// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "driver/periph_ctrl.h" #include "driver/gpio.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_eth.h" #include "esp_pm.h" #include "esp_system.h" #include "esp_heap_caps.h" #include "esp_intr_alloc.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "hal/cpu_hal.h" #include "hal/emac.h" #include "soc/soc.h" #include "sdkconfig.h" #include "esp_rom_gpio.h" #include "esp_rom_sys.h" static const char *TAG = "emac_esp32"; #define MAC_CHECK(a, str, goto_tag, ret_value, ...) \ do \ { \ if (!(a)) \ { \ ESP_LOGE(TAG, "%s(%d): " str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \ ret = ret_value; \ goto goto_tag; \ } \ } while (0) #define PHY_OPERATION_TIMEOUT_US (1000) #define FLOW_CONTROL_LOW_WATER_MARK (CONFIG_ETH_DMA_RX_BUFFER_NUM / 3) #define FLOW_CONTROL_HIGH_WATER_MARK (FLOW_CONTROL_LOW_WATER_MARK * 2) typedef struct { esp_eth_mac_t parent; esp_eth_mediator_t *eth; emac_hal_context_t hal; intr_handle_t intr_hdl; TaskHandle_t rx_task_hdl; uint32_t sw_reset_timeout_ms; uint32_t frames_remain; uint32_t free_rx_descriptor; uint32_t flow_control_high_water_mark; uint32_t flow_control_low_water_mark; int smi_mdc_gpio_num; int smi_mdio_gpio_num; uint8_t addr[6]; uint8_t *rx_buf[CONFIG_ETH_DMA_RX_BUFFER_NUM]; uint8_t *tx_buf[CONFIG_ETH_DMA_TX_BUFFER_NUM]; bool isr_need_yield; bool flow_ctrl_enabled; // indicates whether the user want to do flow control bool do_flow_ctrl; // indicates whether we need to do software flow control #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif } emac_esp32_t; static esp_err_t emac_esp32_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth) { esp_err_t ret = ESP_OK; MAC_CHECK(eth, "can't set mac's mediator to null", err, ESP_ERR_INVALID_ARG); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac->eth = eth; return ESP_OK; err: return ret; } static esp_err_t emac_esp32_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); MAC_CHECK(!emac_hal_is_mii_busy(&emac->hal), "phy is busy", err, ESP_ERR_INVALID_STATE); emac_hal_set_phy_data(&emac->hal, reg_value); emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, true); /* polling the busy flag */ uint32_t to = 0; bool busy = true; do { esp_rom_delay_us(100); busy = emac_hal_is_mii_busy(&emac->hal); to += 100; } while (busy && to < PHY_OPERATION_TIMEOUT_US); MAC_CHECK(!busy, "phy is busy", err, ESP_ERR_TIMEOUT); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value) { esp_err_t ret = ESP_OK; MAC_CHECK(reg_value, "can't set reg_value to null", err, ESP_ERR_INVALID_ARG); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); MAC_CHECK(!emac_hal_is_mii_busy(&emac->hal), "phy is busy", err, ESP_ERR_INVALID_STATE); emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, false); /* polling the busy flag */ uint32_t to = 0; bool busy = true; do { esp_rom_delay_us(100); busy = emac_hal_is_mii_busy(&emac->hal); to += 100; } while (busy && to < PHY_OPERATION_TIMEOUT_US); MAC_CHECK(!busy, "phy is busy", err, ESP_ERR_TIMEOUT); /* Store value */ *reg_value = emac_hal_get_phy_data(&emac->hal); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_addr(esp_eth_mac_t *mac, uint8_t *addr) { esp_err_t ret = ESP_OK; MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); memcpy(emac->addr, addr, 6); emac_hal_set_address(&emac->hal, emac->addr); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_get_addr(esp_eth_mac_t *mac, uint8_t *addr) { esp_err_t ret = ESP_OK; MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); memcpy(addr, emac->addr, 6); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_link(esp_eth_mac_t *mac, eth_link_t link) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); switch (link) { case ETH_LINK_UP: MAC_CHECK(esp_intr_enable(emac->intr_hdl) == ESP_OK, "enable interrupt failed", err, ESP_FAIL); emac_hal_start(&emac->hal); break; case ETH_LINK_DOWN: MAC_CHECK(esp_intr_disable(emac->intr_hdl) == ESP_OK, "disable interrupt failed", err, ESP_FAIL); emac_hal_stop(&emac->hal); break; default: MAC_CHECK(false, "unknown link status", err, ESP_ERR_INVALID_ARG); break; } return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_speed(esp_eth_mac_t *mac, eth_speed_t speed) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); switch (speed) { case ETH_SPEED_10M: emac_hal_set_speed(&emac->hal, EMAC_SPEED_10M); ESP_LOGD(TAG, "working in 10Mbps"); break; case ETH_SPEED_100M: emac_hal_set_speed(&emac->hal, EMAC_SPEED_100M); ESP_LOGD(TAG, "working in 100Mbps"); break; default: MAC_CHECK(false, "unknown speed", err, ESP_ERR_INVALID_ARG); break; } return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); switch (duplex) { case ETH_DUPLEX_HALF: emac_hal_set_duplex(&emac->hal, EMAC_DUPLEX_HALF); ESP_LOGD(TAG, "working in half duplex"); break; case ETH_DUPLEX_FULL: emac_hal_set_duplex(&emac->hal, EMAC_DUPLEX_FULL); ESP_LOGD(TAG, "working in full duplex"); break; default: MAC_CHECK(false, "unknown duplex", err, ESP_ERR_INVALID_ARG); break; } return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_promiscuous(esp_eth_mac_t *mac, bool enable) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac_hal_set_promiscuous(&emac->hal, enable); return ESP_OK; } static esp_err_t emac_esp32_enable_flow_ctrl(esp_eth_mac_t *mac, bool enable) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac->flow_ctrl_enabled = enable; return ESP_OK; } static esp_err_t emac_esp32_set_peer_pause_ability(esp_eth_mac_t *mac, uint32_t ability) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); // we want to enable flow control, and peer does support pause function // then configure the MAC layer to enable flow control feature if (emac->flow_ctrl_enabled && ability) { emac_hal_enable_flow_ctrl(&emac->hal, true); emac->do_flow_ctrl = true; } else { emac_hal_enable_flow_ctrl(&emac->hal, false); emac->do_flow_ctrl = false; ESP_LOGD(TAG, "Flow control not enabled for the link"); } return ESP_OK; } static esp_err_t emac_esp32_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); uint32_t sent_len = emac_hal_transmit_frame(&emac->hal, buf, length); MAC_CHECK(sent_len == length, "insufficient TX buffer size", err, ESP_ERR_INVALID_SIZE); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length) { esp_err_t ret = ESP_OK; uint32_t expected_len = *length; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); MAC_CHECK(buf && length, "can't set buf and length to null", err, ESP_ERR_INVALID_ARG); uint32_t receive_len = emac_hal_receive_frame(&emac->hal, buf, expected_len, &emac->frames_remain, &emac->free_rx_descriptor); /* we need to check the return value in case the buffer size is not enough */ ESP_LOGD(TAG, "receive len= %d", receive_len); MAC_CHECK(expected_len >= receive_len, "received buffer longer than expected", err, ESP_ERR_INVALID_SIZE); *length = receive_len; return ESP_OK; err: *length = expected_len; return ret; } static void emac_esp32_rx_task(void *arg) { emac_esp32_t *emac = (emac_esp32_t *)arg; uint8_t *buffer = NULL; uint32_t length = 0; while (1) { // block indefinitely until got notification from underlay event ulTaskNotifyTake(pdTRUE, portMAX_DELAY); do { length = ETH_MAX_PACKET_SIZE; buffer = malloc(length); if (!buffer) { ESP_LOGE(TAG, "no mem for receive buffer"); } else if (emac_esp32_receive(&emac->parent, buffer, &length) == ESP_OK) { /* pass the buffer to stack (e.g. TCP/IP layer) */ if (length) { emac->eth->stack_input(emac->eth, buffer, length); } else { free(buffer); } } else { free(buffer); } #if CONFIG_ETH_SOFT_FLOW_CONTROL // we need to do extra checking of remained frames in case there are no unhandled frames left, but pause frame is still undergoing if ((emac->free_rx_descriptor < emac->flow_control_low_water_mark) && emac->do_flow_ctrl && emac->frames_remain) { emac_hal_send_pause_frame(&emac->hal, true); } else if ((emac->free_rx_descriptor > emac->flow_control_high_water_mark) || !emac->frames_remain) { emac_hal_send_pause_frame(&emac->hal, false); } #endif } while (emac->frames_remain); } vTaskDelete(NULL); } static void emac_esp32_init_smi_gpio(emac_esp32_t *emac) { if (emac->smi_mdc_gpio_num >= 0) { /* Setup SMI MDC GPIO */ gpio_set_direction(emac->smi_mdc_gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(emac->smi_mdc_gpio_num, EMAC_MDC_O_IDX, false, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[emac->smi_mdc_gpio_num], PIN_FUNC_GPIO); } if (emac->smi_mdio_gpio_num >= 0) { /* Setup SMI MDIO GPIO */ gpio_set_direction(emac->smi_mdio_gpio_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(emac->smi_mdio_gpio_num, EMAC_MDO_O_IDX, false, false); esp_rom_gpio_connect_in_signal(emac->smi_mdio_gpio_num, EMAC_MDI_I_IDX, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[emac->smi_mdio_gpio_num], PIN_FUNC_GPIO); } } static esp_err_t emac_esp32_init(esp_eth_mac_t *mac) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); esp_eth_mediator_t *eth = emac->eth; /* enable peripheral clock */ periph_module_enable(PERIPH_EMAC_MODULE); /* init clock, config gpio, etc */ emac_hal_lowlevel_init(&emac->hal); /* init gpio used by smi interface */ emac_esp32_init_smi_gpio(emac); MAC_CHECK(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL) == ESP_OK, "lowlevel init failed", err, ESP_FAIL); /* software reset */ emac_hal_reset(&emac->hal); uint32_t to = 0; for (to = 0; to < emac->sw_reset_timeout_ms / 10; to++) { if (emac_hal_is_reset_done(&emac->hal)) { break; } vTaskDelay(pdMS_TO_TICKS(10)); } MAC_CHECK(to < emac->sw_reset_timeout_ms / 10, "reset timeout", err, ESP_ERR_TIMEOUT); /* set smi clock */ emac_hal_set_csr_clock_range(&emac->hal); /* reset descriptor chain */ emac_hal_reset_desc_chain(&emac->hal); /* init mac registers by default */ emac_hal_init_mac_default(&emac->hal); /* init dma registers by default */ emac_hal_init_dma_default(&emac->hal); /* get emac address from efuse */ MAC_CHECK(esp_read_mac(emac->addr, ESP_MAC_ETH) == ESP_OK, "fetch ethernet mac address failed", err, ESP_FAIL); /* set MAC address to emac register */ emac_hal_set_address(&emac->hal, emac->addr); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(emac->pm_lock); #endif return ESP_OK; err: eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); periph_module_disable(PERIPH_EMAC_MODULE); return ret; } static esp_err_t emac_esp32_deinit(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); esp_eth_mediator_t *eth = emac->eth; #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(emac->pm_lock); #endif emac_hal_stop(&emac->hal); eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); periph_module_disable(PERIPH_EMAC_MODULE); return ESP_OK; } static esp_err_t emac_esp32_start(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac_hal_start(&emac->hal); return ESP_OK; } static esp_err_t emac_esp32_stop(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac_hal_stop(&emac->hal); return ESP_OK; } static esp_err_t emac_esp32_del(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); esp_intr_free(emac->intr_hdl); #ifdef CONFIG_PM_ENABLE if (emac->pm_lock) { esp_pm_lock_delete(emac->pm_lock); } #endif vTaskDelete(emac->rx_task_hdl); int i = 0; for (i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) { free(emac->hal.rx_buf[i]); } for (i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) { free(emac->hal.tx_buf[i]); } free(emac->hal.descriptors); free(emac); return ESP_OK; } // To achieve a better performance, we put the ISR always in IRAM IRAM_ATTR void emac_esp32_isr_handler(void *args) { emac_hal_context_t *hal = (emac_hal_context_t *)args; emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal); emac_hal_isr(args); if (emac->isr_need_yield) { emac->isr_need_yield = false; portYIELD_FROM_ISR(); } } esp_eth_mac_t *esp_eth_mac_new_esp32(const eth_mac_config_t *config) { esp_err_t ret_code = ESP_OK; esp_eth_mac_t *ret = NULL; void *descriptors = NULL; emac_esp32_t *emac = NULL; MAC_CHECK(config, "can't set mac config to null", err, NULL); if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) { emac = heap_caps_calloc(1, sizeof(emac_esp32_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } else { emac = calloc(1, sizeof(emac_esp32_t)); } MAC_CHECK(emac, "calloc emac failed", err, NULL); /* alloc memory for ethernet dma descriptor */ uint32_t desc_size = CONFIG_ETH_DMA_RX_BUFFER_NUM * sizeof(eth_dma_rx_descriptor_t) + CONFIG_ETH_DMA_TX_BUFFER_NUM * sizeof(eth_dma_tx_descriptor_t); descriptors = heap_caps_calloc(1, desc_size, MALLOC_CAP_DMA); MAC_CHECK(descriptors, "calloc descriptors failed", err, NULL); int i = 0; /* alloc memory for ethernet dma buffer */ for (i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) { emac->rx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA); if (!