/* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "soc/lldesc.h" #include "driver/periph_ctrl.h" #include "driver/gpio.h" #include "driver/i2s.h" #include "hal/gpio_hal.h" #include "hal/i2s_hal.h" #if SOC_I2S_SUPPORTS_ADC_DAC #include "driver/dac.h" #include "adc1_private.h" #endif #if SOC_GDMA_SUPPORTED #include "esp_private/gdma.h" #endif #include "soc/rtc.h" #include "esp_intr_alloc.h" #include "esp_err.h" #include "esp_check.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_pm.h" #include "esp_efuse.h" #include "esp_rom_gpio.h" #include "sdkconfig.h" static const char *TAG = "I2S"; #define I2S_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&i2s_spinlock[i2s_num]) #define I2S_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&i2s_spinlock[i2s_num]) #define I2S_ENTER_CRITICAL() portENTER_CRITICAL(&i2s_spinlock[i2s_num]) #define I2S_EXIT_CRITICAL() portEXIT_CRITICAL(&i2s_spinlock[i2s_num]) #define I2S_FULL_DUPLEX_SLAVE_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_SLAVE) #define I2S_FULL_DUPLEX_MASTER_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_MASTER) #define I2S_MAX_BUFFER_SIZE (4*1024*1024) //the maximum RAM can be allocated #if !SOC_GDMA_SUPPORTED #define I2S_INTR_IN_SUC_EOF BIT(9) #define I2S_INTR_OUT_EOF BIT(12) #define I2S_INTR_IN_DSCR_ERR BIT(13) #define I2S_INTR_OUT_DSCR_ERR BIT(14) #define I2S_INTR_MAX (~0) #endif /** * @brief DMA buffer object * */ typedef struct { char **buf; int buf_size; int rw_pos; void *curr_ptr; SemaphoreHandle_t mux; xQueueHandle queue; lldesc_t **desc; } i2s_dma_t; /** * @brief I2S object instance * */ typedef struct { i2s_port_t i2s_num; /*!< I2S port number*/ int queue_size; /*!< I2S event queue size*/ QueueHandle_t i2s_queue; /*!< I2S queue handler*/ int dma_buf_count; /*!< DMA buffer count, number of buffer*/ int dma_buf_len; /*!< DMA buffer length, length of each buffer*/ i2s_dma_t *tx; /*!< DMA Tx buffer*/ i2s_dma_t *rx; /*!< DMA Rx buffer*/ #if SOC_GDMA_SUPPORTED gdma_channel_handle_t rx_dma_chan; /*!< I2S rx gDMA channel handle*/ gdma_channel_handle_t tx_dma_chan; /*!< I2S tx gDMA channel handle*/ #else i2s_isr_handle_t i2s_isr_handle; /*!< I2S Interrupt handle*/ #endif int channel_num; /*!< Number of channels*/ int bytes_per_sample; /*!< Bytes per sample*/ int bits_per_sample; /*!< Bits per sample*/ i2s_comm_format_t communication_format; /*!sample_rate; } static void i2s_tx_reset(i2s_port_t i2s_num) { p_i2s[i2s_num]->tx->curr_ptr = NULL; p_i2s[i2s_num]->tx->rw_pos = 0; #if SOC_GDMA_SUPPORTED gdma_reset(p_i2s[i2s_num]->tx_dma_chan); #else //attach DMA i2s_hal_attach_tx_dma(&(p_i2s[i2s_num]->hal)); // Reset I2S TX module first, and then, reset DMA and FIFO. i2s_hal_reset_tx(&(p_i2s[i2s_num]->hal)); i2s_hal_reset_txdma(&(p_i2s[i2s_num]->hal)); i2s_hal_reset_tx_fifo(&(p_i2s[i2s_num]->hal)); #endif } static void i2s_rx_reset(i2s_port_t i2s_num) { p_i2s[i2s_num]->rx->curr_ptr = NULL; p_i2s[i2s_num]->rx->rw_pos = 0; #if SOC_GDMA_SUPPORTED gdma_reset(p_i2s[i2s_num]->rx_dma_chan); #else //attach DMA i2s_hal_attach_rx_dma(&(p_i2s[i2s_num]->hal)); // Reset I2S RX module first, and then, reset DMA and FIFO. i2s_hal_reset_rx(&(p_i2s[i2s_num]->hal)); i2s_hal_reset_rxdma(&(p_i2s[i2s_num]->hal)); i2s_hal_reset_rx_fifo(&(p_i2s[i2s_num]->hal)); #endif } static void i2s_tx_start(i2s_port_t i2s_num) { #if SOC_GDMA_SUPPORTED gdma_start(p_i2s[i2s_num]->tx_dma_chan, (uint32_t) p_i2s[i2s_num]->tx->desc[0]); #else i2s_hal_enable_tx_intr(&(p_i2s[i2s_num]->hal)); i2s_hal_start_tx_link(&(p_i2s[i2s_num]->hal), (uint32_t) p_i2s[i2s_num]->tx->desc[0]); #endif i2s_hal_start_tx(&(p_i2s[i2s_num]->hal)); } static void i2s_rx_start(i2s_port_t i2s_num) { #if SOC_GDMA_SUPPORTED gdma_start(p_i2s[i2s_num]->rx_dma_chan, (uint32_t) p_i2s[i2s_num]->rx->desc[0]); #else i2s_hal_enable_rx_intr(&(p_i2s[i2s_num]->hal)); i2s_hal_start_rx_link(&(p_i2s[i2s_num]->hal), (uint32_t) p_i2s[i2s_num]->rx->desc[0]); #endif i2s_hal_start_rx(&(p_i2s[i2s_num]->hal)); } static void i2s_tx_stop(i2s_port_t i2s_num) { #if SOC_GDMA_SUPPORTED gdma_stop(p_i2s[i2s_num]->tx_dma_chan); #else i2s_hal_stop_tx_link(&(p_i2s[i2s_num]->hal)); i2s_hal_stop_tx(&(p_i2s[i2s_num]->hal)); i2s_hal_disable_tx_intr(&(p_i2s[i2s_num]->hal)); #endif } static void i2s_rx_stop(i2s_port_t i2s_num) { #if SOC_GDMA_SUPPORTED gdma_stop(p_i2s[i2s_num]->rx_dma_chan); #else i2s_hal_stop_rx_link(&(p_i2s[i2s_num]->hal)); i2s_hal_stop_rx(&(p_i2s[i2s_num]->hal)); i2s_hal_disable_rx_intr(&(p_i2s[i2s_num]->hal)); #endif } #if SOC_I2S_SUPPORTS_APLL static float i2s_apll_get_fi2s(int bits_per_sample, int sdm0, int sdm1, int sdm2, int odir) { int f_xtal = (int)rtc_clk_xtal_freq_get() * 1000000; #if CONFIG_IDF_TARGET_ESP32 /* ESP32 rev0 silicon issue for APLL range/accuracy, please see ESP32 ECO document for more information on this */ if (esp_efuse_get_chip_ver() == 0) { sdm0 = 0; sdm1 = 0; } #endif float fout = f_xtal * (sdm2 + sdm1 / 256.0f + sdm0 / 65536.0f + 4); if (fout < SOC_I2S_APLL_MIN_FREQ || fout > SOC_I2S_APLL_MAX_FREQ) { return SOC_I2S_APLL_MAX_FREQ; } float fpll = fout / (2 * (odir + 2)); //== fi2s (N=1, b=0, a=1) return fpll / 2; } /** * @brief APLL calculate function, was described by following: * APLL Output frequency is given by the formula: * * apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2) * apll_freq = fout / ((o_div + 2) * 2) * * The dividend in this expression should be in the range of 240 - 600 MHz. * In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0. * * sdm0 frequency adjustment parameter, 0..255 * * sdm1 frequency adjustment parameter, 0..255 * * sdm2 frequency adjustment parameter, 0..63 * * o_div frequency divider, 0..31 * * The most accurate way to find the sdm0..2 and odir parameters is to loop through them all, * then apply the above formula, finding the closest frequency to the desired one. * But 256*256*64*32 = 134.217.728 loops are too slow with ESP32 * 1. We will choose the parameters with the highest level of change, * With 350MHzchannel_num != ch) { p_i2s[i2s_num]->channel_num = (ch == 2) ? 