/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include #include #include "FreeRTOS.h" #include "task.h" //For vApplicationStackOverflowHook #include "port_systick.h" #include "portmacro.h" #include "spinlock.h" #include "xt_instr_macros.h" #include "xtensa_context.h" #include "xtensa/corebits.h" #include "xtensa/config/core.h" #include "xtensa/config/core-isa.h" #include "xtensa/xtruntime.h" #include "esp_private/freertos_idf_additions_priv.h" #include "esp_private/esp_int_wdt.h" #include "esp_private/systimer.h" #include "esp_private/periph_ctrl.h" #include "esp_attr.h" #include "esp_heap_caps.h" #include "esp_system.h" #include "esp_task.h" #include "esp_log.h" #include "esp_cpu.h" #include "esp_rom_sys.h" #include "esp_task_wdt.h" #include "esp_heap_caps_init.h" #include "esp_freertos_hooks.h" #include "esp_intr_alloc.h" #include "esp_memory_utils.h" #ifdef CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER #include "soc/periph_defs.h" #include "soc/system_reg.h" #include "hal/systimer_hal.h" #include "hal/systimer_ll.h" #endif // CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER _Static_assert(portBYTE_ALIGNMENT == 16, "portBYTE_ALIGNMENT must be set to 16"); /** * @brief Align stack pointer in a downward growing stack * * This macro is used to round a stack pointer downwards to the nearest n-byte boundary, where n is a power of 2. * This macro is generally used when allocating aligned areas on a downward growing stack. */ #define STACKPTR_ALIGN_DOWN(n, ptr) ((ptr) & (~((n)-1))) /* ---------------------------------------------------- Variables ------------------------------------------------------ * - Various variables used to maintain the FreeRTOS port's state. Used from both port.c and various .S files * - Constant offsets are used by assembly to jump to particular TCB members or a stack area (such as the CPSA). We use * C constants instead of preprocessor macros due to assembly lacking "offsetof()". * ------------------------------------------------------------------------------------------------------------------ */ #if XCHAL_CP_NUM > 0 /* Offsets used to navigate to a task's CPSA on the stack */ const DRAM_ATTR uint32_t offset_pxEndOfStack = offsetof(StaticTask_t, pxDummy8); const DRAM_ATTR uint32_t offset_cpsa = XT_CP_SIZE; /* Offset to start of the CPSA area on the stack. See uxInitialiseStackCPSA(). */ #if configNUM_CORES > 1 /* Offset to TCB_t.uxCoreAffinityMask member. Used to pin unpinned tasks that use the FPU. */ const DRAM_ATTR uint32_t offset_uxCoreAffinityMask = offsetof(StaticTask_t, uxDummy25); #if configUSE_CORE_AFFINITY != 1 #error "configUSE_CORE_AFFINITY must be 1 on multicore targets with coprocessor support" #endif #endif /* configNUM_CORES > 1 */ #endif /* XCHAL_CP_NUM > 0 */ volatile unsigned port_xSchedulerRunning[portNUM_PROCESSORS] = {0}; // Indicates whether scheduler is running on a per-core basis unsigned int port_interruptNesting[portNUM_PROCESSORS] = {0}; // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit //FreeRTOS SMP Locks portMUX_TYPE port_xTaskLock = portMUX_INITIALIZER_UNLOCKED; portMUX_TYPE port_xISRLock = portMUX_INITIALIZER_UNLOCKED; /* ------------------------------------------------ IDF Compatibility -------------------------------------------------- * - These need to be defined for IDF to compile * ------------------------------------------------------------------------------------------------------------------ */ // --------------------- Interrupts ------------------------ BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void) { return (port_interruptNesting[xPortGetCoreID()] != 0); } // ------------------ Critical Sections -------------------- /* Variables used by IDF critical sections only (SMP tracks critical nesting inside TCB now) [refactor-todo] Figure out how IDF critical sections will be merged with SMP FreeRTOS critical sections */ BaseType_t port_uxCriticalNestingIDF[portNUM_PROCESSORS] = {0}; BaseType_t port_uxCriticalOldInterruptStateIDF[portNUM_PROCESSORS] = {0}; /* ******************************************************************************* * Interrupt stack. The size of the interrupt stack is determined by the config * parameter "configISR_STACK_SIZE" in FreeRTOSConfig.h ******************************************************************************* */ volatile StackType_t DRAM_ATTR __attribute__((aligned(16))) port_IntStack[portNUM_PROCESSORS][configISR_STACK_SIZE]; /* One flag for each individual CPU. */ volatile uint32_t port_switch_flag[portNUM_PROCESSORS]; BaseType_t xPortEnterCriticalTimeout(portMUX_TYPE *lock, BaseType_t timeout) { /* Interrupts may already be disabled (if this function is called in nested * manner). However, there's no atomic operation that will allow us to check, * thus we have to disable interrupts again anyways. * * However, if this is call is NOT nested (i.e., the first call to enter a * critical section), we will save the previous interrupt level so that the * saved level can be restored on the last call to exit the critical. */ BaseType_t xOldInterruptLevel = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL); if (!spinlock_acquire(lock, timeout)) { //Timed out attempting to get spinlock. Restore previous interrupt level and return XTOS_RESTORE_JUST_INTLEVEL((int) xOldInterruptLevel); return pdFAIL; } //Spinlock acquired. Increment the IDF critical nesting count. BaseType_t coreID = xPortGetCoreID(); BaseType_t newNesting = port_uxCriticalNestingIDF[coreID] + 1; port_uxCriticalNestingIDF[coreID] = newNesting; //If this is the first entry to a critical section. Save the old interrupt level. if ( newNesting == 1 ) { port_uxCriticalOldInterruptStateIDF[coreID] = xOldInterruptLevel; } return pdPASS; } void vPortExitCriticalIDF(portMUX_TYPE *lock) { /* This function may be called in a nested manner. Therefore, we only need * to re-enable interrupts if this is the last call to exit the critical. We * can use the nesting count to determine whether this is the last exit call. */ spinlock_release(lock); BaseType_t coreID = xPortGetCoreID(); BaseType_t nesting = port_uxCriticalNestingIDF[coreID]; /* Critical section nesting count must never be negative */ configASSERT( nesting > 0 ); if (nesting > 0) { nesting--; port_uxCriticalNestingIDF[coreID] = nesting; //This is the last exit call, restore the saved interrupt level if ( nesting == 0 ) { XTOS_RESTORE_JUST_INTLEVEL((int) port_uxCriticalOldInterruptStateIDF[coreID]); } } } /* In case any IDF libs called the port critical functions directly instead of through the macros. Just inline call the IDF versions */ void vPortEnterCritical(portMUX_TYPE *lock) { vPortEnterCriticalIDF(lock); } void vPortExitCritical(portMUX_TYPE *lock) { vPortExitCriticalIDF(lock); } // ----------------------- System -------------------------- #define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1) void vPortSetStackWatchpoint( void *pxStackStart ) { //Set watchpoint 1 to watch the last 32 bytes of the stack. //Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because //the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32 //bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most //28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes. //This way, we make sure we trigger before/when the stack canary is corrupted, not after. int addr = (int)pxStackStart; addr = (addr + 31) & (~31); esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE); } /* ---------------------------------------------- Port Implementations ------------------------------------------------- * Implementations of Porting Interface functions * ------------------------------------------------------------------------------------------------------------------ */ // --------------------- Interrupts ------------------------ BaseType_t xPortCheckIfInISR(void) { //Disable interrupts so that reading port_interruptNesting is atomic BaseType_t ret; unsigned int prev_int_level = portDISABLE_INTERRUPTS(); ret = (port_interruptNesting[xPortGetCoreID()] != 0) ? pdTRUE : pdFALSE; portRESTORE_INTERRUPTS(prev_int_level); return ret; } void vPortAssertIfInISR(void) { /* Assert if the interrupt nesting count is > 0 */ configASSERT(xPortCheckIfInISR() == 0); } // ------------------ Critical Sections -------------------- void vPortTakeLock( portMUX_TYPE *lock ) { spinlock_acquire( lock, portMUX_NO_TIMEOUT); } void vPortReleaseLock( portMUX_TYPE *lock ) { spinlock_release( lock ); } // ---------------------- Yielding ------------------------- // ----------------------- System -------------------------- // ------------------- Run Time Stats ---------------------- // --------------------- TCB Cleanup ----------------------- #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS ) static void