAC #define I2S_COMM_MODE_ADC_DAC -1 #endif /** * @brief General clock configuration information * @note It is a general purpose struct, not supposed to be used directly by user */ typedef struct { uint32_t sample_rate_hz; /*!< I2S sample rate */ i2s_clock_src_t clk_src; /*!< Choose clock source */ i2s_mclk_multiple_t mclk_multiple; /*!< The multiple of mclk to the sample rate */ #if SOC_I2S_SUPPORTS_PDM_TX uint32_t up_sample_fp; /*!< Up-sampling param fp */ uint32_t up_sample_fs; /*!< Up-sampling param fs */ #endif #if SOC_I2S_SUPPORTS_PDM_RX i2s_pdm_dsr_t dn_sample_mode; /*!< Down-sampling rate mode */ #endif } i2s_clk_config_t; /** * @brief DMA buffer object * */ typedef struct { char **buf; int buf_size; volatile int rw_pos; volatile void *curr_ptr; SemaphoreHandle_t mux; QueueHandle_t queue; lldesc_t **desc; } i2s_dma_t; /** * @brief I2S object instance * */ typedef struct { i2s_port_t i2s_num; /*!< I2S port number*/ int queue_size; /*!< I2S event queue size*/ QueueHandle_t i2s_queue; /*!< I2S queue handler*/ uint32_t last_buf_size; /*!< DMA last buffer size */ i2s_dma_t *tx; /*!< DMA Tx buffer*/ i2s_dma_t *rx; /*!< DMA Rx buffer*/ #if SOC_GDMA_SUPPORTED gdma_channel_handle_t rx_dma_chan; /*!< I2S rx gDMA channel handle*/ gdma_channel_handle_t tx_dma_chan; /*!< I2S tx gDMA channel handle*/ #else intr_handle_t i2s_isr_handle; /*!< I2S Interrupt handle*/ #endif uint32_t dma_desc_num; uint32_t dma_frame_num; bool tx_desc_auto_clear; /*!< I2S auto clear tx descriptor on underflow */ bool use_apll; /*!< I2S use APLL clock */ int fixed_mclk; /*!< I2S fixed MLCK clock */ i2s_mclk_multiple_t mclk_multiple; /*!< The multiple of I2S master clock(MCLK) to sample rate */ #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif i2s_hal_context_t hal; /*!< I2S hal context*/ /* New config */ i2s_dir_t dir; i2s_role_t role; i2s_comm_mode_t mode; i2s_hal_slot_config_t slot_cfg; i2s_clk_config_t clk_cfg; uint32_t active_slot; /*!< Active slot number */ uint32_t total_slot; /*!< Total slot number */ } i2s_obj_t; // Record the component name that using I2S peripheral static const char *comp_using_i2s[SOC_I2S_NUM] = {[0 ... SOC_I2S_NUM - 1] = NULL}; // Global I2S object pointer static i2s_obj_t *p_i2s[SOC_I2S_NUM] = { [0 ... SOC_I2S_NUM - 1] = NULL, }; // Global spin lock for all i2s controllers static portMUX_TYPE i2s_spinlock[SOC_I2S_NUM] = { [0 ... SOC_I2S_NUM - 1] = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED, }; __attribute__((weak)) esp_err_t i2s_platform_acquire_occupation(int id, const char *comp_name); __attribute__((weak)) esp_err_t i2s_platform_release_occupation(int id); /*------------------------------------------------------------- I2S DMA operation -------------------------------------------------------------*/ #if SOC_GDMA_SUPPORTED static bool IRAM_ATTR i2s_dma_rx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { i2s_obj_t *p_i2s = (i2s_obj_t *) user_data; portBASE_TYPE need_awoke = 0; portBASE_TYPE tmp = 0; int dummy; i2s_event_t i2s_event; uint32_t finish_desc; if (p_i2s->rx) { finish_desc = event_data->rx_eof_desc_addr; i2s_event.size = ((lldesc_t *)finish_desc)->size; if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) { xQueueReceiveFromISR(p_i2s->rx->queue, &dummy, &tmp); need_awoke |= tmp; if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_RX_Q_OVF; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } xQueueSendFromISR(p_i2s->rx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp); need_awoke |= tmp; if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_RX_DONE; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } return need_awoke; } static bool IRAM_ATTR i2s_dma_tx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { i2s_obj_t *p_i2s = (i2s_obj_t *) user_data; portBASE_TYPE need_awoke = 0; portBASE_TYPE tmp = 0; int dummy; i2s_event_t i2s_event; uint32_t finish_desc; if (p_i2s->tx) { finish_desc = event_data->tx_eof_desc_addr; i2s_event.size = ((lldesc_t *)finish_desc)->size; if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) { xQueueReceiveFromISR(p_i2s->tx->queue, &dummy, &tmp); need_awoke |= tmp; if (p_i2s->tx_desc_auto_clear) { memset((void *) dummy, 0, p_i2s->tx->buf_size); } if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_TX_Q_OVF; i2s_event.size = p_i2s->tx->buf_size; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } xQueueSendFromISR(p_i2s->tx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp); need_awoke |= tmp; if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_TX_DONE; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } return need_awoke; } #else static void IRAM_ATTR i2s_intr_handler_default(void *arg) { i2s_obj_t *p_i2s = (i2s_obj_t *) arg; uint32_t status = i2s_hal_get_intr_status(&(p_i2s->hal)); if (status == 0) { //Avoid spurious interrupt return; } i2s_event_t i2s_event; int dummy; portBASE_TYPE need_awoke = 0; portBASE_TYPE tmp = 0; uint32_t finish_desc = 0; if ((status & I2S_LL_EVENT_TX_DSCR_ERR) || (status & I2S_LL_EVENT_RX_DSCR_ERR)) { ESP_EARLY_LOGE(TAG, "dma error, interrupt status: 0x%08x", status); if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_DMA_ERROR; if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &tmp); need_awoke |= tmp; } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } if ((status & I2S_LL_EVENT_TX_EOF) && p_i2s->tx) { i2s_hal_get_out_eof_des_addr(&(p_i2s->hal), &finish_desc); i2s_event.size = ((lldesc_t *)finish_desc)->size; // All buffers are empty. This means we have an underflow on our hands. if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) { xQueueReceiveFromISR(p_i2s->tx->queue, &dummy, &tmp); need_awoke |= tmp; // See if tx descriptor needs to be auto cleared: // This will avoid any kind of noise that may get introduced due to transmission // of previous data from tx descriptor on I2S line. if (p_i2s->tx_desc_auto_clear == true) { memset((void *) dummy, 0, p_i2s->tx->buf_size); } if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_TX_Q_OVF; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } xQueueSendFromISR(p_i2s->tx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp); need_awoke |= tmp; if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_TX_DONE; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } if ((status & I2S_LL_EVENT_RX_EOF) && p_i2s->rx) { // All buffers are full. This means we have an overflow. i2s_hal_get_in_eof_des_addr(&(p_i2s->hal), &finish_desc); i2s_event.size = ((lldesc_t *)finish_desc)->size; if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) { xQueueReceiveFromISR(p_i2s->rx->queue, &dummy, &tmp); need_awoke |= tmp; if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_RX_Q_OVF; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } xQueueSendFromISR(p_i2s->rx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp); need_awoke |= tmp; if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_RX_DONE; xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp); need_awoke |= tmp; } } i2s_hal_clear_intr_status(&(p_i2s->hal), status); if (need_awoke == pdTRUE) { portYIELD_FROM_ISR(); } } #endif static esp_err_t i2s_dma_intr_init(i2s_port_t i2s_num, int intr_flag) { #if SOC_GDMA_SUPPORTED /* Set GDMA trigger module */ gdma_trigger_t trig = {.periph = GDMA_TRIG_PERIPH_I2S}; switch (i2s_num) { #if SOC_I2S_NUM > 1 case I2S_NUM_1: trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S1; break; #endif default: trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S0; break; } /* Set GDMA config */ gdma_channel_alloc_config_t dma_cfg = {}; if ( p_i2s[i2s_num]->dir & I2S_DIR_TX) { dma_cfg.direction = GDMA_CHANNEL_DIRECTION_TX; /* Register a new GDMA tx channel */ ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->tx_dma_chan), TAG, "Register tx dma channel error"); ESP_RETURN_ON_ERROR(gdma_connect(p_i2s[i2s_num]->tx_dma_chan, trig), TAG, "Connect tx dma channel error"); gdma_tx_event_callbacks_t cb = {.on_trans_eof = i2s_dma_tx_callback}; /* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the callback function */ gdma_register_tx_event_callbacks(p_i2s[i2s_num]->tx_dma_chan, &cb, p_i2s[i2s_num]); } if ( p_i2s[i2s_num]->dir & I2S_DIR_RX) { dma_cfg.direction = GDMA_CHANNEL_DIRECTION_RX; /* Register a new GDMA rx channel */ ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->rx_dma_chan), TAG, "Register rx dma channel error"); ESP_RETURN_ON_ERROR(gdma_connect(p_i2s[i2s_num]->rx_dma_chan, trig), TAG, "Connect rx dma channel error"); gdma_rx_event_callbacks_t cb = {.on_recv_eof = i2s_dma_rx_callback}; /* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the callback function */ gdma_register_rx_event_callbacks(p_i2s[i2s_num]->rx_dma_chan, &cb, p_i2s[i2s_num]); } #else /* Initial I2S module interrupt */ ESP_RETURN_ON_ERROR(esp_intr_alloc(i2s_periph_signal[i2s_num].irq, intr_flag, i2s_intr_handler_default, p_i2s[i2s_num], &p_i2s[i2s_num]->i2s_isr_handle), TAG, "Register I2S Interrupt error"); #endif // SOC_GDMA_SUPPORTED return ESP_OK; } static void i2s_tx_reset(i2s_port_t i2s_num) { p_i2s[i2s_num]->tx->curr_ptr = NULL; p_i2s[i2s_num]->tx->rw_pos = 0; i2s_hal_tx_reset(&(p_i2s[i2s_num]->hal)); #if SOC_GDMA_SUPPORTED gdma_reset(p_i2s[i2s_num]->tx_dma_chan); #else i2s_hal_tx_reset_dma(&(p_i2s[i2s_num]->hal)); #endif i2s_hal_tx_reset_fifo(&(p_i2s[i2s_num]->hal)); } /** * @brief I2S rx reset * * @param i2s_num I2S device number */ static void i2s_rx_reset(i2s_port_t i2s_num) { p_i2s[i2s_num]->rx->curr_ptr = NULL; p_i2s[i2s_num]->rx->rw_pos = 0; i2s_hal_rx_reset(&(p_i2s[i2s_num]->hal)); #if SOC_GDMA_SUPPORTED gdma_reset(p_i2s[i2s_num]->rx_dma_chan); #else i2s_hal_rx_reset_dma(&(p_i2s[i2s_num]->hal)); #endif i2s_hal_rx_reset_fifo(&(p_i2s[i2s_num]->hal)); } static void i2s_tx_start(i2s_port_t i2s_num) { #if SOC_GDMA_SUPPORTED gdma_start(p_i2s[i2s_num]->tx_dma_chan, (uint32_t) p_i2s[i2s_num]->tx->desc[0]); #else i2s_hal_tx_enable_dma(&(p_i2s[i2s_num]->hal)); i2s_hal_tx_enable_intr(&(p_i2s[i2s_num]->hal)); i2s_hal_tx_start_link(&(p_i2s[i2s_num]->hal), (uint32_t) p_i2s[i2s_num]->tx->desc[0]); #endif i2s_hal_tx_start(&(p_i2s[i2s_num]->hal)); } static void i2s_rx_start(i2s_port_t i2s_num) { #if SOC_GDMA_SUPPORTED gdma_start(p_i2s[i2s_num]->rx_dma_chan, (uint32_t) p_i2s[i2s_num]->rx->desc[0]); #else i2s_hal_rx_enable_dma(&(p_i2s[i2s_num]->hal)); i2s_hal_rx_enable_intr(&(p_i2s[i2s_num]->hal)); i2s_hal_rx_start_link(&(p_i2s[i2s_num]->hal), (uint32_t) p_i2s[i2s_num]->rx->desc[0]); #endif i2s_hal_rx_start(&(p_i2s[i2s_num]->hal)); } static void i2s_tx_stop(i2s_port_t i2s_num) { i2s_hal_tx_stop(&(p_i2s[i2s_num]->hal)); #if SOC_GDMA_SUPPORTED gdma_stop(p_i2s[i2s_num]->tx_dma_chan); #else i2s_hal_tx_stop_link(&(p_i2s[i2s_num]->hal)); i2s_hal_tx_disable_intr(&(p_i2s[i2s_num]->hal)); i2s_hal_tx_disable_dma(&(p_i2s[i2s_num]->hal)); #endif } static void i2s_rx_stop(i2s_port_t i2s_num) { i2s_hal_rx_stop(&(p_i2s[i2s_num]->hal)); #if SOC_GDMA_SUPPORTED gdma_stop(p_i2s[i2s_num]->rx_dma_chan); #else i2s_hal_rx_stop_link(&(p_i2s[i2s_num]->hal)); i2s_hal_rx_disable_intr(&(p_i2s[i2s_num]->hal)); i2s_hal_rx_disable_dma(&(p_i2s[i2s_num]->hal)); #endif } esp_err_t i2s_start(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); //start DMA link I2S_ENTER_CRITICAL(i2s_num); if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_tx_reset(i2s_num); i2s_tx_start(i2s_num); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_rx_reset(i2s_num); i2s_rx_start(i2s_num); } #if !SOC_GDMA_SUPPORTED esp_intr_enable(p_i2s[i2s_num]->i2s_isr_handle); #endif I2S_EXIT_CRITICAL(i2s_num); return ESP_OK; } esp_err_t i2s_stop(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); I2S_ENTER_CRITICAL(i2s_num); #if !SOC_GDMA_SUPPORTED esp_intr_disable(p_i2s[i2s_num]->i2s_isr_handle); #endif if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_tx_stop(i2s_num); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_rx_stop(i2s_num); } #if !SOC_GDMA_SUPPORTED i2s_hal_clear_intr_status(&(p_i2s[i2s_num]->hal), I2S_INTR_MAX); #endif I2S_EXIT_CRITICAL(i2s_num); return ESP_OK; } /*------------------------------------------------------------- I2S buffer operation -------------------------------------------------------------*/ static inline uint32_t i2s_get_buf_size(i2s_port_t i2s_num) { i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg; /* Calculate bytes per sample, align to 16 bit */ uint32_t bytes_per_sample = ((slot_cfg->data_bit_width + 15) / 16) * 2; /* The DMA buffer limitation is 4092 bytes */ uint32_t bytes_per_frame = bytes_per_sample * p_i2s[i2s_num]->active_slot; p_i2s[i2s_num]->dma_frame_num = (p_i2s[i2s_num]->dma_frame_num * bytes_per_frame > I2S_DMA_BUFFER_MAX_SIZE) ? I2S_DMA_BUFFER_MAX_SIZE / bytes_per_frame : p_i2s[i2s_num]->dma_frame_num; return p_i2s[i2s_num]->dma_frame_num * bytes_per_frame; } static esp_err_t i2s_delete_dma_buffer(i2s_port_t i2s_num, i2s_dma_t *dma_obj) { ESP_RETURN_ON_FALSE(dma_obj, ESP_ERR_INVALID_ARG, TAG, "I2S DMA object can't be NULL"); uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num; /* Loop to destroy every descriptor and buffer */ for (int cnt = 0; cnt < buf_cnt; cnt++) { if (dma_obj->desc && dma_obj->desc[cnt]) { free(dma_obj->desc[cnt]); dma_obj->desc[cnt] = NULL; } if (dma_obj->buf && dma_obj->buf[cnt]) { free(dma_obj->buf[cnt]); dma_obj->buf[cnt] = NULL; } } return ESP_OK; } static esp_err_t i2s_alloc_dma_buffer(i2s_port_t i2s_num, i2s_dma_t *dma_obj) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(dma_obj, ESP_ERR_INVALID_ARG, err, TAG, "I2S DMA object can't be NULL"); uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num; for (int cnt = 0; cnt < buf_cnt; cnt++) { /* Allocate DMA buffer */ dma_obj->buf[cnt] = (char *) heap_caps_calloc(dma_obj->buf_size, sizeof(char), MALLOC_CAP_DMA); ESP_GOTO_ON_FALSE(dma_obj->buf[cnt], ESP_ERR_NO_MEM, err, TAG, "Error malloc dma buffer"); /* Initialize DMA buffer to 0 */ memset(dma_obj->buf[cnt], 0, dma_obj->buf_size); /* Allocate DMA descpriptor */ dma_obj->desc[cnt] = (lldesc_t *) heap_caps_calloc(1, sizeof(lldesc_t), MALLOC_CAP_DMA); ESP_GOTO_ON_FALSE(dma_obj->desc[cnt], ESP_ERR_NO_MEM, err, TAG, "Error malloc dma description entry"); } /* DMA descriptor must be initialize after all descriptor has been created, otherwise they can't be linked together as a chain */ for (int cnt = 0; cnt < buf_cnt; cnt++) { /* Initialize DMA descriptor */ dma_obj->desc[cnt]->owner = 1; dma_obj->desc[cnt]->eof = 1; dma_obj->desc[cnt]->sosf = 0; dma_obj->desc[cnt]->length = dma_obj->buf_size; dma_obj->desc[cnt]->size = dma_obj->buf_size; dma_obj->desc[cnt]->buf = (uint8_t *) dma_obj->buf[cnt]; dma_obj->desc[cnt]->offset = 0; /* Link to the next descriptor */ dma_obj->desc[cnt]->empty = (uint32_t)((cnt < (buf_cnt - 1)) ? (dma_obj->desc[cnt + 1]) : dma_obj->desc[0]); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_ll_rx_set_eof_num(p_i2s[i2s_num]->hal.dev, dma_obj->buf_size); } ESP_LOGD(TAG, "DMA Malloc info, datalen=blocksize=%d, dma_desc_num=%d", dma_obj->buf_size, buf_cnt); return ESP_OK; err: /* Delete DMA buffer if failed to allocate memory */ i2s_delete_dma_buffer(i2s_num, dma_obj); return ret; } static esp_err_t i2s_realloc_dma_buffer(i2s_port_t i2s_num, i2s_dma_t *dma_obj) { ESP_RETURN_ON_FALSE(dma_obj, ESP_ERR_INVALID_ARG, TAG, "I2S DMA object can't be NULL"); /* Destroy old dma descriptor and buffer */ i2s_delete_dma_buffer(i2s_num, dma_obj); /* Alloc new dma descriptor and buffer */ ESP_RETURN_ON_ERROR(i2s_alloc_dma_buffer(i2s_num, dma_obj), TAG, "Failed to allocate dma buffer"); return ESP_OK; } static esp_err_t i2s_destroy_dma_object(i2s_port_t i2s_num, i2s_dma_t **dma) { /* Check if DMA truely need destroy */ ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_ERR_INVALID_ARG, TAG, "I2S not initialized yet"); if (!(*dma)) { return ESP_OK; } /* Destroy every descriptor and buffer */ i2s_delete_dma_buffer(i2s_num, (*dma)); /* Destroy descriptor pointer */ if ((*dma)->desc) { free((*dma)->desc); (*dma)->desc = NULL; } /* Destroy buffer pointer */ if ((*dma)->buf) { free((*dma)->buf); (*dma)->buf = NULL; } /* Delete DMA mux */ vSemaphoreDelete((*dma)->mux); /* Delete DMA queue */ vQueueDelete((*dma)->queue); /* Free DMA structure */ free(*dma); *dma = NULL; ESP_LOGD(TAG, "DMA queue destroyed"); return ESP_OK; } static esp_err_t i2s_create_dma_object(i2s_port_t i2s_num, i2s_dma_t **dma) { ESP_RETURN_ON_FALSE(dma, ESP_ERR_INVALID_ARG, TAG, "DMA object secondary pointer is NULL"); ESP_RETURN_ON_FALSE((*dma == NULL), ESP_ERR_INVALID_ARG, TAG, "DMA object has been created"); uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num; /* Allocate new DMA structure */ *dma = (i2s_dma_t *) calloc(1, sizeof(i2s_dma_t)); ESP_RETURN_ON_FALSE(*dma, ESP_ERR_NO_MEM, TAG, "DMA object allocate failed"); /* Allocate DMA buffer poiter */ (*dma)->buf = (char **)heap_caps_calloc(buf_cnt, sizeof(char *), MALLOC_CAP_DMA); if (!