// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "soc/soc_caps.h" #ifdef SOC_CAN_SUPPORTED #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/portmacro.h" #include "freertos/task.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "esp_types.h" #include "esp_log.h" #include "esp_intr_alloc.h" #include "esp_pm.h" #include "esp_attr.h" #include "esp_heap_caps.h" #include "driver/gpio.h" #include "driver/periph_ctrl.h" #include "driver/can.h" #include "soc/can_periph.h" #include "hal/can_hal.h" /* ---------------------------- Definitions --------------------------------- */ //Internal Macros #define CAN_CHECK(cond, ret_val) ({ \ if (!(cond)) { \ return (ret_val); \ } \ }) #define CAN_CHECK_FROM_CRIT(cond, ret_val) ({ \ if (!(cond)) { \ CAN_EXIT_CRITICAL(); \ return ret_val; \ } \ }) #define CAN_SET_FLAG(var, mask) ((var) |= (mask)) #define CAN_RESET_FLAG(var, mask) ((var) &= ~(mask)) #ifdef CONFIG_CAN_ISR_IN_IRAM #define CAN_ISR_ATTR IRAM_ATTR #define CAN_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT) #else #define CAN_TAG "CAN" #define CAN_ISR_ATTR #define CAN_MALLOC_CAPS MALLOC_CAP_DEFAULT #endif //CONFIG_CAN_ISR_IN_IRAM #define DRIVER_DEFAULT_INTERRUPTS 0xE7 //Exclude data overrun (bit[3]) and brp_div (bit[4]) //Control flags #define CTRL_FLAG_STOPPED 0x001 //CAN peripheral in stopped state #define CTRL_FLAG_RECOVERING 0x002 //Bus is undergoing bus recovery #define CTRL_FLAG_ERR_WARN 0x004 //TEC or REC is >= error warning limit #define CTRL_FLAG_ERR_PASSIVE 0x008 //TEC or REC is >= 128 #define CTRL_FLAG_BUS_OFF 0x010 //Bus-off due to TEC >= 256 #define CTRL_FLAG_TX_BUFF_OCCUPIED 0x020 //Transmit buffer is occupied #define ALERT_LOG_LEVEL_WARNING CAN_ALERT_ARB_LOST //Alerts above and including this level use ESP_LOGW #define ALERT_LOG_LEVEL_ERROR CAN_ALERT_TX_FAILED //Alerts above and including this level use ESP_LOGE /* ------------------ Typedefs, structures, and variables ------------------- */ //Control structure for CAN driver typedef struct { //Control and status members uint32_t control_flags; can_mode_t mode; uint32_t rx_missed_count; uint32_t tx_failed_count; uint32_t arb_lost_count; uint32_t bus_error_count; intr_handle_t isr_handle; //TX and RX #ifdef CONFIG_CAN_ISR_IN_IRAM void *tx_queue_buff; void *tx_queue_struct; void *rx_queue_buff; void *rx_queue_struct; void *semphr_struct; #endif QueueHandle_t tx_queue; QueueHandle_t rx_queue; int tx_msg_count; int rx_msg_count; //Alerts SemaphoreHandle_t alert_semphr; uint32_t alerts_enabled; uint32_t alerts_triggered; #ifdef CONFIG_PM_ENABLE //Power Management esp_pm_lock_handle_t pm_lock; #endif } can_obj_t; static can_obj_t *p_can_obj = NULL; static portMUX_TYPE can_spinlock = portMUX_INITIALIZER_UNLOCKED; #define CAN_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&can_spinlock) #define CAN_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&can_spinlock) #define CAN_ENTER_CRITICAL() portENTER_CRITICAL(&can_spinlock) #define CAN_EXIT_CRITICAL() portEXIT_CRITICAL(&can_spinlock) static can_hal_context_t can_context; /* -------------------- Interrupt and Alert Handlers ------------------------ */ CAN_ISR_ATTR static void can_alert_handler(uint32_t alert_code, int *alert_req) { if (p_can_obj->alerts_enabled & alert_code) { //Signify alert has occurred CAN_SET_FLAG(p_can_obj->alerts_triggered, alert_code); *alert_req = 1; #ifndef CONFIG_CAN_ISR_IN_IRAM //Only log if ISR is not in IRAM if (p_can_obj->alerts_enabled & CAN_ALERT_AND_LOG) { if (alert_code >= ALERT_LOG_LEVEL_ERROR) { ESP_EARLY_LOGE(CAN_TAG, "Alert %d", alert_code); } else if (alert_code >= ALERT_LOG_LEVEL_WARNING) { ESP_EARLY_LOGW(CAN_TAG, "Alert %d", alert_code); } else { ESP_EARLY_LOGI(CAN_TAG, "Alert %d", alert_code); } } #endif //CONFIG_CAN_ISR_IN_IRAM } } static inline void can_handle_bus_off(int *alert_req) { //Bus-Off condition. TEC should set and held at 127, REC should be 0, reset mode entered CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_BUS_OFF); /* Note: REC is still allowed to increase during bus-off. REC > err_warn can prevent "bus recovery complete" interrupt from occurring. Set to listen only mode to freeze REC. */ can_hal_handle_bus_off(&can_context); can_alert_handler(CAN_ALERT_BUS_OFF, alert_req); } static inline void can_handle_recovery_complete(int *alert_req) { //Bus recovery complete. bool recov_cplt = can_hal_handle_bus_recov_cplt(&can_context); assert(recov_cplt); //Reset and set flags to the equivalent of the stopped state CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_RECOVERING | CTRL_FLAG_ERR_WARN | CTRL_FLAG_ERR_PASSIVE | CTRL_FLAG_BUS_OFF | CTRL_FLAG_TX_BUFF_OCCUPIED); CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED); can_alert_handler(CAN_ALERT_BUS_RECOVERED, alert_req); } static inline void can_handle_recovery_in_progress(int * alert_req) { //Bus-recovery in progress. TEC has dropped below error warning limit can_alert_handler(CAN_ALERT_RECOVERY_IN_PROGRESS, alert_req); } static inline void can_handle_above_ewl(int *alert_req) { //TEC or REC surpassed error warning limit CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_WARN); can_alert_handler(CAN_ALERT_ABOVE_ERR_WARN, alert_req); } static inline void can_handle_below_ewl(int *alert_req) { //TEC and REC are both below error warning CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_WARN); can_alert_handler(CAN_ALERT_BELOW_ERR_WARN, alert_req); } static inline void can_handle_error_passive(int *alert_req) { //Entered error passive CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_PASSIVE); can_alert_handler(CAN_ALERT_ERR_PASS, alert_req); } static inline void can_handle_error_active(int *alert_req) { //Returned to error active CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_PASSIVE); can_alert_handler(CAN_ALERT_ERR_ACTIVE, alert_req); } static inline void can_handle_bus_error(int *alert_req) { // ECC register is read to re-arm bus error interrupt. ECC is not used can_hal_handle_bus_error(&can_context); p_can_obj->bus_error_count++; can_alert_handler(CAN_ALERT_BUS_ERROR, alert_req); } static inline void can_handle_arb_lost(int *alert_req) { //ALC register is read to re-arm arb lost interrupt. ALC is not used can_hal_handle_arb_lost(&can_context); p_can_obj->arb_lost_count++; can_alert_handler(CAN_ALERT_ARB_LOST, alert_req); } static inline void can_handle_rx_buffer_frames(BaseType_t *task_woken, int *alert_req) { uint32_t msg_count = can_hal_get_rx_msg_count(&can_context); for (int i = 0; i < msg_count; i++) { can_hal_frame_t frame; can_hal_read_rx_buffer_and_clear(&can_context, &frame); //Copy frame into RX Queue if (xQueueSendFromISR(p_can_obj->rx_queue, &frame, task_woken) == pdTRUE) { p_can_obj->rx_msg_count++; } else { p_can_obj->rx_missed_count++; can_alert_handler(CAN_ALERT_RX_QUEUE_FULL, alert_req); } } //Todo: Add Software Filters //Todo: Check for data overrun of RX FIFO, then