#include #include #include #include #include #include #include #include #include "driver/timer.h" #include "esp_intr_alloc.h" #include "test_utils.h" #include "ccomp_timer.h" #include "esp_log.h" #include "esp_rom_sys.h" #include "esp_timer.h" #include "bootloader_flash.h" //for bootloader_flash_xmc_startup #include "sdkconfig.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/spi_flash.h" #endif struct flash_test_ctx { uint32_t offset; bool fail; SemaphoreHandle_t done; }; /* Base offset in flash for tests. */ static size_t start; static void setup_tests(void) { if (start == 0) { const esp_partition_t *part = get_test_data_partition(); start = part->address; printf("Test data partition @ 0x%x\n", start); } } static void flash_test_task(void *arg) { struct flash_test_ctx *ctx = (struct flash_test_ctx *) arg; vTaskDelay(100 / portTICK_PERIOD_MS); const uint32_t sector = start / SPI_FLASH_SEC_SIZE + ctx->offset; printf("t%d\n", sector); printf("es%d\n", sector); if (spi_flash_erase_sector(sector) != ESP_OK) { ctx->fail = true; printf("Erase failed\r\n"); xSemaphoreGive(ctx->done); vTaskDelete(NULL); } printf("ed%d\n", sector); vTaskDelay(0 / portTICK_PERIOD_MS); uint32_t val = 0xabcd1234; for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) { if (spi_flash_write(sector * SPI_FLASH_SEC_SIZE + offset, (const uint8_t *) &val, 4) != ESP_OK) { printf("Write failed at offset=%d\r\n", offset); ctx->fail = true; break; } } printf("wd%d\n", sector); vTaskDelay(0 / portTICK_PERIOD_MS); uint32_t val_read; for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) { if (spi_flash_read(sector * SPI_FLASH_SEC_SIZE + offset, (uint8_t *) &val_read, 4) != ESP_OK) { printf("Read failed at offset=%d\r\n", offset); ctx->fail = true; break; } if (val_read != val) { printf("Read invalid value=%08x at offset=%d\r\n", val_read, offset); ctx->fail = true; break; } } printf("td%d\n", sector); xSemaphoreGive(ctx->done); vTaskDelete(NULL); } TEST_CASE("flash write and erase work both on PRO CPU and on APP CPU", "[spi_flash][ignore]") { setup_tests(); SemaphoreHandle_t done = xSemaphoreCreateCounting(4, 0); struct flash_test_ctx ctx[] = { { .offset = 0x10 + 6, .done = done }, { .offset = 0x10 + 7, .done = done }, { .offset = 0x10 + 8, .done = done }, #ifndef CONFIG_FREERTOS_UNICORE { .offset = 0x10 + 9, .done = done } #endif }; xTaskCreatePinnedToCore(flash_test_task, "t0", 2048, &ctx[0], 3, NULL, 0); xTaskCreatePinnedToCore(flash_test_task, "t1", 2048, &ctx[1], 3, NULL, tskNO_AFFINITY); xTaskCreatePinnedToCore(flash_test_task, "t2", 2048, &ctx[2], 3, NULL, tskNO_AFFINITY); #ifndef CONFIG_FREERTOS_UNICORE xTaskCreatePinnedToCore(flash_test_task, "t3", 2048, &ctx[3], 3, NULL, 1); #endif const size_t task_count = sizeof(ctx)/sizeof(ctx[0]); for (int i = 0; i < task_count; ++i) { xSemaphoreTake(done, portMAX_DELAY); TEST_ASSERT_FALSE(ctx[i].fail); } vSemaphoreDelete(done); } typedef struct { size_t buf_size; uint8_t* buf; size_t flash_addr; size_t repeat_count; SemaphoreHandle_t done; } read_task_arg_t; typedef struct { size_t delay_time_us; size_t repeat_count; } block_task_arg_t; #ifdef CONFIG_IDF_TARGET_ESP32S2 #define int_clr_timers int_clr #endif static void IRAM_ATTR timer_isr(void* varg) { block_task_arg_t* arg = (block_task_arg_t*) varg; timer_group_clr_intr_status_in_isr(TIMER_GROUP_0, TIMER_0); timer_group_enable_alarm_in_isr(TIMER_GROUP_0, TIMER_0); esp_rom_delay_us(arg->delay_time_us); arg->repeat_count++; } static void read_task(void* varg) { read_task_arg_t* arg = (read_task_arg_t*) varg; for (size_t i = 0; i < arg->repeat_count; ++i) { ESP_ERROR_CHECK( spi_flash_read(arg->flash_addr, arg->buf, arg->buf_size) ); } xSemaphoreGive(arg->done); vTaskDelay(1); vTaskDelete(NULL); } TEST_CASE("spi flash functions can run along with IRAM interrupts", "[spi_flash][esp_flash]") { const size_t size = 128; read_task_arg_t read_arg = { .buf_size = size, .buf = (uint8_t*) malloc(size), .flash_addr = 0, .repeat_count = 1000, .done = xSemaphoreCreateBinary() }; timer_config_t config = { .alarm_en = true, .counter_en = false, .intr_type = TIMER_INTR_LEVEL, .counter_dir = TIMER_COUNT_UP, .auto_reload = true, .divider = 80 }; block_task_arg_t block_arg = { .repeat_count = 0, .delay_time_us = 100 }; ESP_ERROR_CHECK( timer_init(TIMER_GROUP_0, TIMER_0, &config) ); timer_pause(TIMER_GROUP_0, TIMER_0); ESP_ERROR_CHECK( timer_set_alarm_value(TIMER_GROUP_0, TIMER_0, 120) ); intr_handle_t handle; ESP_ERROR_CHECK( timer_isr_register(TIMER_GROUP_0, TIMER_0, &timer_isr, &block_arg, ESP_INTR_FLAG_IRAM, &handle) ); timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0); timer_enable_intr(TIMER_GROUP_0, TIMER_0); timer_start(TIMER_GROUP_0, TIMER_0); xTaskCreatePinnedToCore(read_task, "r", 2048, &read_arg, 3, NULL, portNUM_PROCESSORS - 1); xSemaphoreTake(read_arg.done, portMAX_DELAY); timer_pause(TIMER_GROUP_0, TIMER_0); timer_disable_intr(TIMER_GROUP_0, TIMER_0); esp_intr_free(handle); vSemaphoreDelete(read_arg.done); free(read_arg.buf); } #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3) // TODO ESP32-S3 IDF-2021 static const char TAG[] = "test_spi_flash"; typedef struct { uint32_t us_start; size_t len; const char* name; } time_meas_ctx_t; static void time_measure_start(time_meas_ctx_t* ctx) { ctx->us_start = esp_timer_get_time(); ccomp_timer_start(); } static uint32_t time_measure_end(time_meas_ctx_t* ctx) { uint32_t c_time_us = ccomp_timer_stop(); uint32_t time_us = esp_timer_get_time() - ctx->us_start; ESP_LOGI(TAG, "%s: compensated: %.2lf kB/s, typical: %.2lf kB/s", ctx->name, ctx->len / (c_time_us/1000.), ctx->len / (time_us/1000.)); return ctx->len * 1000 / (c_time_us / 1000); } #define TEST_TIMES 20 #define TEST_SECTORS 4 static uint32_t measure_erase(const esp_partition_t* part) { const int total_len = SPI_FLASH_SEC_SIZE * TEST_SECTORS; time_meas_ctx_t time_ctx = {.name = "erase", .len = total_len}; time_measure_start(&time_ctx); esp_err_t err = spi_flash_erase_range(part->address, total_len); TEST_ESP_OK(err); return time_measure_end(&time_ctx); } // should called after measure_erase static uint32_t measure_write(const char* name, const esp_partition_t* part, const uint8_t* data_to_write, int seg_len) { const int total_len = SPI_FLASH_SEC_SIZE; time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES}; time_measure_start(&time_ctx); for (int i = 0; i < TEST_TIMES; i ++) { // Erase one time, but write 100 times the same data size_t len = total_len; int offset = 0; while (len) { int len_write = MIN(seg_len, len); esp_err_t err = spi_flash_write(part->address + offset, data_to_write + offset, len_write); TEST_ESP_OK(err); offset += len_write; len -= len_write; } } return time_measure_end(&time_ctx); } static uint32_t measure_read(const char* name, const esp_partition_t* part, uint8_t* data_read, int seg_len) { const int total_len = SPI_FLASH_SEC_SIZE; time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES}; time_measure_start(&time_ctx); for (int i = 0; i < TEST_TIMES; i ++) { size_t len = total_len; int offset = 0; while (len) { int len_read = MIN(seg_len, len); esp_err_t err = spi_flash_read(part->address + offset, data_read + offset, len_read); TEST_ESP_OK(err); offset += len_read; len -= len_read; } } return time_measure_end(&time_ctx); } #define MEAS_WRITE(n) (measure_write("write in "#n"-byte chunks", part, data_to_write, n)) #define MEAS_READ(n) (measure_read("read in "#n"-byte chunks", part, data_read, n)) TEST_CASE("Test spi_flash read/write performance", "[spi_flash]") { const esp_partition_t *part = get_test_data_partition(); const int total_len = SPI_FLASH_SEC_SIZE; uint8_t *data_to_write = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); uint8_t *data_read = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); srand(777); for (int i = 0; i < total_len; i++) { data_to_write[i] = rand(); } uint32_t erase_1 = measure_erase(part); uint32_t speed_WR_4B = MEAS_WRITE(4); uint32_t speed_RD_4B = MEAS_READ(4); uint32_t erase_2 = measure_erase(part); uint32_t speed_WR_2KB = MEAS_WRITE(2048); uint32_t speed_RD_2KB = MEAS_READ(2048); TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_write, data_read, total_len); #define LOG_DATA(suffix) IDF_LOG_PERFORMANCE("FLASH_SPEED_BYTE_PER_SEC_LEGACY_"#suffix, "%d", speed_##suffix) #define LOG_ERASE(var) IDF_LOG_PERFORMANCE("FLASH_SPEED_BYTE_PER_SEC_LEGACY_ERASE", "%d", var) LOG_DATA(WR_4B); LOG_DATA(RD_4B); LOG_DATA(WR_2KB); LOG_DATA(RD_2KB); // Erase time may vary a lot, can increase threshold if this fails with a reasonable speed LOG_ERASE(erase_1); LOG_ERASE(erase_2); free(data_to_write); free(data_read); } #endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3) // TODO: This test is disabled on S3 with legacy impl - IDF-3505 #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3) #if portNUM_PROCESSORS > 1 TEST_CASE("spi_flash deadlock with high priority busy-waiting task", "[spi_flash][esp_flash]") { typedef struct { QueueHandle_t queue; volatile bool done; } deadlock_test_arg_t; /* Create two tasks: high-priority consumer on CPU0, low-priority producer on CPU1. * Consumer polls the queue until it gets some data, then yields. * Run flash operation on CPU0. Check that when IPC1 task blocks out the producer, * the task which does flash operation does not get blocked by the consumer. */ void producer_task(void* varg) { int dummy = 0; deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg; while (!arg->done) { xQueueSend(arg->queue, &dummy, 0); vTaskDelay(1); } vTaskDelete(NULL); } void consumer_task(void* varg) { int dummy; deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg; while (!arg->done) { if (xQueueReceive(arg->queue, &dummy, 0) == pdTRUE) { vTaskDelay(1); } } vTaskDelete(NULL); } deadlock_test_arg_t arg = { .queue = xQueueCreate(32, sizeof(int)), .done = false }; TEST_ASSERT(xTaskCreatePinnedToCore(&producer_task, "producer", 4096, &arg, 5, NULL, 1)); TEST_ASSERT(xTaskCreatePinnedToCore(&consumer_task, "consumer", 4096, &arg, 10, NULL, 0)); for (int i = 0; i < 1000; i++) { uint32_t dummy; TEST_ESP_OK(spi_flash_read(0, &dummy, sizeof(dummy))); } arg.done = true; vTaskDelay(5); vQueueDelete(arg.queue); /* Check that current task priority is still correct */ TEST_ASSERT_EQUAL_INT(uxTaskPriorityGet(NULL), UNITY_FREERTOS_PRIORITY); } #endif // portNUM_PROCESSORS > 1 #endif // !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3) TEST_CASE("WEL is cleared after boot", "[spi_flash]") { esp_rom_spiflash_chip_t *legacy_chip = &g_rom_flashchip; uint32_t status; esp_rom_spiflash_read_status(legacy_chip, &status); TEST_ASSERT((status & 0x2) == 0); } #if CONFIG_ESPTOOLPY_FLASHMODE_QIO // ISSI chip has its QE bit on other chips' BP4, which may get cleared by accident TEST_CASE("rom unlock will not erase QE bit", "[spi_flash]") { esp_rom_spiflash_chip_t *legacy_chip = &g_rom_flashchip; uint32_t status; printf("dev_id: %08X \n", legacy_chip->device_id); if (((legacy_chip->device_id >> 16) & 0xff) != 0x9D) { TEST_IGNORE_MESSAGE("This test is only for ISSI chips. Ignore."); } esp_rom_spiflash_unlock(); esp_rom_spiflash_read_status(legacy_chip, &status); printf("status: %08x\n", status); TEST_ASSERT(status & 0x40); } #endif static IRAM_ATTR NOINLINE_ATTR void test_xmc_startup(void) { extern void spi_flash_disable_interrupts_caches_and_other_cpu(void); extern void spi_flash_enable_interrupts_caches_and_other_cpu(void); esp_err_t ret = ESP_OK; spi_flash_disable_interrupts_caches_and_other_cpu(); ret = bootloader_flash_xmc_startup(); spi_flash_enable_interrupts_caches_and_other_cpu(); TEST_ASSERT_EQUAL(ESP_OK, ret); } TEST_CASE("bootloader_flash_xmc_startup can be called when cache disabled", "[spi_flash]") { test_xmc_startup(); }