/* * SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "unity.h" #include "test_utils.h" #include "driver/uart.h" #include "esp_log.h" #include "esp_rom_gpio.h" #include "driver/lp_io.h" #include "soc/uart_periph.h" #include "soc/uart_pins.h" #include "soc/soc_caps.h" #include "soc/clk_tree_defs.h" #include "test_common.h" #define BUF_SIZE (100) #define UART_BAUD_11520 (11520) #define UART_BAUD_115200 (115200) #define TOLERANCE (0.02) //baud rate error tolerance 2%. bool port_select(uart_port_param_t *port_param) { char argv[10]; unity_wait_for_signal_param("select to test 'uart' or 'lp_uart' port", argv, sizeof(argv)); if (strcmp(argv, "uart") == 0) { port_param->port_num = UART_NUM_1; // Test HP_UART with UART1 port port_param->default_src_clk = UART_SCLK_DEFAULT; port_param->tx_pin_num = 4; port_param->rx_pin_num = 5; port_param->rx_flow_ctrl_thresh = 120; return true; #if SOC_UART_LP_NUM > 0 } else if (strcmp(argv, "lp_uart") == 0) { port_param->port_num = LP_UART_NUM_0; port_param->default_src_clk = LP_UART_SCLK_DEFAULT; port_param->tx_pin_num = LP_U0TXD_GPIO_NUM; port_param->rx_pin_num = LP_U0RXD_GPIO_NUM; port_param->rx_flow_ctrl_thresh = 12; return true; #endif } else { return false; } } static void uart_config(uart_port_t uart_num, uint32_t baud_rate, uart_sclk_t source_clk) { uart_config_t uart_config = { .baud_rate = baud_rate, .source_clk = source_clk, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, }; TEST_ESP_OK(uart_driver_install(uart_num, BUF_SIZE * 2, BUF_SIZE * 2, 20, NULL, 0)); TEST_ESP_OK(uart_param_config(uart_num, &uart_config)); TEST_ESP_OK(uart_set_loop_back(uart_num, true)); } static volatile bool exit_flag, case_end; typedef struct { uart_port_t port_num; SemaphoreHandle_t exit_sem; } uart_task1_param_t; static void test_task1(void *pvParameters) { uart_task1_param_t *param = (uart_task1_param_t *)pvParameters; char* data = (char *) malloc(256); while (exit_flag == false) { uart_tx_chars(param->port_num, data, 256); // The uart_wait_tx_done() function does not block anything if ticks_to_wait = 0. uart_wait_tx_done(param->port_num, 0); } free(data); xSemaphoreGive(param->exit_sem); vTaskDelete(NULL); } static void test_task2(void *pvParameters) { uart_port_t uart_num = (uart_port_t)pvParameters; while (exit_flag == false) { // This task obstruct a setting tx_done_sem semaphore in the UART interrupt. // It leads to waiting the ticks_to_wait time in uart_wait_tx_done() function. uart_disable_tx_intr(uart_num); } vTaskDelete(NULL); } static void test_task3(void *pvParameters) { uart_port_param_t port_param = {}; TEST_ASSERT(port_select(&port_param)); uart_port_t uart_num = port_param.port_num; uart_config(uart_num, UART_BAUD_11520, port_param.default_src_clk); SemaphoreHandle_t exit_sema = xSemaphoreCreateBinary(); uart_task1_param_t task1_param = { .port_num = uart_num, .exit_sem = exit_sema, }; exit_flag = false; case_end = false; xTaskCreate(test_task1, "tsk1", 2048, (void *)&task1_param, 5, NULL); xTaskCreate(test_task2, "tsk2", 2048, (void *)uart_num, 5, NULL); printf("Waiting for 5 sec\n"); vTaskDelay(pdMS_TO_TICKS(5000)); exit_flag = true; if (xSemaphoreTake(exit_sema, pdMS_TO_TICKS(1000)) == pdTRUE) { vSemaphoreDelete(exit_sema); } else { TEST_FAIL_MESSAGE("uart_wait_tx_done is blocked"); } TEST_ESP_OK(uart_driver_delete(uart_num)); vTaskDelay(2); // wait for test_task1 to exit case_end = true; vTaskDelete(NULL); } TEST_CASE("test uart_wait_tx_done is not blocked when ticks_to_wait=0", "[uart]") { xTaskCreate(test_task3, "tsk3", 4096, NULL, 5, NULL); while(!case_end); vTaskDelay(2); // wait for test_task3 to exit } TEST_CASE("test uart get baud-rate", "[uart]") { uart_port_param_t port_param = {}; TEST_ASSERT(port_select(&port_param)); uart_port_t uart_num = port_param.port_num; soc_module_clk_t uart_clk_srcs[] = SOC_UART_CLKS; uint32_t uart_clk_srcs_num = sizeof(uart_clk_srcs) / sizeof(uart_clk_srcs[0]); soc_module_clk_t *clk_srcs = uart_clk_srcs; uint32_t clk_srcs_num = uart_clk_srcs_num; #if SOC_UART_LP_NUM > 0 soc_module_clk_t lp_uart_clk_srcs[] = SOC_LP_UART_CLKS; uint32_t lp_uart_clk_srcs_num = sizeof(lp_uart_clk_srcs) / sizeof(lp_uart_clk_srcs[0]); if (uart_num >= SOC_UART_HP_NUM) { clk_srcs = lp_uart_clk_srcs; clk_srcs_num = lp_uart_clk_srcs_num; } #endif uart_config(uart_num, UART_BAUD_115200, port_param.default_src_clk); const uint32_t test_baudrate_vals[] = {UART_BAUD_11520, UART_BAUD_115200}; for (size_t i = 0; i < sizeof(test_baudrate_vals) / sizeof(test_baudrate_vals[0]); i++) { for (size_t j = 0; j < clk_srcs_num; j++) { uart_config_t uart_config = { .baud_rate = test_baudrate_vals[i], .source_clk = clk_srcs[j], .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, }; TEST_ESP_OK(uart_param_config(uart_num, &uart_config)); uint32_t actual_baudrate = 0; uart_get_baudrate(uart_num, &actual_baudrate); TEST_ASSERT_UINT32_WITHIN(test_baudrate_vals[i] * TOLERANCE, test_baudrate_vals[i], actual_baudrate); } } uart_driver_delete(uart_num); } TEST_CASE("test uart tx data with break", "[uart]") { uart_port_param_t port_param = {}; TEST_ASSERT(port_select(&port_param)); uart_port_t uart_num = port_param.port_num; const int buf_len = 200; const int send_len = 128; const int brk_len = 10; char *psend = (char *)malloc(buf_len); TEST_ASSERT_NOT_NULL(psend); memset(psend, '0', buf_len); uart_config(uart_num, UART_BAUD_115200, port_param.default_src_clk); printf("Uart%d send %d bytes with break\n", uart_num, send_len); uart_write_bytes_with_break(uart_num, (const char *)psend, send_len, brk_len); uart_wait_tx_done(uart_num, portMAX_DELAY); //If the code is running here, it means the test passed, otherwise it will crash due to the interrupt wdt timeout. printf("Send data with break test passed\n"); free(psend); uart_driver_delete(uart_num); } static void uart_word_len_set_get_test(int uart_num) { printf("uart word len set and get test\n"); uart_word_length_t word_length_set = 0; uart_word_length_t word_length_get = 0; for (int i = 0; i < UART_DATA_BITS_MAX; i++) { word_length_set = UART_DATA_5_BITS + i; TEST_ESP_OK(uart_set_word_length(uart_num, word_length_set)); TEST_ESP_OK(uart_get_word_length(uart_num, &word_length_get)); TEST_ASSERT_EQUAL(word_length_set, word_length_get); } } static void uart_stop_bit_set_get_test(int uart_num) { printf("uart stop bit set and get test\n"); uart_stop_bits_t stop_bit_set = 0; uart_stop_bits_t stop_bit_get = 0; for (int i = UART_STOP_BITS_1; i < UART_STOP_BITS_MAX; i++) { stop_bit_set = i; TEST_ESP_OK(uart_set_stop_bits(uart_num, stop_bit_set)); TEST_ESP_OK(uart_get_stop_bits(uart_num, &stop_bit_get)); TEST_ASSERT_EQUAL(stop_bit_set, stop_bit_get); } } static void uart_parity_set_get_test(int uart_num) { printf("uart parity set and get test\n"); uart_parity_t parity_set[3] = { UART_PARITY_DISABLE, UART_PARITY_EVEN, UART_PARITY_ODD, }; uart_parity_t parity_get = 0; for (int i = 0; i < 3; i++) { TEST_ESP_OK(uart_set_parity(uart_num, parity_set[i])); TEST_ESP_OK(uart_get_parity(uart_num, &parity_get)); TEST_ASSERT_EQUAL(parity_set[i], parity_get); } } static void uart_hw_flow_set_get_test(int uart_num) { printf("uart hw flow control set and get test\n"); uart_hw_flowcontrol_t flowcontrol_set = 0; uart_hw_flowcontrol_t flowcontrol_get = 0; for (int i = 0; i < UART_HW_FLOWCTRL_DISABLE; i++) { TEST_ESP_OK(uart_set_hw_flow_ctrl(uart_num, flowcontrol_set, 20)); TEST_ESP_OK(uart_get_hw_flow_ctrl(uart_num, &flowcontrol_get)); TEST_ASSERT_EQUAL(flowcontrol_set, flowcontrol_get); } } static void uart_wakeup_set_get_test(int uart_num) { printf("uart wake up set and get test\n"); int wake_up_set = 0; int wake_up_get = 0; for (int i = 3; i < 0x3ff; i++) { wake_up_set = i; TEST_ESP_OK(uart_set_wakeup_threshold(uart_num, wake_up_set)); TEST_ESP_OK(uart_get_wakeup_threshold(uart_num, &wake_up_get)); TEST_ASSERT_EQUAL(wake_up_set, wake_up_get); } } TEST_CASE("uart general API test", "[uart]") { uart_port_param_t port_param = {}; TEST_ASSERT(port_select(&port_param)); uart_port_t uart_num = port_param.port_num; uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .source_clk = port_param.default_src_clk, }; uart_param_config(uart_num, &uart_config); uart_word_len_set_get_test(uart_num); uart_stop_bit_set_get_test(uart_num); uart_parity_set_get_test(uart_num); uart_hw_flow_set_get_test(uart_num); uart_wakeup_set_get_test(uart_num); } static void uart_write_task(void *param) { uart_port_t uart_num = (uart_port_t)param; uint8_t *tx_buf = (uint8_t *)malloc(1024); if(tx_buf == NULL) { TEST_FAIL_MESSAGE("tx buffer malloc fail"); } for(int i = 1; i < 1023; i++) { tx_buf[i] = (i & 0xff); } for(int i = 0; i < 1024; i++) { //d[0] and d[1023] are header tx_buf[0] = (i & 0xff); tx_buf[1023] = ((~i) & 0xff); uart_write_bytes(uart_num, (const char *)tx_buf, 1024); uart_wait_tx_done(uart_num, portMAX_DELAY); } free(tx_buf); vTaskDelete(NULL); } TEST_CASE("uart read write test", "[uart]") { uart_port_param_t port_param = {}; TEST_ASSERT(port_select(&port_param)); uart_port_t uart_num = port_param.port_num; uint8_t *rd_data = (uint8_t *)malloc(1024); if(rd_data == NULL) { TEST_FAIL_MESSAGE("rx buffer malloc fail"); } uart_config_t uart_config = { .baud_rate = 2000000, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS, .source_clk = port_param.default_src_clk, .rx_flow_ctrl_thresh = port_param.rx_flow_ctrl_thresh, }; TEST_ESP_OK(uart_driver_install(uart_num, BUF_SIZE * 2, 0, 20, NULL, 0)); TEST_ESP_OK(uart_param_config(uart_num, &uart_config)); // Use loop back feature to connect TX signal to RX signal, CTS signal to RTS signal internally. Then no need to configure uart