/* * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "xtensa_context.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_debug_helpers.h" #include "esp_private/panic_internal.h" #include "esp_private/panic_reason.h" #include "soc/soc.h" #include "esp_private/cache_err_int.h" #include "sdkconfig.h" #if !CONFIG_IDF_TARGET_ESP32 #include "soc/extmem_reg.h" #include "soc/ext_mem_defs.h" #include "soc/rtc_cntl_reg.h" #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE #ifdef CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/memprot.h" #else #include "esp_memprot.h" #endif #endif #endif // CONFIG_IDF_TARGET_ESP32 void panic_print_registers(const void *f, int core) { XtExcFrame *frame = (XtExcFrame *) f; int *regs = (int *)frame; (void)regs; const char *sdesc[] = { "PC ", "PS ", "A0 ", "A1 ", "A2 ", "A3 ", "A4 ", "A5 ", "A6 ", "A7 ", "A8 ", "A9 ", "A10 ", "A11 ", "A12 ", "A13 ", "A14 ", "A15 ", "SAR ", "EXCCAUSE", "EXCVADDR", "LBEG ", "LEND ", "LCOUNT " }; /* only dump registers for 'real' crashes, if crashing via abort() the register window is no longer useful. */ panic_print_str("Core "); panic_print_dec(core); panic_print_str(" register dump:"); for (int x = 0; x < 24; x += 4) { panic_print_str("\r\n"); for (int y = 0; y < 4; y++) { if (sdesc[x + y][0] != 0) { panic_print_str(sdesc[x + y]); panic_print_str(": 0x"); panic_print_hex(regs[x + y + 1]); panic_print_str(" "); } } } // If the core which triggers the interrupt watchpoint was in ISR context, dump the epc registers. if (xPortInterruptedFromISRContext() #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE && ((core == 0 && frame->exccause == PANIC_RSN_INTWDT_CPU0) || (core == 1 && frame->exccause == PANIC_RSN_INTWDT_CPU1)) #endif //!CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE ) { panic_print_str("\r\n"); uint32_t __value; panic_print_str("Core "); panic_print_dec(core); panic_print_str(" was running in ISR context:\r\n"); __asm__("rsr.epc1 %0" : "=a"(__value)); panic_print_str("EPC1 : 0x"); panic_print_hex(__value); __asm__("rsr.epc2 %0" : "=a"(__value)); panic_print_str(" EPC2 : 0x"); panic_print_hex(__value); __asm__("rsr.epc3 %0" : "=a"(__value)); panic_print_str(" EPC3 : 0x"); panic_print_hex(__value); __asm__("rsr.epc4 %0" : "=a"(__value)); panic_print_str(" EPC4 : 0x"); panic_print_hex(__value); } } static void print_illegal_instruction_details(const void *f) { XtExcFrame *frame = (XtExcFrame *) f; /* Print out memory around the instruction word */ uint32_t epc = frame->pc; epc = (epc & ~0x3) - 4; /* check that the address was sane */ if (epc < SOC_IROM_MASK_LOW || epc >= SOC_IROM_HIGH) { return; } volatile uint32_t *pepc = (uint32_t *)epc; (void)pepc; panic_print_str("Memory dump at 0x"); panic_print_hex(epc); panic_print_str(": "); panic_print_hex(*pepc); panic_print_str(" "); panic_print_hex(*(pepc + 1)); panic_print_str(" "); panic_print_hex(*(pepc + 2)); } static void print_debug_exception_details(const void *f) { int debug_rsn; asm("rsr.debugcause %0":"=r"(debug_rsn)); panic_print_str("Debug exception reason: "); if (debug_rsn & XCHAL_DEBUGCAUSE_ICOUNT_MASK) { panic_print_str("SingleStep "); } if (debug_rsn & XCHAL_DEBUGCAUSE_IBREAK_MASK) { panic_print_str("HwBreakpoint "); } if (debug_rsn & XCHAL_DEBUGCAUSE_DBREAK_MASK) { //Unlike what the ISA manual says, this core seemingly distinguishes from a DBREAK //reason caused by watchdog 0 and one caused by watchdog 1 by setting bit 8 of the //debugcause if the cause is watchpoint 1 and clearing it if it's watchpoint 0. if (debug_rsn & (1 << 8)) { #if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK int core = 0; #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE if (f == g_exc_frames[1]) { core = 1; } #endif const char *name = pcTaskGetName(xTaskGetCurrentTaskHandleForCore(core)); panic_print_str("Stack canary watchpoint triggered ("); panic_print_str(name); panic_print_str(") "); #else panic_print_str("Watchpoint 1 triggered "); #endif } else { panic_print_str("Watchpoint 0 triggered "); } } if (debug_rsn & XCHAL_DEBUGCAUSE_BREAK_MASK) { panic_print_str("BREAK instr "); } if (debug_rsn & XCHAL_DEBUGCAUSE_BREAKN_MASK) { panic_print_str("BREAKN instr "); } if (debug_rsn & XCHAL_DEBUGCAUSE_DEBUGINT_MASK) { panic_print_str("DebugIntr "); } } #if CONFIG_IDF_TARGET_ESP32S2 static inline void print_cache_err_details(const void *f) { uint32_t vaddr = 0, size = 0; uint32_t status[2]; status[0] = REG_READ(EXTMEM_CACHE_DBG_STATUS0_REG); status[1] = REG_READ(EXTMEM_CACHE_DBG_STATUS1_REG); for (int i = 0; i < 32; i++) { switch (status[0] & BIT(i)) { case EXTMEM_IC_SYNC_SIZE_FAULT_ST: vaddr = REG_READ(EXTMEM_PRO_ICACHE_MEM_SYNC0_REG); size = REG_READ(EXTMEM_PRO_ICACHE_MEM_SYNC1_REG); panic_print_str("Icache sync parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_IC_PRELOAD_SIZE_FAULT_ST: vaddr = REG_READ(EXTMEM_PRO_ICACHE_PRELOAD_ADDR_REG); size = REG_READ(EXTMEM_PRO_ICACHE_PRELOAD_SIZE_REG); panic_print_str("Icache preload parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_ICACHE_REJECT_ST: vaddr = REG_READ(EXTMEM_PRO_ICACHE_REJECT_VADDR_REG); panic_print_str("Icache reject error occurred while accessing the address 0x"); panic_print_hex(vaddr); if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) { panic_print_str(" (invalid mmu entry)"); } panic_print_str("\r\n"); break; default: break; } switch (status[1] & BIT(i)) { case EXTMEM_DC_SYNC_SIZE_FAULT_ST: vaddr = REG_READ(EXTMEM_PRO_DCACHE_MEM_SYNC0_REG); size = REG_READ(EXTMEM_PRO_DCACHE_MEM_SYNC1_REG); panic_print_str("Dcache sync parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_DC_PRELOAD_SIZE_FAULT_ST: vaddr = REG_READ(EXTMEM_PRO_DCACHE_PRELOAD_ADDR_REG); size = REG_READ(EXTMEM_PRO_DCACHE_PRELOAD_SIZE_REG); panic_print_str("Dcache preload parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_DCACHE_WRITE_FLASH_ST: panic_print_str("Write back error occurred while dcache tries to write back to flash\r\n"); break; case EXTMEM_DCACHE_REJECT_ST: vaddr = REG_READ(EXTMEM_PRO_DCACHE_REJECT_VADDR_REG); panic_print_str("Dcache reject error occurred while accessing the address 0x"); panic_print_hex(vaddr); if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) { panic_print_str(" (invalid mmu entry)"); } panic_print_str("\r\n"); break; case EXTMEM_MMU_ENTRY_FAULT_ST: vaddr = REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_VADDR_REG); panic_print_str("MMU entry fault error occurred while accessing the address 