trigger alert } static inline void can_handle_tx_buffer_frame(BaseType_t *task_woken, int *alert_req) { //Handle previously transmitted frame if (can_hal_check_last_tx_successful(&can_context)) { can_alert_handler(CAN_ALERT_TX_SUCCESS, alert_req); } else { p_can_obj->tx_failed_count++; can_alert_handler(CAN_ALERT_TX_FAILED, alert_req); } //Update TX message count p_can_obj->tx_msg_count--; assert(p_can_obj->tx_msg_count >= 0); //Sanity check //Check if there are more frames to transmit if (p_can_obj->tx_msg_count > 0 && p_can_obj->tx_queue != NULL) { can_hal_frame_t frame; int res = xQueueReceiveFromISR(p_can_obj->tx_queue, &frame, task_woken); if (res == pdTRUE) { can_hal_set_tx_buffer_and_transmit(&can_context, &frame); } else { assert(false && "failed to get a frame from TX queue"); } } else { //No more frames to transmit CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); can_alert_handler(CAN_ALERT_TX_IDLE, alert_req); } } CAN_ISR_ATTR static void can_intr_handler_main(void *arg) { BaseType_t task_woken = pdFALSE; int alert_req = 0; uint32_t event; CAN_ENTER_CRITICAL_ISR(); if (p_can_obj == NULL) { //Incase intr occurs whilst driver is being uninstalled CAN_EXIT_CRITICAL_ISR(); return; } event = can_hal_decode_interrupt_events(&can_context, p_can_obj->control_flags & CTRL_FLAG_RECOVERING); if (event & CAN_HAL_EVENT_BUS_OFF) { can_handle_bus_off(&alert_req); } if (event & CAN_HAL_EVENT_BUS_RECOV_CPLT) { can_handle_recovery_complete(&alert_req); } if (event & CAN_HAL_EVENT_BUS_RECOV_PROGRESS) { can_handle_recovery_in_progress(&alert_req); } if (event & CAN_HAL_EVENT_ABOVE_EWL) { can_handle_above_ewl(&alert_req); } if (event & CAN_HAL_EVENT_BELOW_EWL) { can_handle_below_ewl(&alert_req); } if (event & CAN_HAL_EVENT_ERROR_PASSIVE) { can_handle_error_passive(&alert_req); } if (event & CAN_HAL_EVENT_ERROR_ACTIVE) { can_handle_error_active(&alert_req); } if (event & CAN_HAL_EVENT_BUS_ERR) { can_handle_bus_error(&alert_req); } if (event & CAN_HAL_EVENT_ARB_LOST) { can_handle_arb_lost(&alert_req); } if (event & CAN_HAL_EVENT_RX_BUFF_FRAME) { can_handle_rx_buffer_frames(&task_woken, &alert_req); } //TX command related handlers should be called last, so that other commands //do not overwrite the TX command related bits in the command register. if (event & CAN_HAL_EVENT_TX_BUFF_FREE) { can_handle_tx_buffer_frame(&task_woken, &alert_req); } CAN_EXIT_CRITICAL_ISR(); if (p_can_obj->alert_semphr != NULL && alert_req) { //Give semaphore if alerts were triggered xSemaphoreGiveFromISR(p_can_obj->alert_semphr, &task_woken); } if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } } /* -------------------------- Helper functions ----------------------------- */ static void can_configure_gpio(gpio_num_t tx, gpio_num_t rx, gpio_num_t clkout, gpio_num_t bus_status) { //Set TX pin gpio_set_pull_mode(tx, GPIO_FLOATING); gpio_matrix_out(tx, CAN_TX_IDX, false, false); gpio_pad_select_gpio(tx); //Set RX pin gpio_set_pull_mode(rx, GPIO_FLOATING); gpio_matrix_in(rx, CAN_RX_IDX, false); gpio_pad_select_gpio(rx); gpio_set_direction(rx, GPIO_MODE_INPUT); //Configure output clock pin (Optional) if (clkout >= 0 && clkout < GPIO_NUM_MAX) { gpio_set_pull_mode(clkout, GPIO_FLOATING); gpio_matrix_out(clkout, CAN_CLKOUT_IDX, false, false); gpio_pad_select_gpio(clkout); } //Configure bus status pin (Optional) if (bus_status >= 0 && bus_status < GPIO_NUM_MAX) { gpio_set_pull_mode(bus_status, GPIO_FLOATING); gpio_matrix_out(bus_status, CAN_BUS_OFF_ON_IDX, false, false); gpio_pad_select_gpio(bus_status); } } static void can_free_driver_obj(can_obj_t *p_obj) { //Free driver object and any dependent SW resources it uses (queues, semaphores etc) #ifdef CONFIG_PM_ENABLE if (p_obj->pm_lock != NULL) { ESP_ERROR_CHECK(esp_pm_lock_delete(p_obj->pm_lock)); } #endif //Delete queues and semaphores if (p_obj->tx_queue != NULL) { vQueueDelete(p_obj->tx_queue); } if (p_obj->rx_queue != NULL) { vQueueDelete(p_obj->rx_queue); } if (p_obj->alert_semphr != NULL) { vSemaphoreDelete(p_obj->alert_semphr); } #ifdef CONFIG_CAN_ISR_IN_IRAM //Free memory used by static queues and semaphores. free() allows freeing NULL pointers free(p_obj->tx_queue_buff); free(p_obj->tx_queue_struct); free(p_obj->rx_queue_buff); free(p_obj->rx_queue_struct); free(p_obj->semphr_struct); #endif //CONFIG_CAN_ISR_IN_IRAM free(p_obj); } static can_obj_t *can_alloc_driver_obj(uint32_t tx_queue_len, uint32_t rx_queue_len) { //Allocates driver object and any dependent SW resources it uses (queues, semaphores etc) //Create a CAN driver object can_obj_t *p_obj = heap_caps_calloc(1, sizeof(can_obj_t), CAN_MALLOC_CAPS); if (p_obj == NULL) { return NULL; } #ifdef CONFIG_CAN_ISR_IN_IRAM //Allocate memory for queues and semaphores in DRAM if (tx_queue_len > 0) { p_obj->tx_queue_buff = heap_caps_calloc(tx_queue_len, sizeof(can_hal_frame_t), CAN_MALLOC_CAPS); p_obj->tx_queue_struct = heap_caps_calloc(1, sizeof(StaticQueue_t), CAN_MALLOC_CAPS); if (p_obj->tx_queue_buff == NULL || p_obj->tx_queue_struct == NULL) { goto cleanup; } } p_obj->rx_queue_buff = heap_caps_calloc(rx_queue_len, sizeof(can_hal_frame_t), CAN_MALLOC_CAPS); p_obj->rx_queue_struct = heap_caps_calloc(1, sizeof(StaticQueue_t), CAN_MALLOC_CAPS); p_obj->semphr_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), CAN_MALLOC_CAPS); if (p_obj->rx_queue_buff == NULL || p_obj->rx_queue_struct == NULL || p_obj->semphr_struct == NULL) { goto cleanup; } //Create static queues and semaphores if (tx_queue_len > 0) { p_obj->tx_queue = xQueueCreateStatic(tx_queue_len, sizeof(can_hal_frame_t), p_obj->tx_queue_buff, p_obj->tx_queue_struct); if (p_obj->tx_queue == NULL) { goto cleanup; } } p_obj->rx_queue = xQueueCreateStatic(rx_queue_len, sizeof(can_hal_frame_t), p_obj->rx_queue_buff, p_obj->rx_queue_struct); p_obj->alert_semphr = xSemaphoreCreateBinaryStatic(p_obj->semphr_struct); if (p_obj->rx_queue == NULL || p_obj->alert_semphr == NULL) { goto cleanup; } #else //CONFIG_CAN_ISR_IN_IRAM if (tx_queue_len > 0) { p_obj->tx_queue = xQueueCreate(tx_queue_len, sizeof(can_hal_frame_t)); } p_obj->rx_queue = xQueueCreate(rx_queue_len, sizeof(can_hal_frame_t)); p_obj->alert_semphr = xSemaphoreCreateBinary(); if ((tx_queue_len > 0 && p_obj->tx_queue == NULL) || p_obj->rx_queue == NULL || p_obj->alert_semphr == NULL) { goto cleanup; } #endif //CONFIG_CAN_ISR_IN_IRAM #ifdef CONFIG_PM_ENABLE esp_err_t pm_err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "can", &(p_obj->pm_lock)); if (pm_err != ESP_OK ) { goto cleanup; } #endif return p_obj; cleanup: can_free_driver_obj(p_obj); return NULL; } /* ---------------------------- Public Functions ---------------------------- */ esp_err_t can_driver_install(const can_general_config_t *g_config, const can_timing_config_t *t_config, const can_filter_config_t *f_config) { //Check arguments CAN_CHECK(g_config != NULL, ESP_ERR_INVALID_ARG); CAN_CHECK(t_config != NULL, ESP_ERR_INVALID_ARG); CAN_CHECK(f_config != NULL, ESP_ERR_INVALID_ARG); CAN_CHECK(g_config->rx_queue_len > 0, ESP_ERR_INVALID_ARG); CAN_CHECK(g_config->tx_io >= 0 && g_config->tx_io < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG); CAN_CHECK(g_config->rx_io >= 0 && g_config->rx_io < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG); #if (CONFIG_ESP32_REV_MIN >= 2) CAN_CHECK(t_config->brp >= CAN_BRP_MIN && t_config->brp <= CAN_BRP_MAX_ECO, ESP_ERR_INVALID_ARG); #else CAN_CHECK(t_config->brp >= CAN_BRP_MIN && t_config->brp <= CAN_BRP_MAX, ESP_ERR_INVALID_ARG); #endif #ifndef CONFIG_CAN_ISR_IN_IRAM CAN_CHECK(!(g_config->intr_flags & ESP_INTR_FLAG_IRAM), ESP_ERR_INVALID_ARG); #endif CAN_ENTER_CRITICAL(); CAN_CHECK_FROM_CRIT(p_can_obj == NULL, ESP_ERR_INVALID_STATE); CAN_EXIT_CRITICAL(); esp_err_t ret; can_obj_t *p_can_obj_dummy; //Create a CAN object (including queues and semaphores) p_can_obj_dummy = can_alloc_driver_obj(g_config->tx_queue_len, g_config->rx_queue_len); CAN_CHECK(p_can_obj_dummy != NULL, ESP_ERR_NO_MEM); //Initialize flags and variables. All other members are already set to zero by can_alloc_driver_obj() p_can_obj_dummy->control_flags = CTRL_FLAG_STOPPED; p_can_obj_dummy->mode = g_config->mode; p_can_obj_dummy->alerts_enabled = g_config->alerts_enabled; //Initialize CAN peripheral registers, and allocate interrupt CAN_ENTER_CRITICAL(); if (p_can_obj == NULL) { p_can_obj = p_can_obj_dummy; } else { //Check if driver is already installed CAN_EXIT_CRITICAL(); ret = ESP_ERR_INVALID_STATE; goto err; } periph_module_reset(PERIPH_CAN_MODULE); periph_module_enable(PERIPH_CAN_MODULE); //Enable APB CLK to CAN peripheral bool init = can_hal_init(&can_context); assert(init); can_hal_configure(&can_context, t_config, f_config, DRIVER_DEFAULT_INTERRUPTS, g_config->clkout_divider); //Todo: Allow interrupt to be registered to specified CPU CAN_EXIT_CRITICAL(); //Allocate GPIO and Interrupts can_configure_gpio(g_config->tx_io, g_config->rx_io, g_config->clkout_io, g_config->bus_off_io); ESP_ERROR_CHECK(esp_intr_alloc(ETS_CAN_INTR_SOURCE, g_config->intr_flags, can_intr_handler_main, NULL, &p_can_obj->isr_handle)); #ifdef CONFIG_PM_ENABLE ESP_ERROR_CHECK(esp_pm_lock_acquire(p_can_obj->pm_lock)); //Acquire pm_lock to keep APB clock at 80MHz #endif return ESP_OK; //CAN module is still in reset mode, users need to call can_start() afterwards err: can_free_driver_obj(p_can_obj_dummy); return ret; } esp_err_t can_driver_uninstall(void) { can_obj_t *p_can_obj_dummy; CAN_ENTER_CRITICAL(); //Check state CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF), ESP_ERR_INVALID_STATE); //Todo: Add check to see if in reset mode. //Enter reset mode to stop any CAN bus activity //Clear registers by reading can_hal_deinit(&can_context); periph_module_disable(PERIPH_CAN_MODULE); //Disable CAN peripheral p_can_obj_dummy = p_can_obj; //Use dummy to shorten critical section p_can_obj = NULL; CAN_EXIT_CRITICAL(); ESP_ERROR_CHECK(esp_intr_free(p_can_obj_dummy->isr_handle)); //Free interrupt #ifdef CONFIG_PM_ENABLE //Release and delete power management lock ESP_ERROR_CHECK(esp_pm_lock_release(p_can_obj_dummy->pm_lock)); #endif //Free can driver object can_free_driver_obj(p_can_obj_dummy); return ESP_OK; } esp_err_t can_start(void) { //Check state CAN_ENTER_CRITICAL(); CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & CTRL_FLAG_STOPPED, ESP_ERR_INVALID_STATE); //Reset RX queue, and