pins. TEST_ESP_OK(uart_set_loop_back(uart_num, true)); TEST_ESP_OK(uart_wait_tx_done(uart_num, portMAX_DELAY)); vTaskDelay(pdMS_TO_TICKS(20)); // make sure last byte has flushed from TX FIFO TEST_ESP_OK(uart_flush_input(uart_num)); xTaskCreate(uart_write_task, "uart_write_task", 8192, (void *)uart_num, 5, NULL); for (int i = 0; i < 1024; i++) { int bytes_remaining = 1024; memset(rd_data, 0, 1024); while (bytes_remaining) { int bytes_received = uart_read_bytes(uart_num, rd_data + 1024 - bytes_remaining, bytes_remaining, pdMS_TO_TICKS(100)); if (bytes_received < 0) { TEST_FAIL_MESSAGE("read timeout, uart read write test fail"); } bytes_remaining -= bytes_received; } int check_fail_cnt = 0; if (rd_data[0] != (i & 0xff)) { printf("packet %d index check error at offset 0, expected 0x%02x\n", i, i); ++check_fail_cnt; } if (rd_data[1023] != ((~i) & 0xff)) { printf("packet %d index check error at offset 1023, expected 0x%02x\n", i, ((~i) & 0xff)); ++check_fail_cnt; } for (int j = 1; j < 1023; j++) { if (rd_data[j] != (j & 0xff)) { printf("data mismatch in packet %d offset %d, expected 0x%02x got 0x%02x\n", i, j, (j & 0xff), rd_data[j]); ++check_fail_cnt; } if (check_fail_cnt > 10) { printf("(further checks skipped)\n"); break; } } if (check_fail_cnt > 0) { ESP_LOG_BUFFER_HEX("rd_data", rd_data, 1024); TEST_FAIL(); } } uart_wait_tx_done(uart_num, portMAX_DELAY); uart_driver_delete(uart_num); free(rd_data); vTaskDelay(2); // wait for uart_write_task to exit } TEST_CASE("uart tx with ringbuffer test", "[uart]") { uart_port_param_t port_param = {}; TEST_ASSERT(port_select(&port_param)); uart_port_t uart_num = port_param.port_num; uint8_t *rd_data = (uint8_t *)malloc(1024); uint8_t *wr_data = (uint8_t *)malloc(1024); if(rd_data == NULL || wr_data == NULL) { TEST_FAIL_MESSAGE("buffer malloc fail"); } uart_config_t uart_config = { .baud_rate = 2000000, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS, .rx_flow_ctrl_thresh = port_param.rx_flow_ctrl_thresh, .source_clk = port_param.default_src_clk, }; uart_wait_tx_idle_polling(uart_num); TEST_ESP_OK(uart_param_config(uart_num, &uart_config)); TEST_ESP_OK(uart_driver_install(uart_num, 1024 * 2, 1024 * 2, 20, NULL, 0)); // Use loop back feature to connect TX signal to RX signal, CTS signal to RTS signal internally. Then no need to configure uart pins. TEST_ESP_OK(uart_set_loop_back(uart_num, true)); for (int i = 0; i < 1024; i++) { wr_data[i] = i; rd_data[i] = 0; } size_t tx_buffer_free_space; uart_get_tx_buffer_free_size(uart_num, &tx_buffer_free_space); TEST_ASSERT_EQUAL_INT(2048, tx_buffer_free_space); // full tx buffer space is free uart_write_bytes(uart_num, (const char *)wr_data, 1024); uart_get_tx_buffer_free_size(uart_num, &tx_buffer_free_space); TEST_ASSERT_LESS_THAN(2048, tx_buffer_free_space); // tx transmit in progress: tx buffer has content TEST_ASSERT_GREATER_OR_EQUAL(1024, tx_buffer_free_space); uart_wait_tx_done(uart_num, portMAX_DELAY); uart_get_tx_buffer_free_size(uart_num, &tx_buffer_free_space); TEST_ASSERT_EQUAL_INT(2048, tx_buffer_free_space); // tx done: tx buffer back to empty uart_read_bytes(uart_num, rd_data, 1024, pdMS_TO_TICKS(1000)); TEST_ASSERT_EQUAL_HEX8_ARRAY(wr_data, rd_data, 1024); TEST_ESP_OK(uart_driver_delete(uart_num)); free(rd_data); free(wr_data); } TEST_CASE("uart