/** * \brief AES block cipher, ESP DMA hardware accelerated version * Based on mbedTLS FIPS-197 compliant version. * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /* * The AES block cipher was designed by Vincent Rijmen and Joan Daemen. * * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf */ #include #include "mbedtls/aes.h" #include "esp_intr_alloc.h" #include "esp_private/periph_ctrl.h" #include "esp_log.h" #include "esp_attr.h" #include "soc/lldesc.h" #include "esp_heap_caps.h" #include "esp_memory_utils.h" #include "sys/param.h" #if CONFIG_PM_ENABLE #include "esp_pm.h" #endif #include "esp_crypto_lock.h" #include "hal/aes_hal.h" #include "aes/esp_aes_internal.h" #include "esp_aes_dma_priv.h" #if CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/cache.h" #endif #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #if SOC_AES_SUPPORT_GCM #include "aes/esp_aes_gcm.h" #endif #if SOC_AES_GDMA #define AES_LOCK() esp_crypto_sha_aes_lock_acquire() #define AES_RELEASE() esp_crypto_sha_aes_lock_release() #elif SOC_AES_CRYPTO_DMA #define AES_LOCK() esp_crypto_dma_lock_acquire() #define AES_RELEASE() esp_crypto_dma_lock_release() #endif /* Max size of each chunk to process when output buffer is in unaligned external ram must be a multiple of block size */ #define AES_MAX_CHUNK_WRITE_SIZE 1600 /* Input over this length will yield and wait for interrupt instead of busy-waiting, 30000 bytes is approx 0.5 ms */ #define AES_DMA_INTR_TRIG_LEN 2000 /* With buffers in PSRAM (worst condition) we still achieve a speed of 4 MB/s thus a 2 second timeout value should be suffient for even very large buffers. */ #define AES_WAIT_INTR_TIMEOUT_MS 2000 #if defined(CONFIG_MBEDTLS_AES_USE_INTERRUPT) static SemaphoreHandle_t op_complete_sem; #if defined(CONFIG_PM_ENABLE) static esp_pm_lock_handle_t s_pm_cpu_lock; static esp_pm_lock_handle_t s_pm_sleep_lock; #endif #endif #if SOC_PSRAM_DMA_CAPABLE #if (CONFIG_ESP32S2_DATA_CACHE_LINE_16B || CONFIG_ESP32S3_DATA_CACHE_LINE_16B) #define DCACHE_LINE_SIZE 16 #elif (CONFIG_ESP32S2_DATA_CACHE_LINE_32B || CONFIG_ESP32S3_DATA_CACHE_LINE_32B) #define DCACHE_LINE_SIZE 32 #elif CONFIG_ESP32S3_DATA_CACHE_LINE_64B #define DCACHE_LINE_SIZE 64 #endif //(CONFIG_ESP32S2_DATA_CACHE_LINE_16B || CONFIG_ESP32S3_DATA_CACHE_LINE_16B) #endif //SOC_PSRAM_DMA_CAPABLE static const char *TAG = "esp-aes"; static bool s_check_dma_capable(const void *p); /* These are static due to: * * Must be in DMA capable memory, so stack is not a safe place to put them * * To avoid having to malloc/free them for every DMA operation */ static DRAM_ATTR lldesc_t s_stream_in_desc; static DRAM_ATTR lldesc_t s_stream_out_desc; static DRAM_ATTR uint8_t s_stream_in[AES_BLOCK_BYTES]; static DRAM_ATTR uint8_t s_stream_out[AES_BLOCK_BYTES]; static inline void esp_aes_wait_dma_done(lldesc_t *output) { /* Wait for DMA write operation to complete */ while (1) { if ( esp_aes_dma_done(output) ) { break; } } } /* Append a descriptor to the chain, set head if chain empty */ static inline void lldesc_append(lldesc_t **head, lldesc_t *item) { lldesc_t *it; if (*head == NULL) { *head = item; return; } it = *head; while (it->empty != 0) { it = (lldesc_t *)it->empty; } it->eof = 0; it->empty = (uint32_t)item; } void esp_aes_acquire_hardware( void ) { /* Released by esp_aes_release_hardware()*/ AES_LOCK(); /* Enable AES and DMA hardware */ #if SOC_AES_CRYPTO_DMA periph_module_enable(PERIPH_AES_DMA_MODULE); #elif SOC_AES_GDMA periph_module_enable(PERIPH_AES_MODULE); #endif } /* Function to disable AES and Crypto DMA clocks and release locks */ void esp_aes_release_hardware( void ) { /* Disable AES and DMA hardware */ #if SOC_AES_CRYPTO_DMA periph_module_disable(PERIPH_AES_DMA_MODULE); #elif SOC_AES_GDMA periph_module_disable(PERIPH_AES_MODULE); #endif AES_RELEASE(); } #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT) static IRAM_ATTR void esp_aes_complete_isr(void *arg) { BaseType_t higher_woken; aes_hal_interrupt_clear(); xSemaphoreGiveFromISR(op_complete_sem, &higher_woken); if (higher_woken) { portYIELD_FROM_ISR(); } } static esp_err_t esp_aes_isr_initialise( void ) { aes_hal_interrupt_clear(); aes_hal_interrupt_enable(true); if (op_complete_sem == NULL) { op_complete_sem = xSemaphoreCreateBinary(); if (op_complete_sem == NULL) { ESP_LOGE(TAG, "Failed to create intr semaphore"); return ESP_FAIL; } const int isr_flags = esp_intr_level_to_flags(CONFIG_MBEDTLS_AES_INTERRUPT_LEVEL); esp_err_t ret = esp_intr_alloc(ETS_AES_INTR_SOURCE, isr_flags, esp_aes_complete_isr, NULL, NULL); if (ret != ESP_OK) { return ret; } } /* AES is clocked proportionally to CPU clock, take power management lock */ #ifdef CONFIG_PM_ENABLE if (s_pm_cpu_lock == NULL) { if (esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "aes_sleep", &s_pm_sleep_lock) != ESP_OK) { ESP_LOGE(TAG, "Failed to create PM sleep lock"); return