2 : 1; } i2s_dma_t *save_tx = NULL, *save_rx = NULL; if (data_bits != p_i2s[i2s_num]->bits_per_sample) { p_i2s[i2s_num]->bits_per_sample = data_bits; // Round bytes_per_sample up to next multiple of 16 bits int halfwords_per_sample = (data_bits + 15) / 16; p_i2s[i2s_num]->bytes_per_sample = halfwords_per_sample * 2; // Because limited of DMA buffer is 4092 bytes if (p_i2s[i2s_num]->dma_buf_len * p_i2s[i2s_num]->bytes_per_sample * p_i2s[i2s_num]->channel_num > 4092) { p_i2s[i2s_num]->dma_buf_len = 4092 / p_i2s[i2s_num]->bytes_per_sample / p_i2s[i2s_num]->channel_num; } // Re-create TX DMA buffer if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { save_tx = p_i2s[i2s_num]->tx; //destroy old tx dma if exist if (save_tx) { i2s_destroy_dma_queue(i2s_num, save_tx); } p_i2s[i2s_num]->tx = i2s_create_dma_queue(i2s_num, p_i2s[i2s_num]->dma_buf_count, p_i2s[i2s_num]->dma_buf_len); if (p_i2s[i2s_num]->tx == NULL) { ESP_LOGE(TAG, "Failed to create tx dma buffer"); i2s_driver_uninstall(i2s_num); return ESP_ERR_NO_MEM; } } // Re-create RX DMA buffer if (p_i2s[i2s_num]->mode & I2S_MODE_RX) { save_rx = p_i2s[i2s_num]->rx; //destroy old rx dma if exist if (save_rx) { i2s_destroy_dma_queue(i2s_num, save_rx); } p_i2s[i2s_num]->rx = i2s_create_dma_queue(i2s_num, p_i2s[i2s_num]->dma_buf_count, p_i2s[i2s_num]->dma_buf_len); if (p_i2s[i2s_num]->rx == NULL) { ESP_LOGE(TAG, "Failed to create rx dma buffer"); i2s_driver_uninstall(i2s_num); return ESP_ERR_NO_MEM; } i2s_hal_set_rx_eof_num(&(p_i2s[i2s_num]->hal), p_i2s[i2s_num]->dma_buf_len * p_i2s[i2s_num]->channel_num * p_i2s[i2s_num]->bytes_per_sample); } } return ESP_OK; } static esp_err_t i2s_fbclk_cal(int i2s_num, uint32_t rate, int channel, int channel_bit, uint32_t *sclk, uint32_t *fbck, uint32_t *bck_div) { //Default select I2S_D2CLK (160M) uint32_t _sclk = I2S_LL_BASE_CLK; uint32_t _fbck = rate * channel * channel_bit; uint32_t _bck_div = (256 % channel_bit) ? 12 : 8; i2s_clock_src_t clk_src = I2S_CLK_D2CLK; //ADC mode only support on ESP32, #if SOC_I2S_SUPPORTS_ADC_DAC if ( p_i2s[i2s_num]->mode & (I2S_MODE_DAC_BUILT_IN | I2S_MODE_ADC_BUILT_IN)) { _fbck = rate * I2S_LL_AD_BCK_FACTOR * 2; _bck_div = I2S_LL_AD_BCK_FACTOR; } #endif // SOC_I2S_SUPPORTS_ADC_DAC if ( p_i2s[i2s_num]->mode & I2S_MODE_PDM) { #if SOC_I2S_SUPPORTS_PDM_TX if ( p_i2s[i2s_num]->mode & I2S_MODE_TX) { int fp = 1; int fs = 1; i2s_hal_get_tx_pdm_fpfs(&(p_i2s[i2s_num]->hal), &fp, &fs); _fbck = rate * I2S_LL_PDM_BCK_FACTOR * fp / fs; } #endif //SOC_I2S_SUPPORTS_PDM_TX #if SOC_I2S_SUPPORTS_PDM_RX if ( p_i2s[i2s_num]->mode & I2S_MODE_RX) { i2s_pdm_dsr_t dsr; i2s_hal_get_rx_pdm_dsr(&(p_i2s[i2s_num]->hal), &dsr); _fbck = rate * I2S_LL_PDM_BCK_FACTOR * (dsr == I2S_PDM_DSR_16S ? 2 : 1); } #endif // SOC_I2S_SUPPORTS_PDM_RX _bck_div = 8; } #if SOC_I2S_SUPPORTS_APLL int sdm0 = 0; int sdm1 = 0; int sdm2 = 0; int odir = 0; //If APLL is specified, try to calculate in APLL if (p_i2s[i2s_num]->use_apll && i2s_apll_calculate_fi2s(p_i2s[i2s_num]->fixed_mclk, channel_bit, &sdm0, &sdm1, &sdm2, &odir) == ESP_OK) { _sclk = p_i2s[i2s_num]->fixed_mclk; clk_src = I2S_CLK_APLL; ESP_LOGD(TAG, "sdm0=%d, sdm1=%d, sdm2=%d, odir=%d", sdm0, sdm1, sdm2, odir); rtc_clk_apll_enable(1, sdm0, sdm1, sdm2, odir); } #endif // SOC_I2S_SUPPORTS_APLL if ((_fbck * _bck_div) > _sclk) { ESP_LOGE(TAG, "sample rate is too large\r\n"); return ESP_ERR_INVALID_ARG; } i2s_hal_set_clock_src(&(p_i2s[i2s_num]->hal), clk_src); *sclk = _sclk; *fbck = _fbck; *bck_div = _bck_div; return ESP_OK; } static uint32_t i2s_get_active_chan_num(i2s_hal_config_t *hal_cfg) { switch (hal_cfg->chan_fmt) { case I2S_CHANNEL_FMT_RIGHT_LEFT: //fall through case I2S_CHANNEL_FMT_ALL_RIGHT: //fall through case I2S_CHANNEL_FMT_ALL_LEFT: return 2; case I2S_CHANNEL_FMT_ONLY_RIGHT: //fall through case I2S_CHANNEL_FMT_ONLY_LEFT: return 1; #if SOC_I2S_SUPPORTS_TDM case I2S_CHANNEL_FMT_TDM: { uint32_t num = 0; uint32_t max_chan = 0; uint32_t chan_mask = hal_cfg->chan_mask; for (int i = 0; chan_mask && i < 16; i++, chan_mask >>= 1) { if ((chan_mask & 0x01) == 1) { num++; max_chan = i + 1; } } if (max_chan > hal_cfg->total_chan) { hal_cfg->total_chan = max_chan; } return num; } #endif default: return 0; } } esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, uint32_t bits_cfg, i2s_channel_t ch) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num] != NULL), ESP_ERR_INVALID_ARG, TAG, "Not initialized yet"); i2s_hal_config_t *cfg = &p_i2s[i2s_num]->hal_cfg; int data_bits = 0; int chan_bits = 0; int active_chan_num = 0; int chan_num = 0; cfg->ch = ch; cfg->sample_rate = rate; cfg->bits_cfg.val = bits_cfg; cfg->bits_cfg.chan_bits = cfg->bits_cfg.chan_bits < cfg->bits_cfg.sample_bits ? cfg->bits_cfg.sample_bits : cfg->bits_cfg.chan_bits; chan_bits = cfg->bits_cfg.chan_bits; data_bits = cfg->bits_cfg.sample_bits; #if SOC_I2S_SUPPORTS_TDM cfg->chan_mask = ch & 0xFFFF; active_chan_num = i2s_get_active_chan_num(cfg); chan_num = cfg->total_chan; #else active_chan_num = i2s_get_active_chan_num(cfg); chan_num = ch == I2S_CHANNEL_MONO ? 