(*dma)->buf) { goto err; } /* Allocate secondary pointer of DMA descriptor chain */ (*dma)->desc = (lldesc_t **)heap_caps_calloc(buf_cnt, sizeof(lldesc_t *), MALLOC_CAP_DMA); if (!(*dma)->desc) { goto err; } /* Create queue and mutex */ (*dma)->queue = xQueueCreate(buf_cnt - 1, sizeof(char *)); if (!(*dma)->queue) { goto err; } (*dma)->mux = xSemaphoreCreateMutex(); if (!(*dma)->mux) { goto err; } return ESP_OK; err: ESP_LOGE(TAG, "I2S DMA object create failed, preparing to uninstall"); /* Destroy DMA queue if failed to allocate memory */ i2s_destroy_dma_object(i2s_num, dma); return ESP_ERR_NO_MEM; } /*------------------------------------------------------------- I2S clock operation -------------------------------------------------------------*/ static uint32_t i2s_config_source_clock(i2s_port_t i2s_num, bool use_apll, uint32_t mclk) { #if SOC_I2S_SUPPORTS_APLL if (use_apll) { /* Calculate the expected APLL */ int div = (int)((SOC_APLL_MIN_HZ / mclk) + 1); /* apll_freq = mclk * div * when div = 1, hardware will still divide 2 * when div = 0, the final mclk will be unpredictable * So the div here should be at least 2 */ div = div < 2 ? 2 : div; uint32_t expt_freq = mclk * div; /* Set APLL coefficients to the given frequency */ uint32_t real_freq = 0; esp_err_t ret = periph_rtc_apll_freq_set(expt_freq, &real_freq); if (ret == ESP_ERR_INVALID_ARG) { ESP_LOGE(TAG, "set APLL coefficients failed"); return 0; } if (ret == ESP_ERR_INVALID_STATE) { ESP_LOGW(TAG, "APLL is occupied already, it is working at %d Hz", real_freq); } ESP_LOGD(TAG, "APLL expected frequency is %d Hz, real frequency is %d Hz", expt_freq, real_freq); /* In APLL mode, there is no sclk but only mclk, so return 0 here to indicate APLL mode */ return real_freq; } return I2S_LL_BASE_CLK; #else if (use_apll) { ESP_LOGW(TAG, "APLL not supported on current chip, use I2S_CLK_SRC_DEFAULT as default clock source"); } return I2S_LL_BASE_CLK; #endif } #if SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC static esp_err_t i2s_calculate_adc_dac_clock(int i2s_num, i2s_hal_clock_info_t *clk_info) { /* For ADC/DAC mode, the built-in ADC/DAC is driven by 'mclk' instead of 'bclk' * 'bclk' should be fixed to the double of sample rate * 'bclk_div' is the real coefficient that affects the slot bit */ i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg; i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg; uint32_t slot_bits = slot_cfg->slot_bit_width; /* Set I2S bit clock */ clk_info->bclk = clk_cfg->sample_rate_hz * I2S_LL_AD_BCK_FACTOR; /* Set I2S bit clock default division */ clk_info->bclk_div = slot_bits; /* If fixed_mclk and use_apll are set, use fixed_mclk as mclk frequency, otherwise calculate by mclk = bclk * bclk_div */ clk_info->mclk = (p_i2s[i2s_num]->use_apll && p_i2s[i2s_num]->fixed_mclk) ? p_i2s[i2s_num]->fixed_mclk : clk_info->bclk * clk_info->bclk_div; /* Calculate bclk_div = mclk / bclk */ clk_info->bclk_div = clk_info->mclk / clk_info->bclk; /* Get I2S system clock by config source clock */ clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk); /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */ clk_info->mclk_div = clk_info->sclk / clk_info->mclk; /* Check if the configuration is correct */ ESP_RETURN_ON_FALSE(clk_info->sclk / (float)clk_info->mclk > 1.99, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large, the mclk division is below minimum value 2"); ESP_RETURN_ON_FALSE(clk_info->mclk_div < 256, ESP_ERR_INVALID_ARG, TAG, "sample rate is too small, the mclk division exceed the maximum value 255"); return ESP_OK; } #endif // SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC #if SOC_I2S_SUPPORTS_PDM_TX static esp_err_t i2s_calculate_pdm_tx_clock(int i2s_num, i2s_hal_clock_info_t *clk_info) { i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg; int fp = clk_cfg->up_sample_fp; int fs = clk_cfg->up_sample_fs; /* Set I2S bit clock */ clk_info->bclk = clk_cfg->sample_rate_hz * I2S_LL_PDM_BCK_FACTOR * fp / fs; /* Set I2S bit clock default division */ clk_info->bclk_div = 8; /* If fixed_mclk and use_apll are set, use fixed_mclk as mclk frequency, otherwise calculate by mclk = sample_rate_hz * multiple */ clk_info->mclk = (p_i2s[i2s_num]->use_apll && p_i2s[i2s_num]->fixed_mclk) ? p_i2s[i2s_num]->fixed_mclk : clk_info->bclk * clk_info->bclk_div; /* Calculate bclk_div = mclk / bclk */ clk_info->bclk_div = clk_info->mclk / clk_info->bclk; /* Get I2S system clock by config source clock */ clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk); /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */ clk_info->mclk_div = clk_info->sclk / clk_info->mclk; /* Check if the configuration is correct */ ESP_RETURN_ON_FALSE(clk_info->sclk / (float)clk_info->mclk > 1.99, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large, the mclk division is below minimum value 2"); ESP_RETURN_ON_FALSE(clk_info->mclk_div < 256, ESP_ERR_INVALID_ARG, TAG, "sample rate is too small, the mclk division exceed the maximum value 255"); return ESP_OK; } #endif // SOC_I2S_SUPPORTS_PDM_TX #if SOC_I2S_SUPPORTS_PDM_RX static esp_err_t i2s_calculate_pdm_rx_clock(int i2s_num, i2s_hal_clock_info_t *clk_info) { i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg; i2s_pdm_dsr_t dsr = clk_cfg->dn_sample_mode; /* Set I2S bit clock */ clk_info->bclk = clk_cfg->sample_rate_hz * I2S_LL_PDM_BCK_FACTOR * (dsr == I2S_PDM_DSR_16S ? 2 : 1); /* Set I2S bit clock default division */ clk_info->bclk_div = 8; /* If fixed_mclk and use_apll are set, use fixed_mclk as mclk frequency, otherwise calculate by mclk = sample_rate_hz * multiple */ clk_info->mclk = (p_i2s[i2s_num]->use_apll && p_i2s[i2s_num]->fixed_mclk) ? p_i2s[i2s_num]->fixed_mclk : clk_info->bclk * clk_info->bclk_div; /* Calculate bclk_div = mclk / bclk */ clk_info->bclk_div = clk_info->mclk / clk_info->bclk; /* Get I2S system clock by config source clock */ clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk); /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */ clk_info->mclk_div = clk_info->sclk / clk_info->mclk; /* Check if the configuration is correct */ ESP_RETURN_ON_FALSE(clk_info->sclk / (float)clk_info->mclk > 1.99, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large, the mclk division is below minimum value 2"); ESP_RETURN_ON_FALSE(clk_info->mclk_div < 256, ESP_ERR_INVALID_ARG, TAG, "sample rate is too small, the mclk division exceed the maximum value 255"); return ESP_OK; } #endif // SOC_I2S_SUPPORTS_PDM_RX static esp_err_t i2s_calculate_common_clock(int i2s_num, i2s_hal_clock_info_t *clk_info) { i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg; i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg; uint32_t rate = clk_cfg->sample_rate_hz; uint32_t slot_num = p_i2s[i2s_num]->total_slot < 2 ? 2 : p_i2s[i2s_num]->total_slot; uint32_t slot_bits = slot_cfg->slot_bit_width; /* Calculate multiple */ if (p_i2s[i2s_num]->role == I2S_ROLE_MASTER) { clk_info->bclk = rate * slot_num * slot_bits; clk_info->mclk = rate * clk_cfg->mclk_multiple; clk_info->bclk_div = clk_info->mclk / clk_info->bclk; } else { /* For slave mode, mclk >= bclk * 8, so fix bclk_div to 8 first */ clk_info->bclk_div = 8; clk_info->bclk = rate * slot_num * slot_bits; clk_info->mclk = clk_info->bclk * clk_info->bclk_div; } /* Get I2S system clock by config source clock */ clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk); /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */ clk_info->mclk_div = clk_info->sclk / clk_info->mclk; /* Check if the configuration is correct */ ESP_RETURN_ON_FALSE(clk_info->mclk <= clk_info->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large"); return ESP_OK; } static esp_err_t i2s_calculate_clock(i2s_port_t i2s_num, i2s_hal_clock_info_t *clk_info) { /* Calculate clock for ADC/DAC mode */ #if SOC_I2S_SUPPORTS_ADC_DAC if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) { ESP_RETURN_ON_ERROR(i2s_calculate_adc_dac_clock(i2s_num, clk_info), TAG, "ADC/DAC clock calculate failed"); return ESP_OK; } #endif // SOC_I2S_SUPPORTS_ADC /* Calculate clock for PDM mode */ #if SOC_I2S_SUPPORTS_PDM if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) { #if SOC_I2S_SUPPORTS_PDM_TX if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { ESP_RETURN_ON_ERROR(i2s_calculate_pdm_tx_clock(i2s_num, clk_info), TAG, "PDM TX clock calculate failed"); } #endif // SOC_I2S_SUPPORTS_PDM_TX #if SOC_I2S_SUPPORTS_PDM_RX if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { ESP_RETURN_ON_ERROR(i2s_calculate_pdm_rx_clock(i2s_num, clk_info), TAG, "PDM RX clock calculate failed"); } #endif // SOC_I2S_SUPPORTS_PDM_RX return ESP_OK; } #endif // SOC_I2S_SUPPORTS_PDM_TX || SOC_I2S_SUPPORTS_PDM_RX /* Calculate clock for common mode */ ESP_RETURN_ON_ERROR(i2s_calculate_common_clock(i2s_num, clk_info), TAG, "Common clock calculate failed"); return ESP_OK; } /*------------------------------------------------------------- I2S configuration -------------------------------------------------------------*/ #if SOC_I2S_SUPPORTS_ADC_DAC static void i2s_dac_set_slot_legacy(void) { i2s_dev_t *dev = p_i2s[0]->hal.dev; i2s_hal_slot_config_t *slot_cfg = &p_i2s[0]->slot_cfg; i2s_ll_tx_reset(dev); i2s_ll_tx_set_slave_mod(dev, false); i2s_ll_tx_set_sample_bit(dev, slot_cfg->slot_bit_width, slot_cfg->data_bit_width); i2s_ll_tx_enable_mono_mode(dev, slot_cfg->slot_mode == I2S_SLOT_MODE_MONO); i2s_ll_tx_enable_msb_shift(dev, false); i2s_ll_tx_set_ws_width(dev, slot_cfg->slot_bit_width); i2s_ll_tx_enable_msb_right(dev, false); i2s_ll_tx_enable_right_first(dev, true); /* Should always enable fifo */ i2s_ll_tx_force_enable_fifo_mod(dev, true); } esp_err_t i2s_set_dac_mode(i2s_dac_mode_t dac_mode) { ESP_RETURN_ON_FALSE((dac_mode < I2S_DAC_CHANNEL_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s dac mode error"); if (dac_mode == I2S_DAC_CHANNEL_DISABLE) { dac_output_disable(DAC_CHANNEL_1); dac_output_disable(DAC_CHANNEL_2); dac_i2s_disable(); } else { dac_i2s_enable(); } if (dac_mode & I2S_DAC_CHANNEL_RIGHT_EN) { //DAC1, right channel dac_output_enable(DAC_CHANNEL_1); } if (dac_mode & I2S_DAC_CHANNEL_LEFT_EN) { //DAC2, left channel dac_output_enable(DAC_CHANNEL_2); } return ESP_OK; } static void i2s_adc_set_slot_legacy(void) { i2s_dev_t *dev = p_i2s[0]->hal.dev; i2s_hal_slot_config_t *slot_cfg = &p_i2s[0]->slot_cfg; // When ADC/DAC are installed as duplex mode, ADC will share the WS and BCLK clock by working in slave mode i2s_ll_rx_set_slave_mod(dev, false); i2s_ll_rx_set_sample_bit(dev, slot_cfg->slot_bit_width, slot_cfg->data_bit_width); i2s_ll_rx_enable_mono_mode(dev, true); // ADC should use mono mode to meet the sample rate i2s_ll_rx_enable_msb_shift(dev, false); i2s_ll_rx_set_ws_width(dev, slot_cfg->slot_bit_width); i2s_ll_rx_enable_msb_right(dev, false); i2s_ll_rx_enable_right_first(dev, false); /* Should always enable fifo */ i2s_ll_rx_force_enable_fifo_mod(dev, true); } static int _i2s_adc_unit = -1; static int _i2s_adc_channel = -1; static esp_err_t _i2s_adc_mode_recover(void) { ESP_RETURN_ON_FALSE(((_i2s_adc_unit != -1) && (_i2s_adc_channel != -1)), ESP_ERR_INVALID_ARG, TAG, "i2s ADC recover error, not initialized..."); return adc_i2s_mode_init(_i2s_adc_unit, _i2s_adc_channel); } esp_err_t i2s_set_adc_mode(adc_unit_t adc_unit, adc1_channel_t adc_channel) { ESP_RETURN_ON_FALSE((adc_unit < ADC_UNIT_2), ESP_ERR_INVALID_ARG, TAG, "i2s ADC unit error, only support ADC1 for now"); // For now, we only support SAR ADC1. _i2s_adc_unit = adc_unit; _i2s_adc_channel = adc_channel; return adc_i2s_mode_init(adc_unit, adc_channel); } esp_err_t i2s_adc_enable(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num] != NULL), ESP_ERR_INVALID_STATE, TAG, "Not initialized yet"); ESP_RETURN_ON_FALSE(((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) && (p_i2s[i2s_num]->dir & I2S_DIR_RX), ESP_ERR_INVALID_STATE, TAG, "i2s built-in adc not enabled"); adc1_dma_mode_acquire(); _i2s_adc_mode_recover(); i2s_rx_reset(i2s_num); return i2s_start(i2s_num); } esp_err_t i2s_adc_disable(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num] != NULL), ESP_ERR_INVALID_STATE, TAG, "Not initialized yet"); ESP_RETURN_ON_FALSE(((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) && (p_i2s[i2s_num]->dir & I2S_DIR_RX), ESP_ERR_INVALID_STATE, TAG, "i2s built-in adc not enabled"); i2s_hal_rx_stop(&(p_i2s[i2s_num]->hal)); adc1_lock_release(); return ESP_OK; } #endif static esp_err_t i2s_check_cfg_validity(i2s_port_t i2s_num, const i2s_config_t *cfg) { /* Step 1: Check the validity of input parameters */ /* Check the validity of i2s device number */ ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE(p_i2s[i2s_num] == NULL, ESP_ERR_INVALID_STATE, TAG, "this i2s port is in use"); ESP_RETURN_ON_FALSE(cfg, ESP_ERR_INVALID_ARG, TAG, "I2S configuration must not be NULL"); /* Check the size of DMA buffer */ ESP_RETURN_ON_FALSE((cfg->dma_desc_num >= 2 && cfg->dma_desc_num <= 128), ESP_ERR_INVALID_ARG, TAG, "I2S buffer count less than 128 and more than 2"); ESP_RETURN_ON_FALSE((cfg->dma_frame_num >= 8 && cfg->dma_frame_num <= 1024), ESP_ERR_INVALID_ARG, TAG, "I2S buffer length at most 1024 and more than 8"); #if SOC_I2S_SUPPORTS_PDM_TX || SOC_I2S_SUPPORTS_PDM_RX /* Check PDM mode */ if (cfg->mode & I2S_MODE_PDM) { ESP_RETURN_ON_FALSE(i2s_num == I2S_NUM_0, ESP_ERR_INVALID_ARG, TAG, "I2S PDM mode only support on I2S0"); #if !SOC_I2S_SUPPORTS_PDM_TX ESP_RETURN_ON_FALSE(!(cfg->mode & I2S_MODE_TX), ESP_ERR_INVALID_ARG, TAG, "PDM does not support TX on this chip"); #endif // SOC_I2S_SUPPORTS_PDM_TX #if !SOC_I2S_SUPPORTS_PDM_RX ESP_RETURN_ON_FALSE(!(cfg->mode & I2S_MODE_RX), ESP_ERR_INVALID_ARG, TAG, "PDM does not support RX on this chip"); #endif // SOC_I2S_SUPPORTS_PDM_RX } #else ESP_RETURN_ON_FALSE(!(cfg->mode & I2S_MODE_PDM), ESP_ERR_INVALID_ARG, TAG, "I2S PDM mode not supported on current chip"); #endif // SOC_I2S_SUPPORTS_PDM_TX || SOC_I2S_SUPPORTS_PDM_RX #if SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC /* Check built-in ADC/DAC mode */ if (cfg->mode & (I2S_MODE_ADC_BUILT_IN | I2S_MODE_DAC_BUILT_IN)) { ESP_RETURN_ON_FALSE(i2s_num == I2S_NUM_0, ESP_ERR_INVALID_ARG, TAG, "I2S built-in ADC/DAC only support on I2S0"); } #else /* Check the transmit/receive mode */ ESP_RETURN_ON_FALSE((cfg->mode & I2S_MODE_TX) || (cfg->mode & I2S_MODE_RX), ESP_ERR_INVALID_ARG, TAG, "I2S no TX/RX mode selected"); /* Check communication format */ ESP_RETURN_ON_FALSE(cfg->communication_format && (cfg->communication_format < I2S_COMM_FORMAT_STAND_MAX), ESP_ERR_INVALID_ARG, TAG, "invalid communication formats"); #endif // SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC return ESP_OK; } static void i2s_set_slot_legacy(i2s_port_t i2s_num) { bool is_tx_slave = p_i2s[i2s_num]->role == I2S_ROLE_SLAVE; bool is_rx_slave = is_tx_slave; if (p_i2s[i2s_num]->dir == (I2S_DIR_TX | I2S_DIR_RX)) { i2s_ll_share_bck_ws(p_i2s[i2s_num]->hal.dev, true); /* Since bck and ws are shared, only tx or rx can be master Force to set rx as slave to avoid conflict of clock signal */ is_rx_slave = true; } else { i2s_ll_share_bck_ws(p_i2s[i2s_num]->hal.dev, false); } if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) { if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_hal_std_set_tx_slot(&(p_i2s[i2s_num]->hal), is_tx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) ); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_hal_std_set_rx_slot(&(p_i2s[i2s_num]->hal), is_rx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) ); } } #if SOC_I2S_SUPPORTS_PDM else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) { #if SOC_I2S_SUPPORTS_PDM_TX if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_hal_pdm_set_tx_slot(&(p_i2s[i2s_num]->hal), is_tx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) ); } #endif #if SOC_I2S_SUPPORTS_PDM_RX if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_hal_pdm_set_rx_slot(&(p_i2s[i2s_num]->hal), is_rx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) ); } #endif } #endif #if SOC_I2S_SUPPORTS_TDM else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) { if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_hal_tdm_set_tx_slot(&(p_i2s[i2s_num]->hal), is_tx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) ); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_hal_tdm_set_rx_slot(&(p_i2s[i2s_num]->hal), is_rx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) ); } } #endif #if SOC_I2S_SUPPORTS_ADC_DAC else if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) { if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_dac_set_slot_legacy(); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_adc_set_slot_legacy(); } } #endif } static void i2s_set_clock_legacy(i2s_port_t i2s_num) { i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg; i2s_hal_clock_info_t clk_info; i2s_calculate_clock(i2s_num, &clk_info); if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_hal_set_tx_clock(&(p_i2s[i2s_num]->hal), &clk_info, clk_cfg->clk_src); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_hal_set_rx_clock(&(p_i2s[i2s_num]->hal), &clk_info, clk_cfg->clk_src); } } float i2s_get_clk(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg; return (float)clk_cfg->sample_rate_hz; } esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, uint32_t bits_cfg, i2s_channel_t ch) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_ERR_INVALID_ARG, TAG, "I2S%d has not installed yet", i2s_num); /* Acquire the lock before stop i2s, otherwise reading/writing operation will stuck on receiving the message queue from interrupt */ if (p_i2s[i2s_num]->dir & I2S_MODE_TX) { xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY); } if (p_i2s[i2s_num]->dir & I2S_MODE_RX) { xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY); } /* Stop I2S */ i2s_stop(i2s_num); i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg; i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg; clk_cfg->sample_rate_hz = rate; slot_cfg->data_bit_width = bits_cfg & 0xFFFF; ESP_RETURN_ON_FALSE((slot_cfg->data_bit_width % 8 == 0), ESP_ERR_INVALID_ARG, TAG, "Invalid bits per sample"); slot_cfg->slot_bit_width = (bits_cfg >> 16) > slot_cfg->data_bit_width ? (bits_cfg >> 16) : slot_cfg->data_bit_width; ESP_RETURN_ON_FALSE((slot_cfg->slot_bit_width % 8 == 0), ESP_ERR_INVALID_ARG, TAG, "Invalid bits per channel"); ESP_RETURN_ON_FALSE(((int)slot_cfg->slot_bit_width <= (int)I2S_BITS_PER_SAMPLE_32BIT), ESP_ERR_INVALID_ARG, TAG, "Invalid bits per sample"); slot_cfg->slot_mode = ((ch & 0xFFFF) == I2S_CHANNEL_MONO) ? I2S_SLOT_MODE_MONO : I2S_SLOT_MODE_STEREO; if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) { if (slot_cfg->slot_mode == I2S_SLOT_MODE_MONO) { if (slot_cfg->std.slot_mask == I2S_STD_SLOT_LEFT_RIGHT) { slot_cfg->std.slot_mask = I2S_STD_SLOT_ONLY_LEFT; #if SOC_I2S_HW_VERSION_1 // Enable right first to get correct data sequence slot_cfg->std.ws_pol = !slot_cfg->std.ws_pol; #endif } } else { slot_cfg->std.slot_mask = I2S_STD_SLOT_LEFT_RIGHT; } } #if SOC_I2S_SUPPORTS_TDM if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) { uint32_t slot_mask = ch >> 16; if (slot_mask == 0) { slot_mask = (slot_cfg->slot_mode == I2S_SLOT_MODE_MONO) ? 1 : 2; } ESP_RETURN_ON_FALSE(p_i2s[i2s_num]->total_slot >= (32 - __builtin_clz(slot_mask)), ESP_ERR_INVALID_ARG, TAG, "The max channel number can't be greater than CH%d\n", p_i2s[i2s_num]->total_slot); p_i2s[i2s_num]->active_slot = __builtin_popcount(slot_mask); } else #endif { p_i2s[i2s_num]->active_slot = (slot_cfg->slot_mode == I2S_SLOT_MODE_MONO) ? 1 : 2; } i2s_set_slot_legacy(i2s_num); i2s_set_clock_legacy(i2s_num); uint32_t buf_size = i2s_get_buf_size(i2s_num); bool need_realloc = buf_size != p_i2s[i2s_num]->last_buf_size; if (need_realloc) { esp_err_t ret = ESP_OK; if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { p_i2s[i2s_num]->tx->buf_size = buf_size; ret = i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->tx); xQueueReset(p_i2s[i2s_num]->tx->queue); ESP_RETURN_ON_ERROR(ret, TAG, "I2S%d tx DMA buffer malloc failed", i2s_num); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { p_i2s[i2s_num]->rx->buf_size = buf_size; ret = i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->rx); xQueueReset(p_i2s[i2s_num]->rx->queue); ESP_RETURN_ON_ERROR(ret, TAG, "I2S%d rx DMA buffer malloc failed", i2s_num); } } /* Update last buffer size */ p_i2s[i2s_num]->last_buf_size = buf_size; /* I2S start */ i2s_start(i2s_num); if (p_i2s[i2s_num]->dir & I2S_MODE_TX) { xSemaphoreGive(p_i2s[i2s_num]->tx->mux); } if (p_i2s[i2s_num]->dir & I2S_MODE_RX) { xSemaphoreGive(p_i2s[i2s_num]->rx->mux); } return ESP_OK; } esp_err_t i2s_set_sample_rates(i2s_port_t i2s_num, uint32_t rate) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg; uint32_t mask = 0; #if SOC_I2S_SUPPORTS_TDM if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) { mask = slot_cfg->tdm.slot_mask; } #endif return i2s_set_clk(i2s_num, rate, slot_cfg->data_bit_width, slot_cfg->slot_mode | (mask << 16)); } #if SOC_I2S_SUPPORTS_PCM esp_err_t i2s_pcm_config(i2s_port_t i2s_num, const i2s_pcm_cfg_t *pcm_cfg) { ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_FAIL, TAG, "i2s has not installed yet"); if (p_i2s[i2s_num]->dir & I2S_MODE_TX) { xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY); } if (p_i2s[i2s_num]->dir & I2S_MODE_RX) { xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY); } i2s_stop(i2s_num); I2S_ENTER_CRITICAL(i2s_num); if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_ll_tx_set_pcm_type(p_i2s[i2s_num]->hal.dev, pcm_cfg->pcm_type); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_ll_rx_set_pcm_type(p_i2s[i2s_num]->hal.dev, pcm_cfg->pcm_type); } I2S_EXIT_CRITICAL(i2s_num); i2s_start(i2s_num); if (p_i2s[i2s_num]->dir & I2S_MODE_TX) { xSemaphoreGive(p_i2s[i2s_num]->tx->mux); } if (p_i2s[i2s_num]->dir & I2S_MODE_RX) { xSemaphoreGive(p_i2s[i2s_num]->rx->mux); } return ESP_OK; } #endif #if SOC_I2S_SUPPORTS_PDM_RX esp_err_t i2s_set_pdm_rx_down_sample(i2s_port_t i2s_num, i2s_pdm_dsr_t downsample) { ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_FAIL, TAG, "i2s has not installed yet"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM), ESP_ERR_INVALID_ARG, TAG, "i2s mode is not PDM mode"); xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY); i2s_stop(i2s_num); p_i2s[i2s_num]->clk_cfg.dn_sample_mode = downsample; i2s_ll_rx_set_pdm_dsr(p_i2s[i2s_num]->hal.dev, downsample); i2s_start(i2s_num); xSemaphoreGive(p_i2s[i2s_num]->rx->mux); return i2s_set_clk(i2s_num, p_i2s[i2s_num]->clk_cfg.sample_rate_hz, p_i2s[i2s_num]->slot_cfg.data_bit_width, p_i2s[i2s_num]->slot_cfg.slot_mode); } #endif #if SOC_I2S_SUPPORTS_PDM_TX esp_err_t i2s_set_pdm_tx_up_sample(i2s_port_t i2s_num, const i2s_pdm_tx_upsample_cfg_t *upsample_cfg) { ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_FAIL, TAG, "i2s has not installed yet"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) && (p_i2s[i2s_num]->dir & I2S_DIR_TX), ESP_ERR_INVALID_ARG, TAG, "i2s mode is not PDM mode"); xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY); i2s_stop(i2s_num); p_i2s[i2s_num]->clk_cfg.up_sample_fp = upsample_cfg->fp; p_i2s[i2s_num]->clk_cfg.up_sample_fs = upsample_cfg->fs; i2s_ll_tx_set_pdm_fpfs(p_i2s[i2s_num]->hal.dev, upsample_cfg->fp, upsample_cfg->fs); i2s_start(i2s_num); xSemaphoreGive(p_i2s[i2s_num]->tx->mux); return i2s_set_clk(i2s_num, p_i2s[i2s_num]->clk_cfg.sample_rate_hz, p_i2s[i2s_num]->slot_cfg.data_bit_width, p_i2s[i2s_num]->slot_cfg.slot_mode); } #endif static esp_err_t i2s_dma_object_init(i2s_port_t i2s_num) { uint32_t buf_size = i2s_get_buf_size(i2s_num); p_i2s[i2s_num]->last_buf_size = buf_size; /* Create DMA object */ if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { ESP_RETURN_ON_ERROR(i2s_create_dma_object(i2s_num, &p_i2s[i2s_num]->tx), TAG, "I2S TX DMA object create failed"); p_i2s[i2s_num]->tx->buf_size = buf_size; } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { ESP_RETURN_ON_ERROR(i2s_create_dma_object(i2s_num, &p_i2s[i2s_num]->rx), TAG, "I2S RX DMA object create failed"); p_i2s[i2s_num]->rx->buf_size = buf_size; } return ESP_OK; } static void i2s_mode_identify(i2s_port_t i2s_num, const i2s_config_t *i2s_config) { p_i2s[i2s_num]->mode = I2S_COMM_MODE_STD; if (i2s_config->mode & I2S_MODE_MASTER) { p_i2s[i2s_num]->role = I2S_ROLE_MASTER; } else if (i2s_config->mode & I2S_MODE_SLAVE) { p_i2s[i2s_num]->role = I2S_ROLE_SLAVE; } if (i2s_config->mode & I2S_MODE_TX) { p_i2s[i2s_num]->dir |= I2S_DIR_TX; } if (i2s_config->mode & I2S_MODE_RX) { p_i2s[i2s_num]->dir |= I2S_DIR_RX; } #if SOC_I2S_SUPPORTS_PDM if (i2s_config->mode & I2S_MODE_PDM) { p_i2s[i2s_num]->mode = I2S_COMM_MODE_PDM; } #endif // SOC_I2S_SUPPORTS_PDM #if SOC_I2S_SUPPORTS_TDM if (i2s_config->channel_format == I2S_CHANNEL_FMT_MULTIPLE) { p_i2s[i2s_num]->mode = I2S_COMM_MODE_TDM; } #endif // SOC_I2S_SUPPORTS_TDM #if SOC_I2S_SUPPORTS_ADC_DAC if ((i2s_config->mode & I2S_MODE_DAC_BUILT_IN) || (i2s_config->mode & I2S_MODE_ADC_BUILT_IN)) { p_i2s[i2s_num]->mode = (i2s_comm_mode_t)I2S_COMM_MODE_ADC_DAC; } #endif // SOC_I2S_SUPPORTS_ADC_DAC } static esp_err_t i2s_config_transfer(i2s_port_t i2s_num, const i2s_config_t *i2s_config) { #define SLOT_CFG(m) p_i2s[i2s_num]->slot_cfg.m #define CLK_CFG() p_i2s[i2s_num]->clk_cfg /* Convert legacy configuration into general part of slot and clock configuration */ p_i2s[i2s_num]->slot_cfg.data_bit_width = i2s_config->bits_per_sample; p_i2s[i2s_num]->slot_cfg.slot_bit_width = (int)i2s_config->bits_per_chan < (int)i2s_config->bits_per_sample ? i2s_config->bits_per_sample : i2s_config->bits_per_chan; p_i2s[i2s_num]->slot_cfg.slot_mode = i2s_config->channel_format < I2S_CHANNEL_FMT_ONLY_RIGHT ? I2S_SLOT_MODE_STEREO : I2S_SLOT_MODE_MONO; CLK_CFG().sample_rate_hz = i2s_config->sample_rate; CLK_CFG().mclk_multiple = i2s_config->mclk_multiple == 0 ? I2S_MCLK_MULTIPLE_256 : i2s_config->mclk_multiple; CLK_CFG().clk_src = I2S_CLK_SRC_DEFAULT; p_i2s[i2s_num]->fixed_mclk = i2s_config->fixed_mclk; p_i2s[i2s_num]->use_apll = false; #if SOC_I2S_SUPPORTS_APLL CLK_CFG().clk_src = i2s_config->use_apll ? I2S_CLK_SRC_APLL : I2S_CLK_SRC_DEFAULT; p_i2s[i2s_num]->use_apll = i2s_config->use_apll; #endif // SOC_I2S_SUPPORTS_APLL /* Convert legacy configuration into particular part of slot and clock configuration */ if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) { /* Generate STD slot configuration */ SLOT_CFG(std).ws_width = i2s_config->bits_per_sample; SLOT_CFG(std).ws_pol = false; if (i2s_config->channel_format == I2S_CHANNEL_FMT_RIGHT_LEFT) { SLOT_CFG(std).slot_mask = I2S_STD_SLOT_LEFT_RIGHT; } else if (i2s_config->channel_format == I2S_CHANNEL_FMT_ALL_LEFT || i2s_config->channel_format == I2S_CHANNEL_FMT_ONLY_LEFT) { SLOT_CFG(std).slot_mask = I2S_STD_SLOT_ONLY_LEFT; } else { SLOT_CFG(std).slot_mask = I2S_STD_SLOT_ONLY_RIGHT; } if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_I2S) { SLOT_CFG(std).bit_shift = true; } if (i2s_config->communication_format & I2S_COMM_FORMAT_STAND_PCM_SHORT) { SLOT_CFG(std).bit_shift = true; SLOT_CFG(std).ws_width = 1; SLOT_CFG(std).ws_pol = true; } #if SOC_I2S_HW_VERSION_1 SLOT_CFG(std).msb_right = true; #elif SOC_I2S_HW_VERSION_2 SLOT_CFG(std).left_align = i2s_config->left_align; SLOT_CFG(std).big_endian = i2s_config->big_edin; SLOT_CFG(std).bit_order_lsb = i2s_config->bit_order_msb; // The old name is incorrect #endif // SOC_I2S_HW_VERSION_1 p_i2s[i2s_num]->active_slot = (int)p_i2s[i2s_num]->slot_cfg.slot_mode == I2S_SLOT_MODE_MONO ? 1 : 2; p_i2s[i2s_num]->total_slot = 2; goto finish; } #if SOC_I2S_SUPPORTS_PDM_TX if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) { /* Generate PDM TX slot configuration */ SLOT_CFG(pdm_tx).sd_prescale = 0; SLOT_CFG(pdm_tx).sd_scale = I2S_PDM_SIG_SCALING_MUL_1; SLOT_CFG(pdm_tx).hp_scale = I2S_PDM_SIG_SCALING_MUL_1; SLOT_CFG(pdm_tx).lp_scale = I2S_PDM_SIG_SCALING_MUL_1; SLOT_CFG(pdm_tx).sinc_scale = I2S_PDM_SIG_SCALING_MUL_1; #if SOC_I2S_HW_VERSION_2 SLOT_CFG(pdm_tx).sd_en = true; SLOT_CFG(pdm_tx).hp_en = true; SLOT_CFG(pdm_tx).hp_cut_off_freq_hz = 49; SLOT_CFG(pdm_tx).sd_dither = 0; SLOT_CFG(pdm_tx).sd_dither2 = 0; #endif // SOC_I2S_HW_VERSION_2 /* Generate PDM TX clock configuration */ CLK_CFG().up_sample_fp = 960; CLK_CFG().up_sample_fs = i2s_config->sample_rate / 100; p_i2s[i2s_num]->active_slot = (int)p_i2s[i2s_num]->slot_cfg.slot_mode == I2S_SLOT_MODE_MONO ? 1 : 2; p_i2s[i2s_num]->total_slot = 2; goto finish; } #endif // SOC_I2S_SUPPORTS_PDM_TX #if SOC_I2S_SUPPORTS_PDM_RX if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) { /* Generate PDM RX clock configuration */ CLK_CFG().dn_sample_mode = I2S_PDM_DSR_8S; p_i2s[i2s_num]->active_slot = (int)p_i2s[i2s_num]->slot_cfg.slot_mode == I2S_SLOT_MODE_MONO ? 1 : 2; p_i2s[i2s_num]->total_slot = 2; goto finish; } #endif // SOC_I2S_SUPPOTYS_PDM_RX #if SOC_I2S_SUPPORTS_TDM if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) { /* Generate TDM slot configuration */ SLOT_CFG(tdm).slot_mask = i2s_config->chan_mask >> 16; SLOT_CFG(tdm).ws_width = 0; // I2S_TDM_AUTO_WS_WIDTH p_i2s[i2s_num]->slot_cfg.slot_mode = I2S_SLOT_MODE_STEREO; SLOT_CFG(tdm).ws_pol = false; if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_I2S) { SLOT_CFG(tdm).bit_shift = true; } else if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_PCM_SHORT) { SLOT_CFG(tdm).bit_shift = true; SLOT_CFG(tdm).ws_width = 1; SLOT_CFG(tdm).ws_pol = true; } else if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_PCM_LONG) { SLOT_CFG(tdm).bit_shift = true; SLOT_CFG(tdm).ws_width = p_i2s[i2s_num]->slot_cfg.slot_bit_width; SLOT_CFG(tdm).ws_pol = true; } SLOT_CFG(tdm).left_align = i2s_config->left_align; SLOT_CFG(tdm).big_endian = i2s_config->big_edin; SLOT_CFG(tdm).bit_order_lsb = i2s_config->bit_order_msb; // The old name is incorrect SLOT_CFG(tdm).skip_mask = i2s_config->skip_msk; /* Generate TDM clock configuration */ p_i2s[i2s_num]->active_slot = __builtin_popcount(SLOT_CFG(tdm).slot_mask); uint32_t mx_slot = 32 - __builtin_clz(SLOT_CFG(tdm).slot_mask); mx_slot = mx_slot < 2 ? 2 : mx_slot; p_i2s[i2s_num]->total_slot = mx_slot < i2s_config->total_chan ? mx_slot : i2s_config->total_chan; goto finish; } #endif // SOC_I2S_SUPPORTS_TDM #if SOC_I2S_SUPPORTS_ADC_DAC if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) { p_i2s[i2s_num]->slot_cfg.slot_mode = (p_i2s[i2s_num]->dir & I2S_DIR_TX) ? I2S_SLOT_MODE_STEREO : I2S_SLOT_MODE_MONO; p_i2s[i2s_num]->active_slot = (p_i2s[i2s_num]->dir & I2S_DIR_TX) ? 2 : 1; p_i2s[i2s_num]->total_slot = 2; } #endif // SOC_I2S_SUPPORTS_ADC_DAC #undef SLOT_CFG #undef CLK_CFG finish: return ESP_OK; } static esp_err_t i2s_init_legacy(i2s_port_t i2s_num, int intr_alloc_flag) { /* Create power management lock */ #ifdef CONFIG_PM_ENABLE esp_pm_lock_type_t pm_lock = ESP_PM_APB_FREQ_MAX; #if SOC_I2S_SUPPORTS_APLL if (p_i2s[i2s_num]->use_apll) { pm_lock = ESP_PM_NO_LIGHT_SLEEP; } #endif // SOC_I2S_SUPPORTS_APLL ESP_RETURN_ON_ERROR(esp_pm_lock_create(pm_lock, 0, "i2s_driver", &p_i2s[i2s_num]->pm_lock), TAG, "I2S pm lock error"); #endif //CONFIG_PM_ENABLE #if SOC_I2S_SUPPORTS_APLL if (p_i2s[i2s_num]->use_apll) { periph_rtc_apll_acquire(); } #endif /* Enable communicaiton mode */ if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) { if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_hal_std_enable_tx_channel(&(p_i2s[i2s_num]->hal)); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_hal_std_enable_rx_channel(&(p_i2s[i2s_num]->hal)); } } #if SOC_I2S_SUPPORTS_PDM else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) { #if SOC_I2S_SUPPORTS_PDM_TX if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_hal_pdm_enable_tx_channel(&(p_i2s[i2s_num]->hal)); } #endif #if SOC_I2S_SUPPORTS_PDM_RX if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_hal_pdm_enable_rx_channel(&(p_i2s[i2s_num]->hal)); } #endif } #endif #if SOC_I2S_SUPPORTS_TDM else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) { if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_hal_tdm_enable_tx_channel(&(p_i2s[i2s_num]->hal)); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_hal_tdm_enable_rx_channel(&(p_i2s[i2s_num]->hal)); } } #endif #if SOC_I2S_SUPPORTS_ADC_DAC if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) { if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { adc_power_acquire(); adc_set_i2s_data_source(ADC_I2S_DATA_SRC_ADC); i2s_ll_enable_builtin_adc(p_i2s[i2s_num]->hal.dev, true); } if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_ll_enable_builtin_dac(p_i2s[i2s_num]->hal.dev, true); } } else { adc_set_i2s_data_source(ADC_I2S_DATA_SRC_IO_SIG); i2s_ll_enable_builtin_adc(p_i2s[i2s_num]->hal.dev, false); i2s_ll_enable_builtin_dac(p_i2s[i2s_num]->hal.dev, false); } #endif i2s_set_slot_legacy(i2s_num); i2s_set_clock_legacy(i2s_num); ESP_RETURN_ON_ERROR(i2s_dma_intr_init(i2s_num, intr_alloc_flag), TAG, "I2S interrupt initailze failed"); ESP_RETURN_ON_ERROR(i2s_dma_object_init(i2s_num), TAG, "I2S