vPortTLSPointersDelCb( void *pxTCB ) { /* Typecast pxTCB to StaticTask_t type to access TCB struct members. * pvDummy15 corresponds to pvThreadLocalStoragePointers member of the TCB. */ StaticTask_t *tcb = ( StaticTask_t * )pxTCB; /* The TLSP deletion callbacks are stored at an offset of (configNUM_THREAD_LOCAL_STORAGE_POINTERS/2) */ TlsDeleteCallbackFunction_t *pvThreadLocalStoragePointersDelCallback = ( TlsDeleteCallbackFunction_t * )( &( tcb->pvDummy15[ ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ] ) ); /* We need to iterate over half the depth of the pvThreadLocalStoragePointers area * to access all TLS pointers and their respective TLS deletion callbacks. */ for ( int x = 0; x < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ); x++ ) { if ( pvThreadLocalStoragePointersDelCallback[ x ] != NULL ) { //If del cb is set /* In case the TLSP deletion callback has been overwritten by a TLS pointer, gracefully abort. */ if ( !esp_ptr_executable( pvThreadLocalStoragePointersDelCallback[ x ] ) ) { // We call EARLY log here as currently portCLEAN_UP_TCB() is called in a critical section ESP_EARLY_LOGE("FreeRTOS", "Fatal error: TLSP deletion callback at index %d overwritten with non-excutable pointer %p", x, pvThreadLocalStoragePointersDelCallback[ x ]); abort(); } pvThreadLocalStoragePointersDelCallback[ x ]( x, tcb->pvDummy15[ x ] ); //Call del cb } } } #endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */ #if ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) static void vPortCleanUpCoprocArea( void *pxTCB ) { UBaseType_t uxCoprocArea; BaseType_t xTargetCoreID; /* Get pointer to the task's coprocessor save area from TCB->pxEndOfStack. See uxInitialiseStackCPSA() */ uxCoprocArea = ( UBaseType_t ) ( ( ( StaticTask_t * ) pxTCB )->pxDummy8 ); /* Get TCB_t.pxEndOfStack */ uxCoprocArea = STACKPTR_ALIGN_DOWN(16, uxCoprocArea - XT_CP_SIZE); /* Extract core ID from the affinity mask */ xTargetCoreID = ( ( StaticTask_t * ) pxTCB )->uxDummy25 ; xTargetCoreID = ( BaseType_t ) __builtin_ffs( ( int ) xTargetCoreID ); assert( xTargetCoreID >= 1 ); // __builtin_ffs always returns first set index + 1 xTargetCoreID -= 1; /* If task has live floating point registers somewhere, release them */ void _xt_coproc_release(volatile void *coproc_sa_base, BaseType_t xTargetCoreID); _xt_coproc_release( (void *)uxCoprocArea, xTargetCoreID ); } #endif /* ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) */ void vPortTCBPreDeleteHook( void *pxTCB ) { #if ( CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK ) /* Call the user defined task pre-deletion hook */ extern void vTaskPreDeletionHook( void * pxTCB ); vTaskPreDeletionHook( pxTCB ); #endif /* CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK */ #if ( CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP ) /* * If the user is using the legacy task pre-deletion hook, call it. * Todo: Will be removed in IDF-8097 */ #warning "CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP is deprecated. Use CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK instead." extern void vPortCleanUpTCB( void * pxTCB ); vPortCleanUpTCB( pxTCB ); #endif /* CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP */ #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS ) /* Call TLS pointers deletion callbacks */ vPortTLSPointersDelCb( pxTCB ); #endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */ #if ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) /* Cleanup coproc save area */ vPortCleanUpCoprocArea( pxTCB ); #endif /* ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) */ } /* ------------------------------------------------ FreeRTOS Portable -------------------------------------------------- * - Provides implementation for functions required by FreeRTOS * - Declared in portable.h * ------------------------------------------------------------------------------------------------------------------ */ // ----------------- Scheduler Start/End ------------------- extern void _xt_coproc_init(void); BaseType_t xPortStartScheduler( void ) { portDISABLE_INTERRUPTS(); // Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored #if XCHAL_CP_NUM > 0 /* Initialize co-processor management for tasks. Leave CPENABLE alone. */ _xt_coproc_init(); #endif /* Setup the hardware to generate the tick. */ vPortSetupTimer(); port_xSchedulerRunning[xPortGetCoreID()] = 1; #if