2 : active_chan_num; #endif ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); if ((data_bits % 8 != 0) || (data_bits > I2S_BITS_PER_SAMPLE_32BIT)) { ESP_LOGE(TAG, "Invalid bits per sample"); return ESP_ERR_INVALID_ARG; } //Stop I2S i2s_stop(i2s_num); // wait all on-going writing finish if ((p_i2s[i2s_num]->mode & I2S_MODE_TX) && p_i2s[i2s_num]->tx) { xSemaphoreTake(p_i2s[i2s_num]->tx->mux, (portTickType)portMAX_DELAY); } if ((p_i2s[i2s_num]->mode & I2S_MODE_RX) && p_i2s[i2s_num]->rx) { xSemaphoreTake(p_i2s[i2s_num]->rx->mux, (portTickType)portMAX_DELAY); } //malloc DMA buffer if (i2s_alloc_dma_buffer(i2s_num, data_bits, active_chan_num) != ESP_OK ) { return ESP_ERR_NO_MEM; } uint32_t i2s_clk = 0; // I2S source clock uint32_t i2s_bck = 0; // I2S back clock uint32_t bck_div = 0; // I2S bck div //calculate bck_div, f_bck and select source clock if (i2s_fbclk_cal(i2s_num, rate, chan_num, chan_bits, &i2s_clk, &i2s_bck, &bck_div) != ESP_OK) { return ESP_FAIL; } //configure i2s clock if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { i2s_hal_tx_clock_config(&(p_i2s[i2s_num]->hal), i2s_clk, i2s_bck, bck_div); i2s_hal_set_tx_sample_bit(&(p_i2s[i2s_num]->hal), chan_bits, data_bits); // wait all writing on-going finish if (p_i2s[i2s_num]->tx) { xSemaphoreGive(p_i2s[i2s_num]->tx->mux); } } if (p_i2s[i2s_num]->mode & I2S_MODE_RX) { i2s_hal_rx_clock_config(&(p_i2s[i2s_num]->hal), i2s_clk, i2s_bck, bck_div); i2s_hal_set_rx_sample_bit(&(p_i2s[i2s_num]->hal), chan_bits, data_bits); // wait all writing on-going finish if (p_i2s[i2s_num]->rx) { xSemaphoreGive(p_i2s[i2s_num]->rx->mux); } } i2s_hal_samples_config(&(p_i2s[i2s_num]->hal), &(p_i2s[i2s_num]->hal_cfg)); // Reset message queue to avoid receiving unavailable values because the old dma queque has been destroyed if (p_i2s[i2s_num]->tx) { xQueueReset(p_i2s[i2s_num]->tx->queue); } if (p_i2s[i2s_num]->rx) { xQueueReset(p_i2s[i2s_num]->rx->queue); } //I2S start i2s_start(i2s_num); p_i2s[i2s_num]->sample_rate = rate; return ESP_OK; } #if SOC_GDMA_SUPPORTED static bool IRAM_ATTR i2s_dma_rx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { i2s_obj_t *p_i2s = (i2s_obj_t *) user_data; portBASE_TYPE high_priority_task_awoken = 0; BaseType_t ret = 0; int dummy; i2s_event_t i2s_event; uint32_t finish_desc; if (p_i2s->rx) { finish_desc = event_data->rx_eof_desc_addr; if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) { xQueueReceiveFromISR(p_i2s->rx->queue, &dummy, &high_priority_task_awoken); } ret = xQueueSendFromISR(p_i2s->rx->queue, &(((lldesc_t *)finish_desc)->buf), &high_priority_task_awoken); if (p_i2s->i2s_queue) { i2s_event.type = (ret == pdPASS) ? I2S_EVENT_RX_DONE : I2S_EVENT_RX_Q_OVF; if (p_i2s->i2s_queue && xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } return high_priority_task_awoken; } static bool IRAM_ATTR i2s_dma_tx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { i2s_obj_t *p_i2s = (i2s_obj_t *) user_data; portBASE_TYPE high_priority_task_awoken = 0; BaseType_t ret; int dummy; i2s_event_t i2s_event; uint32_t finish_desc; if (p_i2s->tx) { finish_desc = event_data->tx_eof_desc_addr; if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) { xQueueReceiveFromISR(p_i2s->tx->queue, &dummy, &high_priority_task_awoken); if (p_i2s->tx_desc_auto_clear) { memset((void *) dummy, 0, p_i2s->tx->buf_size); } } ret = xQueueSendFromISR(p_i2s->tx->queue, &(((lldesc_t *)finish_desc)->buf), &high_priority_task_awoken); if (p_i2s->i2s_queue) { i2s_event.type = (ret == pdPASS) ? I2S_EVENT_TX_DONE : I2S_EVENT_TX_Q_OVF; if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } return high_priority_task_awoken; } #else static void IRAM_ATTR i2s_intr_handler_default(void *arg) { i2s_obj_t *p_i2s = (i2s_obj_t *) arg; uint32_t status; i2s_hal_get_intr_status(&(p_i2s->hal), &status); if (status == 0) { //Avoid spurious interrupt return; } i2s_event_t i2s_event; int dummy; portBASE_TYPE high_priority_task_awoken = 0; uint32_t finish_desc = 0; if ((status & I2S_INTR_OUT_DSCR_ERR) || (status & I2S_INTR_IN_DSCR_ERR)) { ESP_EARLY_LOGE(TAG, "dma error, interrupt status: 0x%08x", status); if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_DMA_ERROR; if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } if ((status & I2S_INTR_OUT_EOF) && p_i2s->tx) { i2s_hal_get_out_eof_des_addr(&(p_i2s->hal), &finish_desc); // All buffers are empty. This means we have an underflow on our hands. if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) { xQueueReceiveFromISR(p_i2s->tx->queue, &dummy, &high_priority_task_awoken); // See if tx descriptor needs to be auto cleared: // This will avoid any kind of noise that may get introduced due to transmission // of previous data from tx descriptor on I2S line. if (p_i2s->tx_desc_auto_clear == true) { memset((void *) dummy, 0, p_i2s->tx->buf_size); } } xQueueSendFromISR(p_i2s->tx->queue, &(((lldesc_t *)finish_desc)->buf), &high_priority_task_awoken); if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_TX_DONE; if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } if ((status & I2S_INTR_IN_SUC_EOF) && p_i2s->rx) { // All buffers are full. This means we have an overflow. i2s_hal_get_in_eof_des_addr(&(p_i2s->hal), &finish_desc); if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) { xQueueReceiveFromISR(p_i2s->rx->queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->rx->queue, &(((lldesc_t *)finish_desc)->buf), &high_priority_task_awoken); if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_RX_DONE; if (p_i2s->i2s_queue && xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } i2s_hal_clear_intr_status(&(p_i2s->hal), status); if (high_priority_task_awoken == pdTRUE) { portYIELD_FROM_ISR(); } } #endif static esp_err_t i2s_destroy_dma_queue(i2s_port_t i2s_num, i2s_dma_t *dma) { int bux_idx; if (p_i2s[i2s_num] == NULL) { ESP_LOGE(TAG, "Not initialized yet"); return ESP_ERR_INVALID_ARG; } if (dma == NULL) { ESP_LOGE(TAG, "dma is NULL"); return ESP_ERR_INVALID_ARG; } for (bux_idx = 0; bux_idx < p_i2s[i2s_num]->dma_buf_count; bux_idx++) { if (dma->desc && dma->desc[bux_idx]) { free(dma->desc[bux_idx]); } if (dma->buf && dma->buf[bux_idx]) { free(dma->buf[bux_idx]); } } if (dma->buf) { free(dma->buf); } if (dma->desc) { free(dma->desc); } ESP_LOGI(TAG, "DMA queue destroyed"); vQueueDelete(dma->queue); vSemaphoreDelete(dma->mux); free(dma); return ESP_OK; } static i2s_dma_t *i2s_create_dma_queue(i2s_port_t i2s_num, int dma_buf_count, int dma_buf_len) { int bux_idx; int sample_size = p_i2s[i2s_num]->bytes_per_sample * p_i2s[i2s_num]->channel_num; i2s_dma_t *dma = (i2s_dma_t *) malloc(sizeof(i2s_dma_t)); if (dma == NULL) { ESP_LOGE(TAG, "Error malloc i2s_dma_t"); return NULL; } memset(dma, 0, sizeof(i2s_dma_t)); dma->buf = (char **)malloc(sizeof(char *) * dma_buf_count); if (dma->buf == NULL) { ESP_LOGE(TAG, "Error malloc dma buffer pointer"); free(dma); return NULL; } memset(dma->buf, 0, sizeof(char *) * dma_buf_count); for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) { dma->buf[bux_idx] = (char *) heap_caps_calloc(1, dma_buf_len * sample_size, MALLOC_CAP_DMA); if (dma->buf[bux_idx] == NULL) { ESP_LOGE(TAG, "Error malloc dma buffer"); i2s_destroy_dma_queue(i2s_num, dma); return NULL; } ESP_LOGD(TAG, "Addr[%d] = %d", bux_idx, (int)dma->buf[bux_idx]); } dma->desc = (lldesc_t **) malloc(sizeof(lldesc_t *) * dma_buf_count); if (dma->desc == NULL) { ESP_LOGE(TAG, "Error malloc dma description"); i2s_destroy_dma_queue(i2s_num, dma); return NULL; } for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) { dma->desc[bux_idx] = (lldesc_t *) heap_caps_malloc(sizeof(lldesc_t), MALLOC_CAP_DMA); if (dma->desc[bux_idx] == NULL) { ESP_LOGE(TAG, "Error malloc dma description entry"); i2s_destroy_dma_queue(i2s_num, dma); return NULL; } } for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) { dma->desc[bux_idx]->owner = 1; dma->desc[bux_idx]->eof = 1; dma->desc[bux_idx]->sosf = 0; dma->desc[bux_idx]->length = dma_buf_len * sample_size; dma->desc[bux_idx]->size = dma_buf_len * sample_size; dma->desc[bux_idx]->buf = (uint8_t *) dma->buf[bux_idx]; dma->desc[bux_idx]->offset = 0; dma->desc[bux_idx]->empty = (uint32_t)((bux_idx < (dma_buf_count - 1)) ? (dma->desc[bux_idx + 1]) : dma->desc[0]); } dma->queue = xQueueCreate(dma_buf_count - 1, sizeof(char *)); dma->mux = xSemaphoreCreateMutex(); dma->buf_size = dma_buf_len * sample_size; ESP_LOGI(TAG, "DMA Malloc info, datalen=blocksize=%d, dma_buf_count=%d", dma_buf_len * sample_size, dma_buf_count); return dma; } esp_err_t i2s_start(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); //start DMA link I2S_ENTER_CRITICAL(); #if !SOC_GDMA_SUPPORTED esp_intr_disable(p_i2s[i2s_num]->i2s_isr_handle); i2s_hal_clear_intr_status(&(p_i2s[i2s_num]->hal), I2S_INTR_MAX); #endif if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { i2s_tx_reset(i2s_num); i2s_tx_start(i2s_num); } if (p_i2s[i2s_num]->mode & I2S_MODE_RX) { i2s_rx_reset(i2s_num); i2s_rx_start(i2s_num); } #if !SOC_GDMA_SUPPORTED esp_intr_enable(p_i2s[i2s_num]->i2s_isr_handle); #endif I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_stop(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); I2S_ENTER_CRITICAL(); #if !SOC_GDMA_SUPPORTED esp_intr_disable(p_i2s[i2s_num]->i2s_isr_handle); #endif if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { i2s_tx_stop(i2s_num); } if (p_i2s[i2s_num]->mode & I2S_MODE_RX) { i2s_rx_stop(i2s_num); } #if !SOC_GDMA_SUPPORTED i2s_hal_clear_intr_status(&(p_i2s[i2s_num]->hal), I2S_INTR_MAX); #endif I2S_EXIT_CRITICAL(); return ESP_OK; } #if SOC_I2S_SUPPORTS_ADC_DAC esp_err_t i2s_set_dac_mode(i2s_dac_mode_t dac_mode) { ESP_RETURN_ON_FALSE((dac_mode < I2S_DAC_CHANNEL_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s dac mode error"); if (dac_mode == I2S_DAC_CHANNEL_DISABLE) { dac_output_disable(DAC_CHANNEL_1); dac_output_disable(DAC_CHANNEL_2); dac_i2s_disable(); } else { dac_i2s_enable(); } if (dac_mode & I2S_DAC_CHANNEL_RIGHT_EN) { //DAC1, right channel dac_output_enable(DAC_CHANNEL_1); } if (dac_mode & I2S_DAC_CHANNEL_LEFT_EN) { //DAC2, left channel dac_output_enable(DAC_CHANNEL_2); } return ESP_OK; } static esp_err_t _i2s_adc_mode_recover(void) { ESP_RETURN_ON_FALSE(((_i2s_adc_unit != -1) && (_i2s_adc_channel != -1)), ESP_ERR_INVALID_ARG, TAG, "i2s ADC recover error, not initialized..."); return adc_i2s_mode_init(_i2s_adc_unit, _i2s_adc_channel); } esp_err_t i2s_set_adc_mode(adc_unit_t adc_unit, adc1_channel_t adc_channel) { ESP_RETURN_ON_FALSE((adc_unit < ADC_UNIT_2), ESP_ERR_INVALID_ARG, TAG, "i2s ADC unit error, only support ADC1 for now"); // For now, we only support SAR ADC1. _i2s_adc_unit = adc_unit; _i2s_adc_channel = adc_channel; return adc_i2s_mode_init(adc_unit, adc_channel); } esp_err_t i2s_adc_enable(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num] != NULL), ESP_ERR_INVALID_STATE, TAG, "Not initialized yet"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->mode & I2S_MODE_ADC_BUILT_IN), ESP_ERR_INVALID_STATE, TAG, "i2s built-in adc not enabled"); adc1_dma_mode_acquire(); _i2s_adc_mode_recover(); i2s_rx_reset(i2s_num); return i2s_set_clk(i2s_num, p_i2s[i2s_num]->sample_rate, p_i2s[i2s_num]->bits_per_sample, p_i2s[i2s_num]->channel_num); } esp_err_t i2s_adc_disable(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num] != NULL), ESP_ERR_INVALID_STATE, TAG, "Not initialized yet"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->mode & I2S_MODE_ADC_BUILT_IN), ESP_ERR_INVALID_STATE, TAG, "i2s built-in adc not enabled"); i2s_hal_stop_rx(&(p_i2s[i2s_num]->hal)); adc1_lock_release(); return ESP_OK; } #endif esp_err_t i2s_set_pin(i2s_port_t i2s_num, const i2s_pin_config_t *pin) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); if (pin == NULL) { #if SOC_I2S_SUPPORTS_ADC_DAC return i2s_set_dac_mode(I2S_DAC_CHANNEL_BOTH_EN); #else return ESP_ERR_INVALID_ARG; #endif } if (pin->bck_io_num != -1 && !GPIO_IS_VALID_GPIO(pin->bck_io_num)) { ESP_LOGE(TAG, "bck_io_num error"); return ESP_FAIL; } if (pin->ws_io_num != -1 && !GPIO_IS_VALID_GPIO(pin->ws_io_num)) { ESP_LOGE(TAG, "ws_io_num error"); return ESP_FAIL; } if (pin->data_out_num != -1 && !GPIO_IS_VALID_OUTPUT_GPIO(pin->data_out_num)) { ESP_LOGE(TAG, "data_out_num error"); return ESP_FAIL; } if (pin->data_in_num != -1 && !GPIO_IS_VALID_GPIO(pin->data_in_num)) { ESP_LOGE(TAG, "data_in_num error"); return ESP_FAIL; } if (p_i2s[i2s_num]->mode & I2S_MODE_SLAVE) { if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { gpio_matrix_in_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].tx_ws_sig, 0); gpio_matrix_in_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].tx_bck_sig, 0); } else { gpio_matrix_in_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].rx_ws_sig, 0); gpio_matrix_in_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].rx_bck_sig, 0); } } else { if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { gpio_matrix_out_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].tx_ws_sig, 0, 0); gpio_matrix_out_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].tx_bck_sig, 0, 0); } else { gpio_matrix_out_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].rx_ws_sig, 0, 0); gpio_matrix_out_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].rx_bck_sig, 0, 0); } } gpio_matrix_out_check_and_set(pin->data_out_num, i2s_periph_signal[i2s_num].data_out_sig, 0, 0); gpio_matrix_in_check_and_set(pin->data_in_num, i2s_periph_signal[i2s_num].data_in_sig, 0); return ESP_OK; } esp_err_t i2s_set_sample_rates(i2s_port_t i2s_num, uint32_t rate) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->bytes_per_sample > 0), ESP_ERR_INVALID_ARG, TAG, "bits_per_sample not set"); return i2s_set_clk(i2s_num, rate, p_i2s[i2s_num]->bits_per_sample, p_i2s[i2s_num]->channel_num); } #if SOC_I2S_SUPPORTS_PDM_RX esp_err_t i2s_set_pdm_rx_down_sample(i2s_port_t i2s_num, i2s_pdm_dsr_t dsr) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); i2s_hal_set_rx_pdm_dsr(&(p_i2s[i2s_num]->hal), dsr); return i2s_set_clk(i2s_num, p_i2s[i2s_num]->sample_rate, p_i2s[i2s_num]->bits_per_sample, p_i2s[i2s_num]->channel_num); } #endif #if SOC_I2S_SUPPORTS_PDM_TX esp_err_t i2s_set_pdm_tx_up_sample(i2s_port_t i2s_num, int sample_rate, int fp, int fs) { I2S_ENTER_CRITICAL(); i2s_hal_set_tx_pdm_fpfs(&(p_i2s[i2s_num]->hal), fp, fs); I2S_EXIT_CRITICAL(); return i2s_set_clk(i2s_num, sample_rate, p_i2s[i2s_num]->bits_per_sample, p_i2s[i2s_num]->channel_num); } #endif static esp_err_t i2s_check_cfg_static(i2s_port_t i2s_num) { i2s_hal_config_t *cfg = &p_i2s[i2s_num]->hal_cfg; #if SOC_I2S_SUPPORTS_ADC_DAC //We only check if the I2S number is invalid when set to build in ADC and DAC mode. ESP_RETURN_ON_FALSE(!((cfg->mode & I2S_MODE_ADC_BUILT_IN) && (i2s_num != I2S_NUM_0)), ESP_ERR_INVALID_ARG, TAG, "I2S ADC built-in only support on I2S0"); ESP_RETURN_ON_FALSE(!((cfg->mode & I2S_MODE_DAC_BUILT_IN) && (i2s_num != I2S_NUM_0)), ESP_ERR_INVALID_ARG, TAG, "I2S DAC built-in only support on I2S0"); return ESP_OK; #endif //We only check if the I2S number is invalid when set to PDM mode. ESP_RETURN_ON_FALSE(!((cfg->mode & I2S_MODE_PDM) && (i2s_num != I2S_NUM_0)), ESP_ERR_INVALID_ARG, TAG, "I2S DAC PDM only support on I2S0"); return ESP_OK; ESP_RETURN_ON_FALSE(cfg->comm_fmt && (cfg->comm_fmt < I2S_COMM_FORMAT_STAND_MAX), ESP_ERR_INVALID_ARG, TAG, "invalid communication formats"); ESP_RETURN_ON_FALSE(!