RX message count xQueueReset(p_can_obj->rx_queue); p_can_obj->rx_msg_count = 0; //Todo: Add assert to see if in reset mode. //Should already be in bus-off mode, set again to make sure //Currently in listen only mode, need to set to mode specified by configuration bool started = can_hal_start(&can_context, p_can_obj->mode); assert(started); CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED); CAN_EXIT_CRITICAL(); return ESP_OK; } esp_err_t can_stop(void) { //Check state CAN_ENTER_CRITICAL(); CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)), ESP_ERR_INVALID_STATE); bool stopped = can_hal_stop(&can_context); assert(stopped); CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED); //Reset TX Queue and message count if (p_can_obj->tx_queue != NULL) { xQueueReset(p_can_obj->tx_queue); } p_can_obj->tx_msg_count = 0; CAN_EXIT_CRITICAL(); return ESP_OK; } esp_err_t can_transmit(const can_message_t *message, TickType_t ticks_to_wait) { //Check arguments CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK(message != NULL, ESP_ERR_INVALID_ARG); CAN_CHECK((message->data_length_code <= CAN_FRAME_MAX_DLC) || message->dlc_non_comp, ESP_ERR_INVALID_ARG); CAN_ENTER_CRITICAL(); //Check State CAN_CHECK_FROM_CRIT(!(p_can_obj->mode == CAN_MODE_LISTEN_ONLY), ESP_ERR_NOT_SUPPORTED); CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)), ESP_ERR_INVALID_STATE); //Format frame esp_err_t ret = ESP_FAIL; can_hal_frame_t tx_frame; can_hal_format_frame(message, &tx_frame); //Check if frame can be sent immediately if ((p_can_obj->tx_msg_count == 0) && !(p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED)) { //No other frames waiting to transmit. Bypass queue and transmit immediately can_hal_set_tx_buffer_and_transmit(&can_context, &tx_frame); p_can_obj->tx_msg_count++; CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); ret = ESP_OK; } CAN_EXIT_CRITICAL(); if (ret != ESP_OK) { if (p_can_obj->tx_queue == NULL) { //TX Queue is disabled and TX buffer is occupied, message was not sent ret = ESP_FAIL; } else if (xQueueSend(p_can_obj->tx_queue, &tx_frame, ticks_to_wait) == pdTRUE) { //Copied to TX Queue CAN_ENTER_CRITICAL(); if (p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)) { //TX queue was reset (due to stop/bus_off), remove copied frame from queue to prevent transmission int res = xQueueReceive(p_can_obj->tx_queue, &tx_frame, 0); assert(res == pdTRUE); ret = ESP_ERR_INVALID_STATE; } else if ((p_can_obj->tx_msg_count == 0) && !(p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED)) { //TX buffer was freed during copy, manually trigger transmission int res = xQueueReceive(p_can_obj->tx_queue, &tx_frame, 0); assert(res == pdTRUE); can_hal_set_tx_buffer_and_transmit(&can_context, &tx_frame); p_can_obj->tx_msg_count++; CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); ret = ESP_OK; } else { //Frame was copied to queue, waiting to be transmitted p_can_obj->tx_msg_count++; ret = ESP_OK; } CAN_EXIT_CRITICAL(); } else { //Timed out waiting for free space on TX queue ret = ESP_ERR_TIMEOUT; } } return ret; } esp_err_t can_receive(can_message_t *message, TickType_t ticks_to_wait) { //Check arguments and state CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK(message != NULL, ESP_ERR_INVALID_ARG); //Get frame from RX Queue or RX Buffer can_hal_frame_t rx_frame; if (xQueueReceive(p_can_obj->rx_queue, &rx_frame, ticks_to_wait) != pdTRUE) { return