(emac->rx_buf[i])) { goto err; } } for (i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) { emac->tx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA); if (!(emac->tx_buf[i])) { goto err; } } /* initialize hal layer driver */ emac_hal_init(&emac->hal, descriptors, emac->rx_buf, emac->tx_buf); emac->sw_reset_timeout_ms = config->sw_reset_timeout_ms; emac->smi_mdc_gpio_num = config->smi_mdc_gpio_num; emac->smi_mdio_gpio_num = config->smi_mdio_gpio_num; emac->flow_control_high_water_mark = FLOW_CONTROL_HIGH_WATER_MARK; emac->flow_control_low_water_mark = FLOW_CONTROL_LOW_WATER_MARK; emac->parent.set_mediator = emac_esp32_set_mediator; emac->parent.init = emac_esp32_init; emac->parent.deinit = emac_esp32_deinit; emac->parent.start = emac_esp32_start; emac->parent.stop = emac_esp32_stop; emac->parent.del = emac_esp32_del; emac->parent.write_phy_reg = emac_esp32_write_phy_reg; emac->parent.read_phy_reg = emac_esp32_read_phy_reg; emac->parent.set_addr = emac_esp32_set_addr; emac->parent.get_addr = emac_esp32_get_addr; emac->parent.set_speed = emac_esp32_set_speed; emac->parent.set_duplex = emac_esp32_set_duplex; emac->parent.set_link = emac_esp32_set_link; emac->parent.set_promiscuous = emac_esp32_set_promiscuous; emac->parent.set_peer_pause_ability = emac_esp32_set_peer_pause_ability; emac->parent.enable_flow_ctrl = emac_esp32_enable_flow_ctrl; emac->parent.transmit = emac_esp32_transmit; emac->parent.receive = emac_esp32_receive; /* Interrupt configuration */ if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) { ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, ESP_INTR_FLAG_IRAM, emac_esp32_isr_handler, &emac->hal, &(emac->intr_hdl)); } else { ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, 0, emac_esp32_isr_handler, &emac->hal, &(emac->intr_hdl)); } MAC_CHECK(ret_code == ESP_OK, "alloc emac interrupt failed", err, NULL); #ifdef CONFIG_PM_ENABLE MAC_CHECK(esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "emac_esp32", &emac->pm_lock) == ESP_OK, "create pm lock failed", err, NULL); #endif /* create rx task */ BaseType_t core_num = tskNO_AFFINITY; if (config->flags & ETH_MAC_FLAG_PIN_TO_CORE) { core_num = cpu_hal_get_core_id(); } BaseType_t xReturned = xTaskCreatePinnedToCore(emac_esp32_rx_task, "emac_rx", config->rx_task_stack_size, emac, config->rx_task_prio, &emac->rx_task_hdl, core_num); MAC_CHECK(xReturned == pdPASS, "create emac_rx task failed", err, NULL); return &(emac->parent); err: if (emac) { if (emac->rx_task_hdl) { vTaskDelete(emac->rx_task_hdl); } if (emac->intr_hdl) { esp_intr_free(emac->intr_hdl); } for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) { free(emac->tx_buf[i]); } for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) { free(emac->rx_buf[i]); } #ifdef CONFIG_PM_ENABLE if (emac->pm_lock) { esp_pm_lock_delete(emac->pm_lock); } #endif free(emac); } if (descriptors) { free(descriptors); } return ret; } IRAM_ATTR void emac_hal_rx_complete_cb(void *arg) { emac_hal_context_t *hal = (emac_hal_context_t *)arg; emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal); BaseType_t high_task_wakeup; /* notify receive task */ vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup); if (high_task_wakeup == pdTRUE) { emac->isr_need_yield = true; } } IRAM_ATTR void emac_hal_rx_unavail_cb(void *arg) { emac_hal_context_t *hal = (emac_hal_context_t *)arg; emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal); BaseType_t high_task_wakeup; /* notify receive task */ vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup); if (high_task_wakeup == pdTRUE) { emac->isr_need_yield = true; } } IRAM_ATTR void emac_hal_rx_early_cb(void *arg) { emac_hal_context_t *hal = (emac_hal_context_t *)arg; emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal); BaseType_t high_task_wakeup; /* notify receive task */ vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup); if (high_task_wakeup == pdTRUE) { emac->isr_need_yield = true; } }