((cfg->comm_fmt & I2S_COMM_FORMAT_STAND_MSB) && (cfg->comm_fmt & I2S_COMM_FORMAT_STAND_PCM_LONG)), ESP_ERR_INVALID_ARG, TAG, "multiple communication formats specified"); return ESP_OK; } static esp_err_t i2s_param_config(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((i2s_check_cfg_static(i2s_num) == ESP_OK), ESP_ERR_INVALID_ARG, TAG, "param check error"); i2s_hal_config_t *cfg = &p_i2s[i2s_num]->hal_cfg; #if SOC_I2S_SUPPORTS_ADC_DAC if (cfg->mode & I2S_MODE_ADC_BUILT_IN) { //in ADC built-in mode, we need to call i2s_set_adc_mode to //initialize the specific ADC channel. //in the current stage, we only support ADC1 and single channel mode. //In default data mode, the ADC data is in 12-bit resolution mode. adc_power_acquire(); } #endif p_i2s[i2s_num]->communication_format = cfg->comm_fmt; // configure I2S data port interface. i2s_hal_config_param(&(p_i2s[i2s_num]->hal), cfg); if ((p_i2s[i2s_num]->mode & I2S_MODE_RX) && (p_i2s[i2s_num]->mode & I2S_MODE_TX)) { i2s_hal_enable_sig_loopback(&(p_i2s[i2s_num]->hal)); if (p_i2s[i2s_num]->mode & I2S_MODE_MASTER) { i2s_hal_enable_master_fd_mode(&(p_i2s[i2s_num]->hal)); } else { i2s_hal_enable_slave_fd_mode(&(p_i2s[i2s_num]->hal)); } } return ESP_OK; } esp_err_t i2s_zero_dma_buffer(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); if (p_i2s[i2s_num]->rx && p_i2s[i2s_num]->rx->buf != NULL && p_i2s[i2s_num]->rx->buf_size != 0) { for (int i = 0; i < p_i2s[i2s_num]->dma_buf_count; i++) { memset(p_i2s[i2s_num]->rx->buf[i], 0, p_i2s[i2s_num]->rx->buf_size); } } if (p_i2s[i2s_num]->tx && p_i2s[i2s_num]->tx->buf != NULL && p_i2s[i2s_num]->tx->buf_size != 0) { int bytes_left = 0; bytes_left = (p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos) % 4; if (bytes_left) { size_t zero_bytes = 0, bytes_written; i2s_write(i2s_num, (void *)&zero_bytes, bytes_left, &bytes_written, portMAX_DELAY); } for (int i = 0; i < p_i2s[i2s_num]->dma_buf_count; i++) { memset(p_i2s[i2s_num]->tx->buf[i], 0, p_i2s[i2s_num]->tx->buf_size); } } return ESP_OK; } esp_err_t i2s_driver_install(i2s_port_t i2s_num, const i2s_config_t *i2s_config, int queue_size, void *i2s_queue) { esp_err_t ret = ESP_FAIL; ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((i2s_config != NULL), ESP_ERR_INVALID_ARG, TAG, "I2S configuration must not NULL"); ESP_RETURN_ON_FALSE((i2s_config->dma_buf_count >= 2 && i2s_config->dma_buf_count <= 128), ESP_ERR_INVALID_ARG, TAG, "I2S buffer count less than 128 and more than 2"); ESP_RETURN_ON_FALSE((i2s_config->dma_buf_len >= 8 && i2s_config->dma_buf_len <= 1024), ESP_ERR_INVALID_ARG, TAG, "I2S buffer length at most 1024 and more than 8"); if (p_i2s[i2s_num] != NULL) { ESP_LOGW(TAG, "I2S driver already installed"); return ESP_OK; } p_i2s[i2s_num] = (i2s_obj_t *) calloc(1, sizeof(i2s_obj_t)); if (p_i2s[i2s_num] == NULL) { ESP_LOGE(TAG, "Malloc I2S driver error"); return ESP_ERR_NO_MEM; } portMUX_TYPE i2s_spinlock_unlocked[1] = {portMUX_INITIALIZER_UNLOCKED}; for (int x = 0; x < I2S_NUM_MAX; x++) { i2s_spinlock[x] = i2s_spinlock_unlocked[0]; } //To make sure hardware is enabled before any hardware register operations. periph_module_enable(i2s_periph_signal[i2s_num].module); i2s_hal_init(&(p_i2s[i2s_num]->hal), i2s_num); // Set I2S HAL configurations p_i2s[i2s_num]->hal_cfg.mode = i2s_config->mode; p_i2s[i2s_num]->hal_cfg.sample_rate = i2s_config->sample_rate; p_i2s[i2s_num]->hal_cfg.comm_fmt = i2s_config->communication_format; p_i2s[i2s_num]->hal_cfg.chan_fmt = i2s_config->channel_format; p_i2s[i2s_num]->hal_cfg.bits_cfg.sample_bits = i2s_config->bits_per_sample; p_i2s[i2s_num]->hal_cfg.bits_cfg.chan_bits = i2s_config->bits_per_chan; #if SOC_I2S_SUPPORTS_TDM int active_chan = 0; switch (i2s_config->channel_format) { case I2S_CHANNEL_FMT_RIGHT_LEFT: case I2S_CHANNEL_FMT_ALL_RIGHT: case I2S_CHANNEL_FMT_ALL_LEFT: p_i2s[i2s_num]->hal_cfg.chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1; p_i2s[i2s_num]->hal_cfg.total_chan = 2; active_chan = 2; break; case I2S_CHANNEL_FMT_ONLY_RIGHT: p_i2s[i2s_num]->hal_cfg.chan_mask = i2s_config->tdm_flags.left_align_en ? I2S_TDM_ACTIVE_CH1 : I2S_TDM_ACTIVE_CH0; p_i2s[i2s_num]->hal_cfg.total_chan = 1; active_chan = 1; break; case I2S_CHANNEL_FMT_ONLY_LEFT: p_i2s[i2s_num]->hal_cfg.chan_mask = i2s_config->tdm_flags.left_align_en ? I2S_TDM_ACTIVE_CH0 : I2S_TDM_ACTIVE_CH1; p_i2s[i2s_num]->hal_cfg.total_chan = 1; active_chan = 1; break; case I2S_CHANNEL_FMT_TDM: ESP_RETURN_ON_FALSE((i2s_config->chan_mask != 0), ESP_ERR_INVALID_ARG, TAG, "i2s all channel are disabled"); p_i2s[i2s_num]->hal_cfg.chan_mask = i2s_config->chan_mask; i2s_get_active_chan_num(&p_i2s[i2s_num]->hal_cfg); break; default: ESP_LOGE(TAG, "wrong i2s channel format, uninstalled i2s."); goto err; } p_i2s[i2s_num]->hal_cfg.flags.val = i2s_config->tdm_flags.val; #endif // Set I2S driver configurations p_i2s[i2s_num]->i2s_num = i2s_num; p_i2s[i2s_num]->mode = i2s_config->mode; p_i2s[i2s_num]->channel_num = i2s_get_active_chan_num(&p_i2s[i2s_num]->hal_cfg); p_i2s[i2s_num]->i2s_queue = i2s_queue; p_i2s[i2s_num]->bits_per_sample = 0; p_i2s[i2s_num]->bytes_per_sample = 0; // Not initialized yet p_i2s[i2s_num]->dma_buf_count = i2s_config->dma_buf_count; p_i2s[i2s_num]->dma_buf_len = i2s_config->dma_buf_len; #if SOC_I2S_SUPPORTS_PCM // Set PCM compress type for PCM communication mode if (p_i2s[i2s_num]->communication_format & I2S_COMM_FORMAT_STAND_PCM_SHORT) { if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { i2s_hal_tx_pcm_cfg(&(p_i2s[i2s_num]->hal), i2s_config->pcm_compress_type); } if (p_i2s[i2s_num]->mode & I2S_MODE_RX) { i2s_hal_rx_pcm_cfg(&(p_i2s[i2s_num]->hal), i2s_config->pcm_compress_type); } } #endif // SOC_I2S_SUPPORTS_PCM #ifdef CONFIG_PM_ENABLE if (i2s_config->use_apll) { ret = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "i2s_driver", &p_i2s[i2s_num]->pm_lock); } else { ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "i2s_driver", &p_i2s[i2s_num]->pm_lock); } if (ret != ESP_OK) { free(p_i2s[i2s_num]); p_i2s[i2s_num] = NULL; ESP_LOGE(TAG, "I2S pm lock error"); return ret; } #endif //CONFIG_PM_ENABLE #if SOC_GDMA_SUPPORTED ret = ESP_OK; gdma_trigger_t trig = {.periph = GDMA_TRIG_PERIPH_I2S}; #if SOC_I2S_NUM > 1 trig.instance_id = (i2s_num == I2S_NUM_0) ? SOC_GDMA_TRIG_PERIPH_I2S0 : SOC_GDMA_TRIG_PERIPH_I2S1; #else trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S0; #endif gdma_channel_alloc_config_t dma_cfg = {.flags.reserve_sibling = 1}; if ( p_i2s[i2s_num]->mode & I2S_MODE_RX) { dma_cfg.direction = GDMA_CHANNEL_DIRECTION_RX; ESP_GOTO_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->rx_dma_chan), err, TAG, "Register rx dma channel error"); ESP_GOTO_ON_ERROR(gdma_connect(p_i2s[i2s_num]->rx_dma_chan, trig), err, TAG, "Connect rx dma channel error"); gdma_rx_event_callbacks_t cb = {.on_recv_eof = i2s_dma_rx_callback}; gdma_register_rx_event_callbacks(p_i2s[i2s_num]->rx_dma_chan, &cb, p_i2s[i2s_num]); } if ( p_i2s[i2s_num]->mode & I2S_MODE_TX) { dma_cfg.direction = GDMA_CHANNEL_DIRECTION_TX; ESP_GOTO_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->tx_dma_chan), err, TAG, "Register tx dma channel error"); ESP_GOTO_ON_ERROR(gdma_connect(p_i2s[i2s_num]->tx_dma_chan, trig), err, TAG, "Connect tx dma channel error"); gdma_tx_event_callbacks_t cb = {.on_trans_eof = i2s_dma_tx_callback}; gdma_register_tx_event_callbacks(p_i2s[i2s_num]->tx_dma_chan, &cb, p_i2s[i2s_num]); } #else //initial interrupt ret = esp_intr_alloc(i2s_periph_signal[i2s_num].irq, i2s_config->intr_alloc_flags, i2s_intr_handler_default, p_i2s[i2s_num], &p_i2s[i2s_num]->i2s_isr_handle); ESP_GOTO_ON_ERROR(ret, err, TAG, "Register I2S Interrupt error"); #endif // SOC_GDMA_SUPPORTED i2s_stop(i2s_num); p_i2s[i2s_num]->use_apll = i2s_config->use_apll; p_i2s[i2s_num]->fixed_mclk = i2s_config->fixed_mclk; p_i2s[i2s_num]->tx_desc_auto_clear = i2s_config->tx_desc_auto_clear; ret = i2s_param_config(i2s_num); ESP_GOTO_ON_ERROR(ret, err, TAG, "I2S param configure error"); if (i2s_queue) { p_i2s[i2s_num]->i2s_queue = xQueueCreate(queue_size, sizeof(i2s_event_t)); ESP_GOTO_ON_ERROR(ret, err, TAG, "I2S queue create failed"); *((QueueHandle_t *) i2s_queue) = p_i2s[i2s_num]->i2s_queue; ESP_LOGI(TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_i2s[i2s_num]->i2s_queue)); } else { p_i2s[i2s_num]->i2s_queue = NULL; } //set clock and start #if SOC_I2S_SUPPORTS_TDM ret = i2s_set_clk(i2s_num, i2s_config->sample_rate, p_i2s[i2s_num]->hal_cfg.bits_cfg.val, (i2s_channel_t)active_chan); #else ret = i2s_set_clk(i2s_num, i2s_config->sample_rate, p_i2s[i2s_num]->hal_cfg.bits_cfg.val, I2S_CHANNEL_STEREO); #endif ESP_GOTO_ON_ERROR(ret, err, TAG, "I2S set clock failed"); return ret; err: #ifdef CONFIG_PM_ENABLE if (p_i2s[i2s_num]->pm_lock) { esp_pm_lock_delete(p_i2s[i2s_num]->pm_lock); } #endif i2s_driver_uninstall(i2s_num); return ret; } esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num) { ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); if (p_i2s[i2s_num] == NULL) { ESP_LOGI(TAG, "already uninstalled"); return ESP_OK; } i2s_stop(i2s_num); #if SOC_I2S_SUPPORTS_ADC_DAC i2s_set_dac_mode(I2S_DAC_CHANNEL_DISABLE); #endif #if SOC_GDMA_SUPPORTED if (p_i2s[i2s_num]->mode & I2S_MODE_TX) { gdma_disconnect(p_i2s[i2s_num]->tx_dma_chan); gdma_del_channel(p_i2s[i2s_num]->tx_dma_chan); } if (p_i2s[i2s_num]->mode & I2S_MODE_RX) { gdma_disconnect(p_i2s[i2s_num]->rx_dma_chan); gdma_del_channel(p_i2s[i2s_num]->rx_dma_chan); } #else esp_intr_free(p_i2s[i2s_num]->i2s_isr_handle); #endif if (p_i2s[i2s_num]->tx != NULL && p_i2s[i2s_num]->mode & I2S_MODE_TX) { i2s_destroy_dma_queue(i2s_num, p_i2s[i2s_num]->tx); p_i2s[i2s_num]->tx = NULL; } if (p_i2s[i2s_num]->rx != NULL && p_i2s[i2s_num]->mode & I2S_MODE_RX) { i2s_destroy_dma_queue(i2s_num, p_i2s[i2s_num]->rx); p_i2s[i2s_num]->rx = NULL; } if (p_i2s[i2s_num]->i2s_queue) { vQueueDelete(p_i2s[i2s_num]->i2s_queue); p_i2s[i2s_num]->i2s_queue = NULL; } #if SOC_I2S_SUPPORTS_APLL if (p_i2s[i2s_num]->use_apll) { // switch back to PLL clock source i2s_hal_set_clock_src(&(p_i2s[i2s_num]->hal), I2S_CLK_D2CLK); rtc_clk_apll_enable(0, 0, 0, 0, 0); } #endif #ifdef CONFIG_PM_ENABLE if (p_i2s[i2s_num]->pm_lock) { esp_pm_lock_delete(p_i2s[i2s_num]->pm_lock); } #endif free(p_i2s[i2s_num]); p_i2s[i2s_num] = NULL; #if !SOC_GDMA_SUPPORTED periph_module_disable(i2s_periph_signal[i2s_num].module); #endif return ESP_OK; } esp_err_t i2s_write(i2s_port_t i2s_num, const void *src, size_t size, size_t *bytes_written, TickType_t ticks_to_wait) { char *data_ptr, *src_byte; size_t bytes_can_write; *bytes_written = 0; ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((size < I2S_MAX_BUFFER_SIZE), ESP_ERR_INVALID_ARG, TAG, "size is too large"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->tx), ESP_ERR_INVALID_ARG, TAG, "tx