ESP_ERR_TIMEOUT; } CAN_ENTER_CRITICAL(); p_can_obj->rx_msg_count--; CAN_EXIT_CRITICAL(); //Decode frame can_hal_parse_frame(&rx_frame, message); return ESP_OK; } esp_err_t can_read_alerts(uint32_t *alerts, TickType_t ticks_to_wait) { //Check arguments and state CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK(alerts != NULL, ESP_ERR_INVALID_ARG); //Wait for an alert to occur if (xSemaphoreTake(p_can_obj->alert_semphr, ticks_to_wait) == pdTRUE) { CAN_ENTER_CRITICAL(); *alerts = p_can_obj->alerts_triggered; p_can_obj->alerts_triggered = 0; //Clear triggered alerts CAN_EXIT_CRITICAL(); return ESP_OK; } else { *alerts = 0; return ESP_ERR_TIMEOUT; } } esp_err_t can_reconfigure_alerts(uint32_t alerts_enabled, uint32_t *current_alerts) { CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_ENTER_CRITICAL(); //Clear any unhandled alerts if (current_alerts != NULL) { *current_alerts = p_can_obj->alerts_triggered;; } p_can_obj->alerts_triggered = 0; p_can_obj->alerts_enabled = alerts_enabled; //Update enabled alerts CAN_EXIT_CRITICAL(); return ESP_OK; } esp_err_t can_initiate_recovery(void) { CAN_ENTER_CRITICAL(); //Check state CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & CTRL_FLAG_BUS_OFF, ESP_ERR_INVALID_STATE); CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & CTRL_FLAG_RECOVERING), ESP_ERR_INVALID_STATE); //Reset TX Queue/Counters if (p_can_obj->tx_queue != NULL) { xQueueReset(p_can_obj->tx_queue); } p_can_obj->tx_msg_count = 0; CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_RECOVERING); //Trigger start of recovery process bool started = can_hal_start_bus_recovery(&can_context); assert(started); CAN_EXIT_CRITICAL(); return ESP_OK; } esp_err_t can_get_status_info(can_status_info_t *status_info) { //Check parameters and state CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK(status_info != NULL, ESP_ERR_INVALID_ARG); CAN_ENTER_CRITICAL(); status_info->tx_error_counter = can_hal_get_tec(&can_context); status_info->rx_error_counter = can_hal_get_rec(&can_context); status_info->msgs_to_tx = p_can_obj->tx_msg_count; status_info->msgs_to_rx = p_can_obj->rx_msg_count; status_info->tx_failed_count = p_can_obj->tx_failed_count; status_info->rx_missed_count = p_can_obj->rx_missed_count; status_info->arb_lost_count = p_can_obj->arb_lost_count; status_info->bus_error_count = p_can_obj->bus_error_count; if (p_can_obj->control_flags & CTRL_FLAG_RECOVERING) { status_info->state = CAN_STATE_RECOVERING; } else if (p_can_obj->control_flags & CTRL_FLAG_BUS_OFF) { status_info->state = CAN_STATE_BUS_OFF; } else if (p_can_obj->control_flags & CTRL_FLAG_STOPPED) { status_info->state = CAN_STATE_STOPPED; } else { status_info->state = CAN_STATE_RUNNING; } CAN_EXIT_CRITICAL(); return ESP_OK; } esp_err_t can_clear_transmit_queue(void) { //Check State CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_CHECK(p_can_obj->tx_queue != NULL, ESP_ERR_NOT_SUPPORTED); CAN_ENTER_CRITICAL(); //If a message is currently undergoing transmission, the tx interrupt handler will decrement tx_msg_count p_can_obj->tx_msg_count = (p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED) ? 1 : 0; xQueueReset(p_can_obj->tx_queue); CAN_EXIT_CRITICAL(); return ESP_OK; } esp_err_t can_clear_receive_queue(void) { //Check State CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); CAN_ENTER_CRITICAL(); p_can_obj->rx_msg_count = 0; xQueueReset(p_can_obj->rx_queue); CAN_EXIT_CRITICAL(); return ESP_OK; } #endif