int state restored after flush", "[uart]") { uart_port_param_t port_param = {}; TEST_ASSERT(port_select(&port_param)); uart_port_t uart_num = port_param.port_num; uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .source_clk = port_param.default_src_clk, }; const int uart_tx_signal = uart_periph_signal[uart_num].pins[SOC_UART_TX_PIN_IDX].signal; const int uart_tx = port_param.tx_pin_num; const int uart_rx = port_param.rx_pin_num; const int buf_size = 256; const int intr_alloc_flags = 0; TEST_ESP_OK(uart_driver_install(uart_num, buf_size * 2, 0, 0, NULL, intr_alloc_flags)); TEST_ESP_OK(uart_param_config(uart_num, &uart_config)); TEST_ESP_OK(uart_set_pin(uart_num, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE)); /* Make sure UART's TX signal is connected to RX pin * This creates a loop that lets us receive anything we send on the UART */ if (uart_num < SOC_UART_HP_NUM) { esp_rom_gpio_connect_out_signal(uart_rx, uart_tx_signal, false, false); #if SOC_UART_LP_NUM > 0 } else { // LP_UART #if SOC_LP_GPIO_MATRIX_SUPPORTED TEST_ESP_OK(lp_gpio_connect_out_signal(uart_rx, uart_tx_signal, false, false)); #else // The only way is to use loop back feature TEST_ESP_OK(uart_set_loop_back(uart_num, true)); #endif #endif // SOC_UART_LP_NUM > 0 } uint8_t *data = (uint8_t *)malloc(buf_size); TEST_ASSERT_NOT_NULL(data); uart_write_bytes(uart_num, (const char *)data, buf_size); /* As we set up a loopback, we can read them back on RX */ int len = uart_read_bytes(uart_num, data, buf_size, pdMS_TO_TICKS(1000)); printf("len is %d\n", len); TEST_ASSERT_EQUAL(len, buf_size); /** * The first goal of this test is to make sure that when our RX FIFO is full, * we can continue receiving back data after flushing * For more details, check IDF-4374 */ /* Fill the RX buffer, this should disable the RX interrupts */ int written = uart_write_bytes(uart_num, (const char *)data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); written = uart_write_bytes(uart_num, (const char *)data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); written = uart_write_bytes(uart_num, (const char *)data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); /* Flush the input buffer, RX interrupts should be re-enabled */ uart_flush_input(uart_num); written = uart_write_bytes(uart_num, (const char *)data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); len = uart_read_bytes(uart_num, data, buf_size, pdMS_TO_TICKS(1000)); /* len equals buf_size bytes if interrupts were indeed re-enabled */ TEST_ASSERT_EQUAL(len, buf_size); /** * Second test, make sure that if we explicitly disable the RX interrupts, * they are NOT re-enabled after flushing * To do so, start by cleaning the RX FIFO, disable the RX interrupts, * flush again, send data to the UART and check that we haven't received * any of the bytes */ uart_flush_input(uart_num); uart_disable_rx_intr(uart_num); uart_flush_input(uart_num); written = uart_write_bytes(uart_num, (const char *)data, buf_size); TEST_ASSERT_NOT_EQUAL(-1, written); len = uart_read_bytes(uart_num, data, buf_size, pdMS_TO_TICKS(250)); TEST_ASSERT_EQUAL(len, 0); TEST_ESP_OK(uart_driver_delete(uart_num)); free(data); }