configNUM_CORES > 1 // Workaround for non-thread safe multi-core OS startup (see IDF-4524) if (xPortGetCoreID() != 0) { prvStartSchedulerOtherCores(); } #endif // configNUM_CORES > 1 // Cannot be directly called from C; never returns __asm__ volatile ("call0 _frxt_dispatch\n"); /* Should not get here. */ return pdTRUE; } void vPortEndScheduler( void ) { ; } // ------------------------ Stack -------------------------- // User exception dispatcher when exiting void _xt_user_exit(void); #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER // Wrapper to allow task functions to return (increases stack overhead by 16 bytes) static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters) { pxCode(pvParameters); //FreeRTOS tasks should not return. Log the task name and abort. char *pcTaskName = pcTaskGetName(NULL); ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName); abort(); } #endif #if XCHAL_CP_NUM > 0 /** * @brief Allocate and initialize coprocessor save area on the stack * * This function allocates the coprocessor save area on the stack (sized XT_CP_SIZE) which includes... * - Individual save areas for each coprocessor (size XT_CPx_SA, inclusive of each area's alignment) * - Coprocessor context switching flags (e.g., XT_CPENABLE, XT_CPSTORED, XT_CP_CS_ST, XT_CP_ASA). * * The coprocessor save area is aligned to a 16-byte boundary. * The coprocessor context switching flags are then initialized * * @param[in] uxStackPointer Current stack pointer address * @return Stack pointer that points to allocated and initialized the coprocessor save area */ FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackCPSA(UBaseType_t uxStackPointer) { /* HIGH ADDRESS |-------------------| XT_CP_SIZE | CPn SA | ^ | ... | | | CP0 SA | | | ----------------- | | ---- XCHAL_TOTAL_SA_ALIGN aligned |-------------------| | 12 bytes | XT_CP_ASA | | ^ | XT_CP_CS_ST | | | | XT_CPSTORED | | | | XT_CPENABLE | | | |-------------------| ---------------------- 16 byte aligned LOW ADDRESS */ // Allocate overall coprocessor save area, aligned down to 16 byte boundary uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_CP_SIZE); // Initialize the coprocessor context switching flags. uint32_t *p = (uint32_t *)uxStackPointer; p[0] = 0; // Clear XT_CPENABLE and XT_CPSTORED p[1] = 0; // Clear XT_CP_CS_ST // XT_CP_ASA points to the aligned start of the individual CP save areas (i.e., start of CP0 SA) p[2] = (uint32_t)ALIGNUP(XCHAL_TOTAL_SA_ALIGN, (uint32_t)uxStackPointer + 12); return uxStackPointer; } #endif /* XCHAL_CP_NUM > 0 */ /** * @brief Allocate and initialize GCC TLS area * * This function allocates and initializes the area on the stack used to store GCC TLS (Thread Local Storage) variables. * - The area's size is derived from the TLS section's linker variables, and rounded up to a multiple of 16 bytes * - The allocated area is aligned to a 16-byte aligned address * - The TLS variables in the area are then initialized * * Each task access the TLS variables using the THREADPTR register plus an offset to obtain the address of the variable. * The value for the THREADPTR register is also calculated by this function, and that value should be use to initialize * the THREADPTR register. * * @param[in] uxStackPointer Current stack pointer address * @param[out] ret_threadptr_reg_init Calculated THREADPTR register initialization value * @return Stack pointer that points to the TLS area */ FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackTLS(UBaseType_t uxStackPointer, uint32_t *ret_threadptr_reg_init) { /* TLS layout at link-time, where 0xNNN is the offset that the linker calculates to a particular TLS variable. LOW ADDRESS |---------------------------| Linker Symbols | Section | -------------- | .flash.rodata | 0x0|---------------------------| <- _flash_rodata_start ^ | Other Data | | |---------------------------| <- _thread_local_start | | .tbss | ^ V | | | 0xNNN | int example; | | tls_area_size | | | | .tdata | V |---------------------------| <- _thread_local_end | Other data | | ... | |---------------------------| HIGH ADDRESS */ // Calculate the TLS area's size (rounded up to multiple of 16 bytes). extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align; const uint32_t tls_area_size = ALIGNUP(16, (uint32_t)&_thread_local_end - (uint32_t)&_thread_local_start); // TODO: check that TLS area fits the stack // Allocate space for