NULL"); xSemaphoreTake(p_i2s[i2s_num]->tx->mux, (portTickType)portMAX_DELAY); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(p_i2s[i2s_num]->pm_lock); #endif src_byte = (char *)src; while (size > 0) { if (p_i2s[i2s_num]->tx->rw_pos == p_i2s[i2s_num]->tx->buf_size || p_i2s[i2s_num]->tx->curr_ptr == NULL) { if (xQueueReceive(p_i2s[i2s_num]->tx->queue, &p_i2s[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s[i2s_num]->tx->rw_pos = 0; } ESP_LOGD(TAG, "size: %d, rw_pos: %d, buf_size: %d, curr_ptr: %d", size, p_i2s[i2s_num]->tx->rw_pos, p_i2s[i2s_num]->tx->buf_size, (int)p_i2s[i2s_num]->tx->curr_ptr); data_ptr = (char *)p_i2s[i2s_num]->tx->curr_ptr; data_ptr += p_i2s[i2s_num]->tx->rw_pos; bytes_can_write = p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos; if (bytes_can_write > size) { bytes_can_write = size; } memcpy(data_ptr, src_byte, bytes_can_write); size -= bytes_can_write; src_byte += bytes_can_write; p_i2s[i2s_num]->tx->rw_pos += bytes_can_write; (*bytes_written) += bytes_can_write; } #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(p_i2s[i2s_num]->pm_lock); #endif xSemaphoreGive(p_i2s[i2s_num]->tx->mux); return ESP_OK; } esp_err_t i2s_write_expand(i2s_port_t i2s_num, const void *src, size_t size, size_t src_bits, size_t aim_bits, size_t *bytes_written, TickType_t ticks_to_wait) { char *data_ptr; int bytes_can_write, tail; int src_bytes, aim_bytes, zero_bytes; *bytes_written = 0; ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((size > 0), ESP_ERR_INVALID_ARG, TAG, "size must greater than zero"); ESP_RETURN_ON_FALSE((aim_bits * size < I2S_MAX_BUFFER_SIZE), ESP_ERR_INVALID_ARG, TAG, "size is too large"); ESP_RETURN_ON_FALSE((aim_bits >= src_bits), ESP_ERR_INVALID_ARG, TAG, "aim_bits mustn't be less than src_bits"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->tx), ESP_ERR_INVALID_ARG, TAG, "tx NULL"); if (src_bits < I2S_BITS_PER_SAMPLE_8BIT || aim_bits < I2S_BITS_PER_SAMPLE_8BIT) { ESP_LOGE(TAG, "bits mustn't be less than 8, src_bits %d aim_bits %d", src_bits, aim_bits); return ESP_ERR_INVALID_ARG; } if (src_bits > I2S_BITS_PER_SAMPLE_32BIT || aim_bits > I2S_BITS_PER_SAMPLE_32BIT) { ESP_LOGE(TAG, "bits mustn't be greater than 32, src_bits %d aim_bits %d", src_bits, aim_bits); return ESP_ERR_INVALID_ARG; } if ((src_bits == I2S_BITS_PER_SAMPLE_16BIT || src_bits == I2S_BITS_PER_SAMPLE_32BIT) && (size % 2 != 0)) { ESP_LOGE(TAG, "size must be a even number while src_bits is even, src_bits %d size %d", src_bits, size); return ESP_ERR_INVALID_ARG; } if (src_bits == I2S_BITS_PER_SAMPLE_24BIT && (size % 3 != 0)) { ESP_LOGE(TAG, "size must be a multiple of 3 while src_bits is 24, size %d", size); return ESP_ERR_INVALID_ARG; } src_bytes = src_bits / 8; aim_bytes = aim_bits / 8; zero_bytes = aim_bytes - src_bytes; xSemaphoreTake(p_i2s[i2s_num]->tx->mux, (portTickType)portMAX_DELAY); size = size * aim_bytes / src_bytes; ESP_LOGD(TAG, "aim_bytes %d src_bytes %d size %d", aim_bytes, src_bytes, size); while (size > 0) { if (p_i2s[i2s_num]->tx->rw_pos == p_i2s[i2s_num]->tx->buf_size || p_i2s[i2s_num]->tx->curr_ptr == NULL) { if (xQueueReceive(p_i2s[i2s_num]->tx->queue, &p_i2s[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s[i2s_num]->tx->rw_pos = 0; } data_ptr = (char *)p_i2s[i2s_num]->tx->curr_ptr; data_ptr += p_i2s[i2s_num]->tx->rw_pos; bytes_can_write = p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos; if (bytes_can_write > (int)size) { bytes_can_write = size; } tail = bytes_can_write % aim_bytes; bytes_can_write = bytes_can_write - tail; memset(data_ptr, 0, bytes_can_write); for (int j = 0; j < bytes_can_write; j += (aim_bytes - zero_bytes)) { j += zero_bytes; memcpy(&data_ptr[j], (const char *)(src + *bytes_written), aim_bytes - zero_bytes); (*bytes_written) += (aim_bytes - zero_bytes); } size -= bytes_can_write; p_i2s[i2s_num]->tx->rw_pos += bytes_can_write; } xSemaphoreGive(p_i2s[i2s_num]->tx->mux); return ESP_OK; } esp_err_t i2s_read(i2s_port_t i2s_num, void *dest, size_t size, size_t *bytes_read, TickType_t ticks_to_wait) { char *data_ptr, *dest_byte; int bytes_can_read; *bytes_read = 0; dest_byte = (char *)dest; ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error"); ESP_RETURN_ON_FALSE((size < I2S_MAX_BUFFER_SIZE), ESP_ERR_INVALID_ARG, TAG, "size is too large"); ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->rx), ESP_ERR_INVALID_ARG, TAG, "rx NULL"); xSemaphoreTake(p_i2s[i2s_num]->rx->mux, (portTickType)portMAX_DELAY); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(p_i2s[i2s_num]->pm_lock); #endif while (size > 0) { if (p_i2s[i2s_num]->rx->rw_pos == p_i2s[i2s_num]->rx->buf_size || p_i2s[i2s_num]->rx->curr_ptr == NULL) { if (xQueueReceive(p_i2s[i2s_num]->rx->queue, &p_i2s[i2s_num]->rx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s[i2s_num]->rx->rw_pos = 0; } data_ptr = (char *)p_i2s[i2s_num]->rx->curr_ptr; data_ptr += p_i2s[i2s_num]->rx->rw_pos; bytes_can_read = p_i2s[i2s_num]->rx->buf_size - p_i2s[i2s_num]->rx->rw_pos; if (bytes_can_read > (int)size) { bytes_can_read = size; } memcpy(dest_byte, data_ptr, bytes_can_read); size -= bytes_can_read; dest_byte += bytes_can_read; p_i2s[i2s_num]->rx->rw_pos += bytes_can_read; (*bytes_read) += bytes_can_read; } #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(p_i2s[i2s_num]->pm_lock); #endif xSemaphoreGive(p_i2s[i2s_num]->rx->mux); return ESP_OK; }