dma object create failed"); if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { ESP_RETURN_ON_ERROR(i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->tx), TAG, "Allocate I2S dma tx buffer failed"); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { ESP_RETURN_ON_ERROR(i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->rx), TAG, "Allocate I2S dma rx buffer failed"); } /* Initialize I2S DMA object */ #if SOC_I2S_HW_VERSION_2 /* Enable tx/rx submodule clock */ if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { i2s_ll_tx_enable_clock(p_i2s[i2s_num]->hal.dev); } if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { i2s_ll_rx_enable_clock(p_i2s[i2s_num]->hal.dev); } #endif return ESP_OK; } esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE(i2s_num < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_ERR_INVALID_STATE, TAG, "I2S port %d has not installed", i2s_num); i2s_obj_t *obj = p_i2s[i2s_num]; i2s_stop(i2s_num); #if SOC_I2S_SUPPORTS_ADC_DAC if ((int)(obj->mode) == I2S_COMM_MODE_ADC_DAC) { if (obj->dir & I2S_DIR_TX) { // Deinit DAC i2s_set_dac_mode(I2S_DAC_CHANNEL_DISABLE); } if (obj->dir & I2S_DIR_RX) { // Deinit ADC adc_set_i2s_data_source(ADC_I2S_DATA_SRC_IO_SIG); adc_power_release(); } } #endif #if SOC_GDMA_SUPPORTED if (obj->tx_dma_chan) { gdma_disconnect(obj->tx_dma_chan); gdma_del_channel(obj->tx_dma_chan); } if (obj->rx_dma_chan) { gdma_disconnect(obj->rx_dma_chan); gdma_del_channel(obj->rx_dma_chan); } #else if (obj->i2s_isr_handle) { esp_intr_free(obj->i2s_isr_handle); } #endif /* Destroy dma object if exist */ i2s_destroy_dma_object(i2s_num, &obj->tx); i2s_destroy_dma_object(i2s_num, &obj->rx); if (obj->i2s_queue) { vQueueDelete(obj->i2s_queue); obj->i2s_queue = NULL; } #if SOC_I2S_SUPPORTS_APLL if (obj->use_apll) { // switch back to PLL clock source if (obj->dir & I2S_DIR_TX) { i2s_ll_tx_clk_set_src(obj->hal.dev, I2S_CLK_SRC_DEFAULT); } if (obj->dir & I2S_DIR_RX) { i2s_ll_rx_clk_set_src(obj->hal.dev, I2S_CLK_SRC_DEFAULT); } periph_rtc_apll_release(); } #endif #ifdef CONFIG_PM_ENABLE if (obj->pm_lock) { esp_pm_lock_delete(obj->pm_lock); obj->pm_lock = NULL; } #endif #if SOC_I2S_HW_VERSION_2 if (obj->dir & I2S_DIR_TX) { i2s_ll_tx_disable_clock(obj->hal.dev); } if (obj->dir & I2S_DIR_RX) { i2s_ll_rx_disable_clock(obj->hal.dev); } #endif /* Disable module clock */ i2s_platform_release_occupation(i2s_num); free(obj); p_i2s[i2s_num] = NULL; return ESP_OK; } esp_err_t i2s_driver_install(i2s_port_t i2s_num, const i2s_config_t *i2s_config, int queue_size, void *i2s_queue) { #if CONFIG_I2S_ENABLE_DEBUG_LOG esp_log_level_set(TAG, ESP_LOG_DEBUG); #endif esp_err_t ret = ESP_OK; /* Step 1: Check the validity of input parameters */ ESP_RETURN_ON_ERROR(i2s_check_cfg_validity(i2s_num, i2s_config), TAG, "I2S configuration is invalid"); /* Step 2: Allocate driver object and register to platform */ i2s_obj_t *i2s_obj = calloc(1, sizeof(i2s_obj_t)); ESP_RETURN_ON_FALSE(i2s_obj, ESP_ERR_NO_MEM, TAG, "no mem for I2S driver"); if (i2s_platform_acquire_occupation(i2s_num, "i2s_legacy") != ESP_OK) { free(i2s_obj); ESP_LOGE(TAG, "register I2S object to platform failed"); return ESP_ERR_INVALID_STATE; } p_i2s[i2s_num] = i2s_obj; i2s_hal_init(&i2s_obj->hal, i2s_num); /* Step 3: Store and assign configarations */ i2s_mode_identify(i2s_num, i2s_config); ESP_GOTO_ON_ERROR(i2s_config_transfer(i2s_num, i2s_config), err, TAG, "I2S install failed"); i2s_obj->dma_desc_num = i2s_config->dma_desc_num; i2s_obj->dma_frame_num = i2s_config->dma_frame_num; i2s_obj->tx_desc_auto_clear = i2s_config->tx_desc_auto_clear; /* Step 4: Apply configurations and init hardware */ ESP_GOTO_ON_ERROR(i2s_init_legacy(i2s_num, i2s_config->intr_alloc_flags), err, TAG, "I2S init failed"); /* Step 5: Initialise i2s event queue if user needs */ if (i2s_queue) { i2s_obj->i2s_queue = xQueueCreate(queue_size, sizeof(i2s_event_t)); ESP_GOTO_ON_FALSE(i2s_obj->i2s_queue, ESP_ERR_NO_MEM, err, TAG, "I2S queue create failed"); *((QueueHandle_t *) i2s_queue) = i2s_obj->i2s_queue; ESP_LOGD(TAG, "queue free spaces: %d", uxQueueSpacesAvailable(i2s_obj->i2s_queue)); } else { i2s_obj->i2s_queue = NULL; } /* Step 6: Start I2S for backward compatibility */ ESP_GOTO_ON_ERROR(i2s_start(i2s_num), err, TAG, "I2S start failed"); return ESP_OK; err: /* I2S install failed, prepare to uninstall */ i2s_driver_uninstall(i2s_num); return ret; } esp_err_t i2s_write(i2s_port_t i2s_num, const void *src, size_t size, size_t *bytes_written, TickType_t ticks_to_wait) { char *data_ptr; char *src_byte; size_t bytes_can_write; *bytes_written = 0; ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->tx), ESP_ERR_INVALID_ARG, TAG, "TX mode is not enabled"); xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(p_i2s[i2s_num]->pm_lock); #endif src_byte = (char *)src; while (size > 0) { if (p_i2s[i2s_num]->tx->rw_pos == p_i2s[i2s_num]->tx->buf_size || p_i2s[i2s_num]->tx->curr_ptr == NULL) { if (xQueueReceive(p_i2s[i2s_num]->tx->queue, &p_i2s[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s[i2s_num]->tx->rw_pos = 0; } ESP_LOGD(TAG, "size: %d, rw_pos: %d, buf_size: %d, curr_ptr: %d", size, p_i2s[i2s_num]->tx->rw_pos, p_i2s[i2s_num]->tx->buf_size, (int)p_i2s[i2s_num]->tx->curr_ptr); data_ptr = (char *)p_i2s[i2s_num]->tx->curr_ptr; data_ptr += p_i2s[i2s_num]->tx->rw_pos; bytes_can_write = p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos; if (bytes_can_write > size) { bytes_can_write = size; } memcpy(data_ptr, src_byte, bytes_can_write); size -= bytes_can_write; src_byte += bytes_can_write; p_i2s[i2s_num]->tx->rw_pos += bytes_can_write; (*bytes_written) += bytes_can_write; } #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(p_i2s[i2s_num]->pm_lock); #endif xSemaphoreGive(p_i2s[i2s_num]->tx->mux); return ESP_OK; } esp_err_t i2s_write_expand(i2s_port_t i2s_num, const void *src, size_t size, size_t src_bits, size_t aim_bits, size_t *bytes_written, TickType_t ticks_to_wait) { char *data_ptr; int bytes_can_write; int tail; int src_bytes; int aim_bytes; int zero_bytes; *bytes_written = 0; ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((size > 0), ESP_ERR_INVALID_ARG, TAG, "size must greater than zero"); ESP_RETURN_ON_FALSE((aim_bits >= src_bits), ESP_ERR_INVALID_ARG, TAG, "aim_bits mustn't be less than src_bits"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->tx), ESP_ERR_INVALID_ARG, TAG, "TX mode is not enabled"); if (src_bits < I2S_BITS_PER_SAMPLE_8BIT || aim_bits < I2S_BITS_PER_SAMPLE_8BIT) { ESP_LOGE(TAG, "bits mustn't be less than 8, src_bits %d aim_bits %d", src_bits, aim_bits); return ESP_ERR_INVALID_ARG; } if (src_bits > I2S_BITS_PER_SAMPLE_32BIT || aim_bits > I2S_BITS_PER_SAMPLE_32BIT) { ESP_LOGE(TAG, "bits mustn't be greater than 32, src_bits %d aim_bits %d", src_bits, aim_bits); return ESP_ERR_INVALID_ARG; } if ((src_bits == I2S_BITS_PER_SAMPLE_16BIT || src_bits == I2S_BITS_PER_SAMPLE_32BIT) && (size % 2 != 0)) { ESP_LOGE(TAG, "size must be a even number while src_bits is even, src_bits %d size %d", src_bits, size); return ESP_ERR_INVALID_ARG; } if (src_bits == I2S_BITS_PER_SAMPLE_24BIT && (size % 3 != 0)) { ESP_LOGE(TAG, "size must be a multiple of 3 while src_bits is 24, size %d", size); return ESP_ERR_INVALID_ARG; } src_bytes = src_bits / 8; aim_bytes = aim_bits / 8; zero_bytes = aim_bytes - src_bytes; xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY); size = size * aim_bytes / src_bytes; ESP_LOGD(TAG, "aim_bytes %d src_bytes %d size %d", aim_bytes, src_bytes, size); while (size > 0) { if (p_i2s[i2s_num]->tx->rw_pos == p_i2s[i2s_num]->tx->buf_size || p_i2s[i2s_num]->tx->curr_ptr == NULL) { if (xQueueReceive(p_i2s[i2s_num]->tx->queue, &p_i2s[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s[i2s_num]->tx->rw_pos = 0; } data_ptr = (char *)p_i2s[i2s_num]->tx->curr_ptr; data_ptr += p_i2s[i2s_num]->tx->rw_pos; bytes_can_write = p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos; if (bytes_can_write > (int)size) { bytes_can_write = size; } tail = bytes_can_write % aim_bytes; bytes_can_write = bytes_can_write - tail; memset(data_ptr, 0, bytes_can_write); for (int j = 0; j < bytes_can_write; j += (aim_bytes - zero_bytes)) { j += zero_bytes; memcpy(&data_ptr[j], (const char *)(src + *bytes_written), aim_bytes - zero_bytes); (*bytes_written) += (aim_bytes - zero_bytes); } size -= bytes_can_write; p_i2s[i2s_num]->tx->rw_pos += bytes_can_write; } xSemaphoreGive(p_i2s[i2s_num]->tx->mux); return ESP_OK; } esp_err_t i2s_read(i2s_port_t i2s_num, void *dest, size_t size, size_t *bytes_read, TickType_t ticks_to_wait) { char *data_ptr;; char *dest_byte; int bytes_can_read; *bytes_read = 0; dest_byte = (char *)dest; ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->rx), ESP_ERR_INVALID_ARG, TAG, "RX mode is not enabled"); xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(p_i2s[i2s_num]->pm_lock); #endif while (size > 0) { if (p_i2s[i2s_num]->rx->rw_pos == p_i2s[i2s_num]->rx->buf_size || p_i2s[i2s_num]->rx->curr_ptr == NULL) { if (xQueueReceive(p_i2s[i2s_num]->rx->queue, &p_i2s[i2s_num]->rx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s[i2s_num]->rx->rw_pos = 0; } data_ptr = (char *)p_i2s[i2s_num]->rx->curr_ptr; data_ptr += p_i2s[i2s_num]->rx->rw_pos; bytes_can_read = p_i2s[i2s_num]->rx->buf_size - p_i2s[i2s_num]->rx->rw_pos; if (bytes_can_read > (int)size) { bytes_can_read = size; } memcpy(dest_byte, data_ptr, bytes_can_read); size -= bytes_can_read; dest_byte += bytes_can_read; p_i2s[i2s_num]->rx->rw_pos += bytes_can_read; (*bytes_read) += bytes_can_read; } #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(p_i2s[i2s_num]->pm_lock); #endif xSemaphoreGive(p_i2s[i2s_num]->rx->mux); return ESP_OK; } /*------------------------------------------------------------- I2S GPIO operation -------------------------------------------------------------*/ static void gpio_matrix_out_check_and_set(gpio_num_t gpio, uint32_t signal_idx, bool out_inv, bool oen_inv) { //if pin = -1, do not need to configure if (gpio != -1) { gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO); gpio_set_direction(gpio, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(gpio, signal_idx, out_inv, oen_inv); } } static void gpio_matrix_in_check_and_set(gpio_num_t gpio, uint32_t signal_idx, bool inv) { if (gpio != -1) { gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO); /* Set direction, for some GPIOs, the input function are not enabled as default */ gpio_set_direction(gpio, GPIO_MODE_INPUT); esp_rom_gpio_connect_in_signal(gpio, signal_idx, inv); } } static esp_err_t i2s_check_set_mclk(i2s_port_t i2s_num, gpio_num_t gpio_num) { if (gpio_num == -1) { return ESP_OK; } #if CONFIG_IDF_TARGET_ESP32 ESP_RETURN_ON_FALSE((gpio_num == GPIO_NUM_0 || gpio_num == GPIO_NUM_1 || gpio_num == GPIO_NUM_3), ESP_ERR_INVALID_ARG, TAG, "ESP32 only support to set GPIO0/GPIO1/GPIO3 as mclk signal, error GPIO number:%d", gpio_num); bool is_i2s0 = i2s_num == I2S_NUM_0; if (gpio_num == GPIO_NUM_0) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1); WRITE_PERI_REG(PIN_CTRL, is_i2s0 ? 0xFFF0 : 0xFFFF); } else if (gpio_num == GPIO_NUM_1) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_CLK_OUT3); WRITE_PERI_REG(PIN_CTRL, is_i2s0 ? 0xF0F0 : 0xF0FF); } else { PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_CLK_OUT2); WRITE_PERI_REG(PIN_CTRL, is_i2s0 ? 0xFF00 : 0xFF0F); } #else ESP_RETURN_ON_FALSE(GPIO_IS_VALID_GPIO(gpio_num), ESP_ERR_INVALID_ARG, TAG, "mck_io_num invalid"); gpio_matrix_out_check_and_set(gpio_num, i2s_periph_signal[i2s_num].mck_out_sig, 0, 0); #endif ESP_LOGD(TAG, "I2S%d, MCLK output by GPIO%d", i2s_num, gpio_num); return ESP_OK; } esp_err_t i2s_zero_dma_buffer(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num; /* Clear I2S RX DMA buffer */ if (p_i2s[i2s_num]->rx && p_i2s[i2s_num]->rx->buf != NULL && p_i2s[i2s_num]->rx->buf_size != 0) { for (int i = 0; i < buf_cnt; i++) { memset(p_i2s[i2s_num]->rx->buf[i], 0, p_i2s[i2s_num]->rx->buf_size); } } /* Clear I2S TX DMA buffer */ if (p_i2s[i2s_num]->tx && p_i2s[i2s_num]->tx->buf != NULL && p_i2s[i2s_num]->tx->buf_size != 0) { /* Finish to write all tx data */ int bytes_left = (p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos) % 4; if (bytes_left) { size_t zero_bytes = 0; size_t bytes_written; i2s_write(i2s_num, (void *)&zero_bytes, bytes_left, &bytes_written, portMAX_DELAY); } for (int i = 0; i < buf_cnt; i++) { memset(p_i2s[i2s_num]->tx->buf[i], 0, p_i2s[i2s_num]->tx->buf_size); } } return ESP_OK; } esp_err_t i2s_set_pin(i2s_port_t i2s_num, const i2s_pin_config_t *pin) { ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); if (pin == NULL) { #if SOC_I2S_SUPPORTS_DAC return i2s_set_dac_mode(I2S_DAC_CHANNEL_BOTH_EN); #else return ESP_ERR_INVALID_ARG; #endif } /* Check validity of selected pins */ ESP_RETURN_ON_FALSE((pin->bck_io_num == -1 || GPIO_IS_VALID_GPIO(pin->bck_io_num)), ESP_ERR_INVALID_ARG, TAG, "bck_io_num invalid"); ESP_RETURN_ON_FALSE((pin->ws_io_num == -1 || GPIO_IS_VALID_GPIO(pin->ws_io_num)), ESP_ERR_INVALID_ARG, TAG, "ws_io_num invalid"); ESP_RETURN_ON_FALSE((pin->data_out_num == -1 || GPIO_IS_VALID_GPIO(pin->data_out_num)), ESP_ERR_INVALID_ARG, TAG, "data_out_num invalid"); ESP_RETURN_ON_FALSE((pin->data_in_num == -1 || GPIO_IS_VALID_GPIO(pin->data_in_num)), ESP_ERR_INVALID_ARG, TAG, "data_in_num invalid"); if (p_i2s[i2s_num]->role == I2S_ROLE_SLAVE) { /* For "tx + rx + slave" or "rx + slave" mode, we should select RX signal index for ws and bck */ if (p_i2s[i2s_num]->dir & I2S_DIR_RX) { gpio_matrix_in_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].s_rx_ws_sig, 0); gpio_matrix_in_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].s_rx_bck_sig, 0); /* For "tx + slave" mode, we should select TX signal index for ws and bck */ } else { gpio_matrix_in_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].s_tx_ws_sig, 0); gpio_matrix_in_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].s_tx_bck_sig, 0); } } else { /* mclk only available in master mode */ ESP_RETURN_ON_ERROR(i2s_check_set_mclk(i2s_num, pin->mck_io_num), TAG, "mclk config failed"); /* For "tx + rx + master" or "tx + master" mode, we should select TX signal index for ws and bck */ if (p_i2s[i2s_num]->dir & I2S_DIR_TX) { gpio_matrix_out_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].m_tx_ws_sig, 0, 0); gpio_matrix_out_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].m_tx_bck_sig, 0, 0); /* For "rx + master" mode, we should select RX signal index for ws and bck */ } else { gpio_matrix_out_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].m_rx_ws_sig, 0, 0); gpio_matrix_out_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].m_rx_bck_sig, 0, 0); } } /* Set data input/ouput GPIO */ gpio_matrix_out_check_and_set(pin->data_out_num, i2s_periph_signal[i2s_num].data_out_sig, 0, 0); gpio_matrix_in_check_and_set(pin->data_in_num, i2s_periph_signal[i2s_num].data_in_sig, 0); return ESP_OK; } esp_err_t i2s_platform_acquire_occupation(int id, const char *comp_name) { esp_err_t ret = ESP_ERR_NOT_FOUND; ESP_RETURN_ON_FALSE(id < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid i2s port id"); portENTER_CRITICAL(&i2s_spinlock[id]); if (!comp_using_i2s[id]) { ret = ESP_OK; comp_using_i2s[id] = comp_name; periph_module_enable(i2s_periph_signal[id].module); i2s_ll_enable_clock(I2S_LL_GET_HW(id)); } portEXIT_CRITICAL(&i2s_spinlock[id]); return ret; } esp_err_t i2s_platform_release_occupation(int id) { esp_err_t ret = ESP_ERR_INVALID_STATE; ESP_RETURN_ON_FALSE(id < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid i2s port id"); portENTER_CRITICAL(&i2s_spinlock[id]); if (comp_using_i2s[id]) { ret = ESP_OK; comp_using_i2s[id] = NULL; /* Disable module clock */ periph_module_disable(i2s_periph_signal[id].module); i2s_ll_disable_clock(I2S_LL_GET_HW(id)); } portEXIT_CRITICAL(&i2s_spinlock[id]); return ret; } /** * @brief This function will be called during start up, to check that pulse_cnt driver is not running along with the legacy i2s driver */ static __attribute__((constructor)) void check_i2s_driver_conflict(void) { extern __attribute__((weak)) esp_err_t i2s_del_channel(void *handle); /* If the new I2S driver is linked, the weak function will point to the actual function in the new driver, otherwise it is NULL*/ if ((void *)i2s_del_channel != NULL) { ESP_EARLY_LOGE(TAG, "CONFLICT! The new i2s driver can't work along with the legacy i2s driver"); abort(); } ESP_EARLY_LOGW(TAG, "legacy i2s driver is deprecated, please migrate to use driver/i2s_std.h, driver/i2s_pdm.h or driver/i2s_tdm.h"); }