the TLS area on the stack. The area must be allocated at a 16-byte aligned address uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - (UBaseType_t)tls_area_size); // Initialize the TLS area with the initialization values of each TLS variable memcpy((void *)uxStackPointer, &_thread_local_start, tls_area_size); /* Calculate the THREADPTR register's initialization value based on the link-time offset and the TLS area allocated on the stack. HIGH ADDRESS |---------------------------| | .tdata (*) | ^ | int example; | | | | | | .tbss (*) | | |---------------------------| <- uxStackPointer (start of TLS area) 0xNNN | | | ^ | | | | | ... | (_thread_local_start - _flash_rodata_start) + align_up(TCB_SIZE, tls_section_alignment) | | | | | | | V V | | <- threadptr register's value LOW ADDRESS Note: Xtensa is slightly different compared to the RISC-V port as there is an implicit aligned TCB_SIZE added to the offset. (search for 'tpoff' in elf32-xtensa.c in BFD): - "offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment)" - TCB_SIZE is hardcoded to 8 */ const uint32_t tls_section_align = (uint32_t)&_flash_rodata_align; // ALIGN value of .flash.rodata section #define TCB_SIZE 8 const uint32_t base = ALIGNUP(tls_section_align, TCB_SIZE); *ret_threadptr_reg_init = (uint32_t)uxStackPointer - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base; return uxStackPointer; } /** * @brief Initialize the task's starting interrupt stack frame * * This function initializes the task's starting interrupt stack frame. The dispatcher will use this stack frame in a * context restore routine. Therefore, the starting stack frame must be initialized as if the task was interrupted right * before its first instruction is called. * * - The stack frame is allocated to a 16-byte aligned address * - The THREADPTR register is saved in the extra storage area of the stack frame. This is also initialized * * @param[in] uxStackPointer Current stack pointer address * @param[in] pxCode Task function * @param[in] pvParameters Task function's parameter * @param[in] threadptr_reg_init THREADPTR register initialization value * @return Stack pointer that points to the stack frame */ FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackFrame(UBaseType_t uxStackPointer, TaskFunction_t pxCode, void *pvParameters, uint32_t threadptr_reg_init) { /* HIGH ADDRESS |---------------------------| ^ XT_STK_FRMSZ | | | | Stack Frame Extra Storage | | | | | | ------------------------- | | ^ XT_STK_EXTRA | | | | | Intr/Exc Stack Frame | | | | | V V | ------------------------- | ---------------------- 16 byte aligned LOW ADDRESS */ /* Allocate space for the task's starting interrupt stack frame. - The stack frame must be allocated to a 16-byte aligned address. - We use XT_STK_FRMSZ (instead of sizeof(XtExcFrame)) as it... - includes the size of the extra storage area - includes the size for a base save area before the stack frame - rounds up the total size to a multiple of 16 */ UBaseType_t uxStackPointerPrevious = uxStackPointer; uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_STK_FRMSZ); // Clear the entire interrupt stack frame memset((void *)uxStackPointer, 0, (size_t)(uxStackPointerPrevious - uxStackPointer)); XtExcFrame *frame = (XtExcFrame *)uxStackPointer; /* Initialize common registers */ frame->a0 = 0; // Set the return address to 0 terminate GDB backtrace frame->a1 = uxStackPointer + XT_STK_FRMSZ; // Saved stack pointer should point to physical top of stack frame frame->exit = (UBaseType_t) _xt_user_exit; // User exception exit dispatcher /* Initialize the task's entry point. This will differ depending on - Whether the task's entry point is the wrapper function or pxCode - Whether Windowed ABI is used (for windowed, we mimic the task entry point being call4'd ) */ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->pc = (UBaseType_t) vPortTaskWrapper; // Task entry point is the wrapper function #ifdef __XTENSA_CALL0_ABI__ frame->a2 = (UBaseType_t) pxCode; // Wrapper function's argument 0 (which is the task function) frame->a3 = (UBaseType_t) pvParameters; // Wrapper function's argument 1 (which is the task function's argument) #else // __XTENSA_CALL0_ABI__ frame->a6 = (UBaseType_t) pxCode; // Wrapper function's argument 0 (which is the task function), passed as if we call4'd frame->a7 = (UBaseType_t) pvParameters; // Wrapper function's