// Copyright 2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "esp_spi_flash.h" #include "soc/system_reg.h" #include "soc/soc_memory_layout.h" #include "esp32s2/rom/spi_flash.h" #include "esp32s2/rom/cache.h" #include "hal/spi_flash_hal.h" #include "esp_flash.h" #include "esp_log.h" static const char *TAG = "spiflash_s2"; #define SPICACHE SPIMEM0 #define SPIFLASH SPIMEM1 extern void IRAM_ATTR flash_rom_init(void); esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_addr, const void *src, size_t size) { const spi_flash_guard_funcs_t *ops = spi_flash_guard_get(); esp_rom_spiflash_result_t rc; assert((dest_addr % 16) == 0); assert((size % 16) == 0); if (!esp_ptr_internal(src)) { uint8_t block[128]; // Need to buffer in RAM as we write while (size > 0) { size_t next_block = MIN(size, sizeof(block)); memcpy(block, src, next_block); esp_rom_spiflash_result_t r = spi_flash_write_encrypted_chip(dest_addr, block, next_block); if (r != ESP_ROM_SPIFLASH_RESULT_OK) { return r; } size -= next_block; dest_addr += next_block; src = ((uint8_t *)src) + next_block; } bzero(block, sizeof(block)); return ESP_ROM_SPIFLASH_RESULT_OK; } else { // Already in internal memory ESP_LOGV(TAG, "calling SPI_Encrypt_Write addr 0x%x src %p size 0x%x", dest_addr, src, size); #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL /* The ROM function SPI_Encrypt_Write assumes ADDR_BITLEN is already set but new implementation doesn't automatically set this to a usable value */ SPIFLASH.user1.usr_addr_bitlen = 23; #endif if (ops && ops->start) { ops->start(); } flash_rom_init(); rc = SPI_Encrypt_Write(dest_addr, src, size); if (ops && ops->end) { ops->end(); } return rc; } } #define FLASH_WRAP_CMD 0x77 esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode) { uint32_t reg_bkp_ctrl = SPIFLASH.ctrl.val; uint32_t reg_bkp_usr = SPIFLASH.user.val; SPIFLASH.user.fwrite_dio = 0; SPIFLASH.user.fwrite_dual = 0; SPIFLASH.user.fwrite_qio = 1; SPIFLASH.user.fwrite_quad = 0; SPIFLASH.ctrl.fcmd_dual = 0; SPIFLASH.ctrl.fcmd_quad = 0; SPIFLASH.user.usr_dummy = 0; SPIFLASH.user.usr_addr = 1; SPIFLASH.user.usr_command = 1; SPIFLASH.user2.usr_command_bitlen = 7; SPIFLASH.user2.usr_command_value = FLASH_WRAP_CMD; SPIFLASH.user1.usr_addr_bitlen = 23; SPIFLASH.addr = 0; SPIFLASH.user.usr_miso = 0; SPIFLASH.user.usr_mosi = 1; SPIFLASH.mosi_dlen.usr_mosi_bit_len = 7; SPIFLASH.data_buf[0] = (uint32_t) mode << 4;; SPIFLASH.cmd.usr = 1; while(SPIFLASH.cmd.usr != 0) { } SPIFLASH.ctrl.val = reg_bkp_ctrl; SPIFLASH.user.val = reg_bkp_usr; return ESP_OK; } esp_err_t spi_flash_enable_wrap(uint32_t wrap_size) { switch(wrap_size) { case 8: return spi_flash_wrap_set(FLASH_WRAP_MODE_8B); case 16: return spi_flash_wrap_set(FLASH_WRAP_MODE_16B); case 32: return spi_flash_wrap_set(FLASH_WRAP_MODE_32B); case 64: return spi_flash_wrap_set(FLASH_WRAP_MODE_64B); default: return ESP_FAIL; } } void spi_flash_disable_wrap(void) { spi_flash_wrap_set(FLASH_WRAP_MODE_DISABLE); } bool spi_flash_support_wrap_size(uint32_t wrap_size) { if (!REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FREAD_QIO) || !REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FASTRD_MODE)){ return ESP_FAIL; } switch(wrap_size) { case 0: case 8: case 16: case 32: case 64: return true; default: return false; } }