0x"); panic_print_hex(vaddr); if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) { panic_print_str(" (invalid mmu entry)"); } panic_print_str("\r\n"); break; default: break; } } } #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE #define MEMPROT_OP_INVALID 0xFFFFFFFF static inline void print_memprot_err_details(const void *f) { uint32_t *fault_addr; uint32_t op_type = MEMPROT_OP_INVALID, op_subtype; const char *operation_type; mem_type_prot_t mem_type = esp_memprot_get_active_intr_memtype(); if (mem_type != MEMPROT_NONE) { if (esp_memprot_get_fault_status(mem_type, &fault_addr, &op_type, &op_subtype) != ESP_OK) { op_type = MEMPROT_OP_INVALID; } } if (op_type == MEMPROT_OP_INVALID) { operation_type = "Unknown"; fault_addr = (uint32_t *)MEMPROT_OP_INVALID; } else { if (op_type == 0) { operation_type = (mem_type == MEMPROT_IRAM0_SRAM && op_subtype == 0) ? "Instruction fetch" : "Read"; } else { operation_type = "Write"; } } panic_print_str(operation_type); panic_print_str(" operation at address 0x"); panic_print_hex((uint32_t)fault_addr); panic_print_str(" not permitted ("); panic_print_str(esp_memprot_type_to_str(mem_type)); panic_print_str(")\r\n"); } #endif #elif CONFIG_IDF_TARGET_ESP32S3 static inline void print_cache_err_details(const void *f) { uint32_t vaddr = 0, size = 0; uint32_t status; status = REG_READ(EXTMEM_CACHE_ILG_INT_ST_REG); for (int i = 0; i < 32; i++) { switch (status & BIT(i)) { case EXTMEM_ICACHE_SYNC_OP_FAULT_ST: //TODO, which size should fetch //vaddr = REG_READ(EXTMEM_ICACHE_MEM_SYNC0_REG); //size = REG_READ(EXTMEM_ICACHE_MEM_SYNC1_REG); panic_print_str("Icache sync parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_ICACHE_PRELOAD_OP_FAULT_ST: //TODO, which size should fetch vaddr = REG_READ(EXTMEM_ICACHE_PRELOAD_ADDR_REG); size = REG_READ(EXTMEM_ICACHE_PRELOAD_SIZE_REG); panic_print_str("Icache preload parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_DCACHE_SYNC_OP_FAULT_ST: //TODO, which size should fetch //vaddr = REG_READ(EXTMEM_DCACHE_MEM_SYNC0_REG); //size = REG_READ(EXTMEM_DCACHE_MEM_SYNC1_REG); panic_print_str("Dcache sync parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_DCACHE_PRELOAD_OP_FAULT_ST: //TODO, which size should fetch vaddr = REG_READ(EXTMEM_DCACHE_PRELOAD_ADDR_REG); size = REG_READ(EXTMEM_DCACHE_PRELOAD_SIZE_REG); panic_print_str("Dcache preload parameter configuration error, the error address and size is 0x"); panic_print_hex(vaddr); panic_print_str("(0x"); panic_print_hex(size); panic_print_str(")\r\n"); break; case EXTMEM_DCACHE_WRITE_FLASH_ST: panic_print_str("Write back error occurred while dcache tries to write back to flash\r\n"); break; case EXTMEM_MMU_ENTRY_FAULT_ST: vaddr = REG_READ(EXTMEM_CACHE_MMU_FAULT_VADDR_REG); panic_print_str("MMU entry fault error occurred while accessing the address 0x"); panic_print_hex(vaddr); if (REG_READ(EXTMEM_CACHE_MMU_FAULT_CONTENT_REG) & SOC_MMU_INVALID) { panic_print_str(" (invalid mmu entry)"); } panic_print_str("\r\n"); break; default: break; } } panic_print_str("\r\n"); } #endif void panic_arch_fill_info(void *f, panic_info_t *info) { XtExcFrame *frame = (XtExcFrame *) f; static const char *reason[] = { "IllegalInstruction", "Syscall", "InstructionFetchError", "LoadStoreError", "Level1Interrupt", "Alloca", "IntegerDivideByZero", "PCValue", "Privileged", "LoadStoreAlignment", "res", "res", "InstrPDAddrError", "LoadStorePIFDataError", "InstrPIFAddrError", "LoadStorePIFAddrError", "InstTLBMiss", "InstTLBMultiHit", "InstFetchPrivilege", "res", "InstrFetchProhibited", "res", "res", "res", "LoadStoreTLBMiss", "LoadStoreTLBMultihit", "LoadStorePrivilege", "res", "LoadProhibited", "StoreProhibited", "res", "res", "Cp0Dis", "Cp1Dis", "Cp2Dis", "Cp3Dis", "Cp4Dis", "Cp5Dis", "Cp6Dis", "Cp7Dis" }; if (frame->exccause < (sizeof(reason) / sizeof(char *))) { info->reason = (reason[frame->exccause]); } else { info->reason = "Unknown"; } info->description = "Exception was unhandled."; if (frame->exccause == EXCCAUSE_ILLEGAL) { info->details = print_illegal_instruction_details; } info->addr = ((void *) ((XtExcFrame *) frame)->pc); } /** * This function will be called before the SoC-level panic is handled, * allowing us to check and override the exception cause for certain * pseudo-causes that do not have their own trigger */ bool panic_soc_check_pseudo_cause(void *f, panic_info_t *info) { // Currently only needed on riscv targets return false; } void panic_soc_fill_info(void *f, panic_info_t *info) { // [refactor-todo] this should be in the common port panic_handler.c, once // these special exceptions are supported in there. XtExcFrame *frame = (XtExcFrame *) f; if (frame->exccause == PANIC_RSN_INTWDT_CPU0) { info->core = 0; info->exception = PANIC_EXCEPTION_IWDT; } else if (frame->exccause == PANIC_RSN_INTWDT_CPU1) { info->core = 1; info->exception = PANIC_EXCEPTION_IWDT; } else if (frame->exccause == PANIC_RSN_CACHEERR) { info->core = esp_cache_err_get_cpuid(); } else {} //Please keep in sync with PANIC_RSN_* defines static const char *pseudo_reason[] = { "Unknown reason", "Unhandled debug exception", "Double exception", "Unhandled kernel exception", "Coprocessor exception", "Interrupt wdt timeout on CPU0", "Interrupt wdt timeout on CPU1", "Cache disabled but cached memory region accessed", }; info->reason = pseudo_reason[0]; info->description = NULL; if (frame->exccause <= PANIC_RSN_MAX) { info->reason = pseudo_reason[frame->exccause]; } if (frame->exccause == PANIC_RSN_DEBUGEXCEPTION) { info->details = print_debug_exception_details; info->exception = PANIC_EXCEPTION_DEBUG; } //MV note: ESP32S3 PMS handling? #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 if (frame->exccause == PANIC_RSN_CACHEERR) { #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && CONFIG_IDF_TARGET_ESP32S2 if ( esp_memprot_is_intr_ena_any() ) { info->details = print_memprot_err_details; info->reason = "Memory protection fault"; } else #endif { info->details = print_cache_err_details; } } #endif } uint32_t panic_get_address(const void *f) { return ((XtExcFrame *)f)->pc; } uint32_t panic_get_cause(const void *f) { return ((XtExcFrame *)f)->exccause; } void panic_set_address(void *f, uint32_t addr) { ((XtExcFrame *)f)->pc = addr; } void panic_print_backtrace(const void *f, int core) { XtExcFrame *xt_frame = (XtExcFrame *) f; esp_backtrace_frame_t frame = {.pc = xt_frame->pc, .sp = xt_frame->a1, .next_pc = xt_frame->a0, .exc_frame = xt_frame}; esp_backtrace_print_from_frame(100, &frame, true); }