argument 1 (which is the task function's argument), passed as if we call4'd #endif // __XTENSA_CALL0_ABI__ #else frame->pc = (UBaseType_t) pxCode; // Task entry point is the provided task function #ifdef __XTENSA_CALL0_ABI__ frame->a2 = (UBaseType_t) pvParameters; // Task function's argument #else // __XTENSA_CALL0_ABI__ frame->a6 = (UBaseType_t) pvParameters; // Task function's argument, passed as if we call4'd #endif // __XTENSA_CALL0_ABI__ #endif /* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. For windowed ABI also set WOE and CALLINC (pretend task was 'call4'd) */ #ifdef __XTENSA_CALL0_ABI__ frame->ps = PS_UM | PS_EXCM; #else // __XTENSA_CALL0_ABI__ frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1); #endif // __XTENSA_CALL0_ABI__ #ifdef XT_USE_SWPRI // Set the initial virtual priority mask value to all 1's. frame->vpri = 0xFFFFFFFF; #endif // Initialize the threadptr register in the extra save area of the stack frame uint32_t *threadptr_reg = (uint32_t *)(uxStackPointer + XT_STK_EXTRA); *threadptr_reg = threadptr_reg_init; return uxStackPointer; } #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, StackType_t * pxEndOfStack, TaskFunction_t pxCode, void * pvParameters ) #else StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters ) #endif { #ifdef __clang_analyzer__ // Teach clang-tidy that pxTopOfStack cannot be a pointer to const volatile StackType_t * pxTemp = pxTopOfStack; pxTopOfStack = pxTemp; #endif /*__clang_analyzer__ */ /* HIGH ADDRESS |---------------------------| <- pxTopOfStack on entry | Coproc Save Area | (CPSA MUST BE FIRST) | ------------------------- | | TLS Variables | | ------------------------- | <- Start of usable stack | Starting stack frame | | ------------------------- | <- pxTopOfStack on return (which is the tasks current SP) | | | | | | | V | ----------------------------- <- Bottom of stack LOW ADDRESS - All stack areas are aligned to 16 byte boundary - We use UBaseType_t for all of stack area initialization functions for more convenient pointer arithmetic */ UBaseType_t uxStackPointer = (UBaseType_t)pxTopOfStack; configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); #if XCHAL_CP_NUM > 0 // Initialize the coprocessor save area. THIS MUST BE THE FIRST AREA due to access from _frxt_task_coproc_state() uxStackPointer = uxInitialiseStackCPSA(uxStackPointer); configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); #endif /* XCHAL_CP_NUM > 0 */ // Initialize the GCC TLS area uint32_t threadptr_reg_init; uxStackPointer = uxInitialiseStackTLS(uxStackPointer, &threadptr_reg_init); configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); // Initialize the starting interrupt stack frame uxStackPointer = uxInitialiseStackFrame(uxStackPointer, pxCode, pvParameters, threadptr_reg_init); configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); // Return the task's current stack pointer address which should point to the starting interrupt stack frame return (StackType_t *)uxStackPointer; } // ------------------- Hook Functions ---------------------- #include #if ( configCHECK_FOR_STACK_OVERFLOW > 0 ) void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ) { #define ERR_STR1 "***ERROR*** A stack overflow in task " #define ERR_STR2 " has been detected." const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2}; char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 }; char *dest = buf; for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) { dest = strcat(dest, str[i]); } esp_system_abort(buf); } #endif extern void esp_vApplicationIdleHook(void); #if CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK /* By default, the port uses vApplicationMinimalIdleHook() to run IDF style idle hooks. However, users may also want to provide their own vApplicationMinimalIdleHook(). In this case, we use to -Wl,--wrap option to wrap the user provided vApplicationMinimalIdleHook() */ extern void __real_vApplicationMinimalIdleHook( void ); void __wrap_vApplicationMinimalIdleHook( void ) { esp_vApplicationIdleHook(); //Run IDF style hooks __real_vApplicationMinimalIdleHook(); //Call the user provided vApplicationMinimalIdleHook() } #else // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK void vApplicationMinimalIdleHook( void ) { esp_vApplicationIdleHook(); //Run IDF style hooks } #endif // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK