/* * SPDX-FileCopyrightText: 2017 Amazon.com, Inc. or its affiliates * SPDX-FileCopyrightText: 2015-2019 Cadence Design Systems, Inc. * * SPDX-License-Identifier: MIT * * SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD */ /* * FreeRTOS Kernel V10.4.3 * Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. If you wish to use our Amazon * FreeRTOS name, please do so in a fair use way that does not cause confusion. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * * 1 tab == 4 spaces! */ /* * Copyright (c) 2015-2019 Cadence Design Systems, Inc. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "sdkconfig.h" #include #include #include #include #include #include "soc/soc_caps.h" #include "esp_attr.h" #include "esp_private/crosscore_int.h" #include "esp_private/esp_int_wdt.h" #include "esp_system.h" #include "esp_log.h" #include "FreeRTOS.h" /* This pulls in portmacro.h */ #include "task.h" /* Required for TaskHandle_t, tskNO_AFFINITY, and vTaskStartScheduler */ #include "port_systick.h" #include "esp_cpu.h" #include "esp_memory_utils.h" _Static_assert(portBYTE_ALIGNMENT == 16, "portBYTE_ALIGNMENT must be set to 16"); _Static_assert(tskNO_AFFINITY == CONFIG_FREERTOS_NO_AFFINITY, "incorrect tskNO_AFFINITY value"); /* ---------------------------------------------------- Variables ------------------------------------------------------ * - Various variables used to maintain the FreeRTOS port's state. Used from both port.c and various .S files * - Constant offsets are used by assembly to jump to particular TCB members or a stack area (such as the CPSA). We use * C constants instead of preprocessor macros due to assembly lacking "offsetof()". * ------------------------------------------------------------------------------------------------------------------ */ #if XCHAL_CP_NUM > 0 /* Offsets used to navigate to a task's CPSA on the stack */ const DRAM_ATTR uint32_t offset_pxEndOfStack = offsetof(StaticTask_t, pxDummy8); const DRAM_ATTR uint32_t offset_cpsa = XT_CP_SIZE; /* Offset to start of the CPSA area on the stack. See uxInitialiseStackCPSA(). */ #if configNUM_CORES > 1 /* Offset to TCB_t.xCoreID member. Used to pin unpinned tasks that use the FPU. */ const DRAM_ATTR uint32_t offset_xCoreID = offsetof(StaticTask_t, xDummyCoreID); #endif /* configNUM_CORES > 1 */ #endif /* XCHAL_CP_NUM > 0 */ volatile unsigned port_xSchedulerRunning[portNUM_PROCESSORS] = {0}; // Indicates whether scheduler is running on a per-core basis unsigned port_interruptNesting[portNUM_PROCESSORS] = {0}; // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit BaseType_t port_uxCriticalNesting[portNUM_PROCESSORS] = {0}; BaseType_t port_uxOldInterruptState[portNUM_PROCESSORS] = {0}; /* ******************************************************************************* * Interrupt stack. The size of the interrupt stack is determined by the config * parameter "configISR_STACK_SIZE" in FreeRTOSConfig.h ******************************************************************************* */ volatile StackType_t DRAM_ATTR __attribute__((aligned(16))) port_IntStack[portNUM_PROCESSORS][configISR_STACK_SIZE]; /* One flag for each individual CPU. */ volatile uint32_t port_switch_flag[portNUM_PROCESSORS]; /* ------------------------------------------------ FreeRTOS Portable -------------------------------------------------- * - Provides implementation for functions required by FreeRTOS * - Declared in portable.h * ------------------------------------------------------------------------------------------------------------------ */ // ----------------- Scheduler Start/End ------------------- /* Defined in xtensa_context.S */ extern void _xt_coproc_init(void); BaseType_t xPortStartScheduler( void ) { portDISABLE_INTERRUPTS(); // Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored #if XCHAL_CP_NUM > 0 /* Initialize co-processor management for tasks. Leave CPENABLE alone. */ _xt_coproc_init(); #endif /* Setup the hardware to generate the tick. */ vPortSetupTimer(); port_xSchedulerRunning[xPortGetCoreID()] = 1; // Cannot be directly called from C; never returns __asm__ volatile ("call0 _frxt_dispatch\n"); /* Should not get here. */ return pdTRUE; } void vPortEndScheduler( void ) { /* It is unlikely that the Xtensa port will get stopped. If required simply disable the tick interrupt here. */ abort(); } // ------------------------ Stack -------------------------- // User exception dispatcher when exiting void _xt_user_exit(void); #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER // Wrapper to allow task functions to return (increases stack overhead by 16 bytes) static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters) { pxCode(pvParameters); //FreeRTOS tasks should not return. Log the task name and abort. char *pcTaskName = pcTaskGetName(NULL); ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName); abort(); } #endif /** * @brief Align stack pointer in a downward growing stack * * This macro is used to round a stack pointer downwards to the nearest n-byte boundary, where n is a power of 2. * This macro is generally used when allocating aligned areas on a downward growing stack. */ #define STACKPTR_ALIGN_DOWN(n, ptr) ((ptr) & (~((n)-1))) #if XCHAL_CP_NUM > 0 /** * @brief Allocate and initialize coprocessor save area on the stack * * This function allocates the coprocessor save area on the stack (sized XT_CP_SIZE) which includes... * - Individual save areas for each coprocessor (size XT_CPx_SA, inclusive of each area's alignment) * - Coprocessor context switching flags (e.g., XT_CPENABLE, XT_CPSTORED, XT_CP_CS_ST, XT_CP_ASA). * * The coprocessor save area is aligned to a 16-byte boundary. * The coprocessor context switching flags are then initialized * * @param[in] uxStackPointer Current stack pointer address * @return Stack pointer that points to allocated and initialized the coprocessor save area */ FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackCPSA(UBaseType_t uxStackPointer) { /* HIGH ADDRESS |-------------------| XT_CP_SIZE | CPn SA | ^ | ... | | | CP0 SA | | | ----------------- | | ---- XCHAL_TOTAL_SA_ALIGN aligned |-------------------| | 12 bytes | XT_CP_ASA | | ^ | XT_CP_CS_ST | | | | XT_CPSTORED | | | | XT_CPENABLE | | | |-------------------| ---------------------- 16 byte aligned LOW ADDRESS */ // Allocate overall coprocessor save area, aligned down to 16 byte boundary uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_CP_SIZE); // Initialize the coprocessor context switching flags. uint32_t *p = (uint32_t *)uxStackPointer; p[0] = 0; // Clear XT_CPENABLE and XT_CPSTORED p[1] = 0; // Clear XT_CP_CS_ST // XT_CP_ASA points to the aligned start of the individual CP save areas (i.e., start of CP0 SA) p[2] = (uint32_t)ALIGNUP(XCHAL_TOTAL_SA_ALIGN, (uint32_t)uxStackPointer + 12); return uxStackPointer; } #endif /* XCHAL_CP_NUM > 0 */ /** * @brief Allocate and initialize GCC TLS area * * This function allocates and initializes the area on the stack used to store GCC TLS (Thread Local Storage) variables. * - The area's size is derived from the TLS section's linker variables, and rounded up to a multiple of 16 bytes * - The allocated area is aligned to a 16-byte aligned address * - The TLS variables in the area are then initialized * * Each task access the TLS variables using the THREADPTR register plus an offset to obtain the address of the variable. * The value for the THREADPTR register is also calculated by this function, and that value should be use to initialize * the THREADPTR register. * * @param[in] uxStackPointer Current stack pointer address * @param[out] ret_threadptr_reg_init Calculated THREADPTR register initialization value * @return Stack pointer that points to the TLS area */ FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackTLS(UBaseType_t uxStackPointer, uint32_t *ret_threadptr_reg_init) { /* TLS layout at link-time, where 0xNNN is the offset that the linker calculates to a particular TLS variable. LOW ADDRESS |---------------------------| Linker Symbols | Section | -------------- | .flash.rodata | 0x0|---------------------------| <- _flash_rodata_start ^ | Other Data | | |---------------------------| <- _thread_local_start | | .tbss | ^ V | | | 0xNNN | int example; | | tls_area_size | | | | .tdata | V |---------------------------| <- _thread_local_end | Other data | | ... | |---------------------------| HIGH ADDRESS */ // Calculate the TLS area's size (rounded up to multiple of 16 bytes). extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align; const uint32_t tls_area_size = ALIGNUP(16, (uint32_t)&_thread_local_end - (uint32_t)&_thread_local_start); // TODO: check that TLS area fits the stack // Allocate space for the TLS area on the stack. The area must be allocated at a 16-byte aligned address uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - (UBaseType_t)tls_area_size); // Initialize the TLS area with the initialization values of each TLS variable memcpy((void *)uxStackPointer, &_thread_local_start, tls_area_size); /* Calculate the THREADPTR register's initialization value based on the link-time offset and the TLS area allocated on the stack. HIGH ADDRESS |---------------------------| | .tdata (*) | ^ | int example; | | | | | | .tbss (*) | | |---------------------------| <- uxStackPointer (start of TLS area) 0xNNN | | | ^ | | | | | ... | (_thread_local_start - _flash_rodata_start) + align_up(TCB_SIZE, tls_section_alignment) | | | | | | | V V | | <- threadptr register's value LOW ADDRESS Note: Xtensa is slightly different compared to the RISC-V port as there is an implicit aligned TCB_SIZE added to the offset. (search for 'tpoff' in elf32-xtensa.c in BFD): - "offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment)" - TCB_SIZE is hardcoded to 8 */ const uint32_t tls_section_align = (uint32_t)&_flash_rodata_align; // ALIGN value of .flash.rodata section #define TCB_SIZE 8 const uint32_t base = ALIGNUP(tls_section_align, TCB_SIZE); *ret_threadptr_reg_init = (uint32_t)uxStackPointer - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base; return uxStackPointer; } /** * @brief Initialize the task's starting interrupt stack frame * * This function initializes the task's starting interrupt stack frame. The dispatcher will use this stack frame in a * context restore routine. Therefore, the starting stack frame must be initialized as if the task was interrupted right * before its first instruction is called. * * - The stack frame is allocated to a 16-byte aligned address * - The THREADPTR register is saved in the extra storage area of the stack frame. This is also initialized * * @param[in] uxStackPointer Current stack pointer address * @param[in] pxCode Task function * @param[in] pvParameters Task function's parameter * @param[in] threadptr_reg_init THREADPTR register initialization value * @return Stack pointer that points to the stack frame */ FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackFrame(UBaseType_t uxStackPointer, TaskFunction_t pxCode, void *pvParameters, uint32_t threadptr_reg_init) { /* HIGH ADDRESS |---------------------------| ^ XT_STK_FRMSZ | | | | Stack Frame Extra Storage | | | | | | ------------------------- | | ^ XT_STK_EXTRA | | | | | Intr/Exc Stack Frame | | | | | V V | ------------------------- | ---------------------- 16 byte aligned LOW ADDRESS */ /* Allocate space for the task's starting interrupt stack frame. - The stack frame must be allocated to a 16-byte aligned address. - We use XT_STK_FRMSZ (instead of sizeof(XtExcFrame)) as it... - includes the size of the extra storage area - includes the size for a base save area before the stack frame - rounds up the total size to a multiple of 16 */ UBaseType_t uxStackPointerPrevious = uxStackPointer; uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_STK_FRMSZ); // Clear the entire interrupt stack frame memset((void *)uxStackPointer, 0, (size_t)(uxStackPointerPrevious - uxStackPointer)); XtExcFrame *frame = (XtExcFrame *)uxStackPointer; /* Initialize common registers */ frame->a0 = 0; // Set the return address to 0 terminate GDB backtrace frame->a1 = uxStackPointer + XT_STK_FRMSZ; // Saved stack pointer should point to physical top of stack frame frame->exit = (UBaseType_t) _xt_user_exit; // User exception exit dispatcher /* Initialize the task's entry point. This will differ depending on - Whether the task's entry point is the wrapper function or pxCode - Whether Windowed ABI is used (for windowed, we mimic the task entry point being call4'd ) */ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->pc = (UBaseType_t) vPortTaskWrapper; // Task entry point is the wrapper function #ifdef __XTENSA_CALL0_ABI__ frame->a2 = (UBaseType_t) pxCode; // Wrapper function's argument 0 (which is the task function) frame->a3 = (UBaseType_t) pvParameters; // Wrapper function's argument 1 (which is the task function's argument) #else // __XTENSA_CALL0_ABI__ frame->a6 = (UBaseType_t) pxCode; // Wrapper function's argument 0 (which is the task function), passed as if we call4'd frame->a7 = (UBaseType_t) pvParameters; // Wrapper function's argument 1 (which is the task function's argument), passed as if we call4'd #endif // __XTENSA_CALL0_ABI__ #else frame->pc = (UBaseType_t) pxCode; // Task entry point is the provided task function #ifdef __XTENSA_CALL0_ABI__ frame->a2 = (UBaseType_t) pvParameters; // Task function's argument #else // __XTENSA_CALL0_ABI__ frame->a6 = (UBaseType_t) pvParameters; // Task function's argument, passed as if we call4'd #endif // __XTENSA_CALL0_ABI__ #endif /* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. For windowed ABI also set WOE and CALLINC (pretend task was 'call4'd) */ #ifdef __XTENSA_CALL0_ABI__ frame->ps = PS_UM | PS_EXCM; #else // __XTENSA_CALL0_ABI__ frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1); #endif // __XTENSA_CALL0_ABI__ #ifdef XT_USE_SWPRI // Set the initial virtual priority mask value to all 1's. frame->vpri = 0xFFFFFFFF; #endif // Initialize the threadptr register in the extra save area of the stack frame uint32_t *threadptr_reg = (uint32_t *)(uxStackPointer + XT_STK_EXTRA); *threadptr_reg = threadptr_reg_init; return uxStackPointer; } #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, StackType_t * pxEndOfStack, TaskFunction_t pxCode, void * pvParameters ) #else StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters ) #endif { #ifdef __clang_analyzer__ // Teach clang-tidy that pxTopOfStack cannot be a pointer to const volatile StackType_t * pxTemp = pxTopOfStack; pxTopOfStack = pxTemp; #endif /*__clang_analyzer__ */ /* HIGH ADDRESS |---------------------------| <- pxTopOfStack on entry | Coproc Save Area | (CPSA MUST BE FIRST) | ------------------------- | | TLS Variables | | ------------------------- | <- Start of useable stack | Starting stack frame | | ------------------------- | <- pxTopOfStack on return (which is the tasks current SP) | | | | | | | V | ----------------------------- <- Bottom of stack LOW ADDRESS - All stack areas are aligned to 16 byte boundary - We use UBaseType_t for all of stack area initialization functions for more convenient pointer arithmetic */ UBaseType_t uxStackPointer = (UBaseType_t)pxTopOfStack; // Make sure the incoming stack pointer is aligned on 16 configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); #if XCHAL_CP_NUM > 0 // Initialize the coprocessor save area. THIS MUST BE THE FIRST AREA due to access from _frxt_task_coproc_state() uxStackPointer = uxInitialiseStackCPSA(uxStackPointer); // Each allocated section on the stack must have a size aligned on 16 configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); #endif /* XCHAL_CP_NUM > 0 */ // Initialize the GCC TLS area uint32_t threadptr_reg_init; uxStackPointer = uxInitialiseStackTLS(uxStackPointer, &threadptr_reg_init); configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); // Initialize the starting interrupt stack frame uxStackPointer = uxInitialiseStackFrame(uxStackPointer, pxCode, pvParameters, threadptr_reg_init); configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0); // Return the task's current stack pointer address which should point to the starting interrupt stack frame return (StackType_t *)uxStackPointer; } /* ---------------------------------------------- Port Implementations ------------------------------------------------- * * ------------------------------------------------------------------------------------------------------------------ */ // --------------------- Interrupts ------------------------ BaseType_t xPortInIsrContext(void) { unsigned int irqStatus; BaseType_t ret; irqStatus = portSET_INTERRUPT_MASK_FROM_ISR(); ret = (port_interruptNesting[xPortGetCoreID()] != 0); portCLEAR_INTERRUPT_MASK_FROM_ISR(irqStatus); return ret; } void vPortAssertIfInISR(void) { configASSERT(xPortInIsrContext()); } BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void) { return (port_interruptNesting[xPortGetCoreID()] != 0); } // ------------------ Critical Sections -------------------- BaseType_t __attribute__((optimize("-O3"))) xPortEnterCriticalTimeout(portMUX_TYPE *mux, BaseType_t timeout) { /* Interrupts may already be disabled (if this function is called in nested * manner). However, there's no atomic operation that will allow us to check, * thus we have to disable interrupts again anyways. * * However, if this is call is NOT nested (i.e., the first call to enter a * critical section), we will save the previous interrupt level so that the * saved level can be restored on the last call to exit the critical. */ BaseType_t xOldInterruptLevel = portSET_INTERRUPT_MASK_FROM_ISR(); if (!spinlock_acquire(mux, timeout)) { //Timed out attempting to get spinlock. Restore previous interrupt level and return portCLEAR_INTERRUPT_MASK_FROM_ISR(xOldInterruptLevel); return pdFAIL; } //Spinlock acquired. Increment the critical nesting count. BaseType_t coreID = xPortGetCoreID(); BaseType_t newNesting = port_uxCriticalNesting[coreID] + 1; port_uxCriticalNesting[coreID] = newNesting; //If this is the first entry to a critical section. Save the old interrupt level. if ( newNesting == 1 ) { port_uxOldInterruptState[coreID] = xOldInterruptLevel; } return pdPASS; } void __attribute__((optimize("-O3"))) vPortExitCritical(portMUX_TYPE *mux) { /* This function may be called in a nested manner. Therefore, we only need * to reenable interrupts if this is the last call to exit the critical. We * can use the nesting count to determine whether this is the last exit call. */ spinlock_release(mux); BaseType_t coreID = xPortGetCoreID(); BaseType_t nesting = port_uxCriticalNesting[coreID]; if (nesting > 0) { nesting--; port_uxCriticalNesting[coreID] = nesting; //This is the last exit call, restore the saved interrupt level if ( nesting == 0 ) { portCLEAR_INTERRUPT_MASK_FROM_ISR(port_uxOldInterruptState[coreID]); } } } BaseType_t xPortEnterCriticalTimeoutCompliance(portMUX_TYPE *mux, BaseType_t timeout) { BaseType_t ret; if (!xPortInIsrContext()) { ret = xPortEnterCriticalTimeout(mux, timeout); } else { esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n"); abort(); ret = pdFAIL; } return ret; } void vPortExitCriticalCompliance(portMUX_TYPE *mux) { if (!xPortInIsrContext()) { vPortExitCritical(mux); } else { esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n"); abort(); } } // ---------------------- Yielding ------------------------- void vPortYieldOtherCore( BaseType_t coreid ) { esp_crosscore_int_send_yield( coreid ); } // ------------------- Hook Functions ---------------------- void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ) { #define ERR_STR1 "***ERROR*** A stack overflow in task " #define ERR_STR2 " has been detected." const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2}; char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 }; char *dest = buf; for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) { dest = strcat(dest, str[i]); } esp_system_abort(buf); } // ----------------------- System -------------------------- uint32_t xPortGetTickRateHz(void) { return (uint32_t)configTICK_RATE_HZ; } #define STACK_WATCH_AREA_SIZE 32 #define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1) void vPortSetStackWatchpoint( void *pxStackStart ) { //Set watchpoint 1 to watch the last 32 bytes of the stack. //Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because //the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32 //bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most //28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes. //This way, we make sure we trigger before/when the stack canary is corrupted, not after. int addr = (int)pxStackStart; addr = (addr + 31) & (~31); esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE); } // -------------------- Co-Processor ----------------------- #if XCHAL_CP_NUM > 0 void _xt_coproc_release(volatile void *coproc_sa_base, BaseType_t xTargetCoreID); void vPortCleanUpCoprocArea(void *pvTCB) { UBaseType_t uxCoprocArea; BaseType_t xTargetCoreID; /* Get a pointer to the task's coprocessor save area */ uxCoprocArea = ( UBaseType_t ) ( ( ( StaticTask_t * ) pvTCB )->pxDummy8 ); /* Get TCB_t.pxEndOfStack */ uxCoprocArea = STACKPTR_ALIGN_DOWN(16, uxCoprocArea - XT_CP_SIZE); /* Get xTargetCoreID from the TCB.xCoreID */ xTargetCoreID = ( ( StaticTask_t * ) pvTCB )->xDummyCoreID; /* If task has live floating point registers somewhere, release them */ _xt_coproc_release( (void *)uxCoprocArea, xTargetCoreID ); } #endif /* XCHAL_CP_NUM > 0 */