ESP_FAIL; } if (esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "aes_cpu", &s_pm_cpu_lock) != ESP_OK) { ESP_LOGE(TAG, "Failed to create PM CPU lock"); return ESP_FAIL; } } esp_pm_lock_acquire(s_pm_cpu_lock); esp_pm_lock_acquire(s_pm_sleep_lock); #endif return ESP_OK; } #endif // CONFIG_MBEDTLS_AES_USE_INTERRUPT /* Wait for AES hardware block operation to complete */ static int esp_aes_dma_wait_complete(bool use_intr, lldesc_t *output_desc) { #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT) if (use_intr) { if (!xSemaphoreTake(op_complete_sem, AES_WAIT_INTR_TIMEOUT_MS / portTICK_PERIOD_MS)) { /* indicates a fundamental problem with driver */ ESP_LOGE(TAG, "Timed out waiting for completion of AES Interrupt"); return -1; } #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(s_pm_cpu_lock); esp_pm_lock_release(s_pm_sleep_lock); #endif // CONFIG_PM_ENABLE } #endif /* Checking this if interrupt is used also, to avoid issues with AES fault injection */ aes_hal_wait_done(); esp_aes_wait_dma_done(output_desc); return 0; } static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out); /* Output buffers in external ram needs to be 16-byte aligned and DMA cant access input in the iCache mem range, reallocate them into internal memory and encrypt in chunks to avoid having to malloc too big of a buffer The function esp_aes_process_dma_ext_ram zeroises the output buffer in the case of memory allocation failure. */ static int esp_aes_process_dma_ext_ram(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out, bool realloc_input, bool realloc_output) { size_t chunk_len; int ret = 0; int offset = 0; unsigned char *input_buf = NULL; unsigned char *output_buf = NULL; const unsigned char *dma_input; chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len); if (realloc_input) { input_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA); if (input_buf == NULL) { mbedtls_platform_zeroize(output, len); ESP_LOGE(TAG, "Failed to allocate memory"); return -1; } } if (realloc_output) { output_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA); if (output_buf == NULL) { mbedtls_platform_zeroize(output, len); ESP_LOGE(TAG, "Failed to allocate memory"); return -1; } } else { output_buf = output; } while (len) { chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len); /* If input needs realloc then copy it, else use the input with offset*/ if (realloc_input) { memcpy(input_buf, input + offset, chunk_len); dma_input = input_buf; } else { dma_input = input + offset; } if (esp_aes_process_dma(ctx, dma_input, output_buf, chunk_len, stream_out) != 0) { ret = -1; goto cleanup; } if (realloc_output) { memcpy(output + offset, output_buf, chunk_len); } else { output_buf = output + offset + chunk_len; } len -= chunk_len; offset += chunk_len; } cleanup: if (realloc_input) { free(input_buf); } if (realloc_output) { free(output_buf); } return ret; } /* Encrypt/decrypt the input using DMA * The function esp_aes_process_dma zeroises the output buffer in the case of following conditions: * 1. If key is not written in the hardware * 2. Memory allocation failures * 3. If AES interrupt is enabled and ISR initialisation fails * 4. Failure in any of the AES operations */ static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out) { lldesc_t *in_desc_head = NULL, *out_desc_head = NULL; lldesc_t *out_desc_tail = NULL; /* pointer to the final output descriptor */ lldesc_t *block_desc = NULL, *block_in_desc = NULL, *block_out_desc = NULL; size_t lldesc_num = 0; unsigned stream_bytes = len % AES_BLOCK_BYTES; // bytes which aren't in a full block unsigned block_bytes = len - stream_bytes; // bytes which are in a full block unsigned blocks = (block_bytes / AES_BLOCK_BYTES) + ((stream_bytes > 0) ? 1 : 0); bool use_intr = false; bool input_needs_realloc = false; bool output_needs_realloc = false; int ret = 0; assert(len > 0); // caller shouldn't ever have len set to zero assert(stream_bytes == 0 || stream_out != NULL); // stream_out can be NULL if we're processing full block(s) /* If no key is written to hardware yet, either the user hasn't called mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't know which mode to use - or a fault skipped the key write to hardware. Treat this as a fatal error and zero the output block. */ if (ctx->key_in_hardware != ctx->key_bytes) { mbedtls_platform_zeroize(output, len); return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH; } if (block_bytes > 0) { /* Flush cache if input in external ram */ #if (CONFIG_SPIRAM && SOC_PSRAM_DMA_CAPABLE) if (esp_ptr_external_ram(input)) { Cache_WriteBack_Addr((uint32_t)input, len); } if (esp_ptr_external_ram(output)) { if ((((intptr_t)(output) & (DCACHE_LINE_SIZE - 1)) != 0) || (block_bytes % DCACHE_LINE_SIZE != 0)) { // Non aligned ext-mem buffer output_needs_realloc = true; } } #endif /* DMA cannot access memory in the iCache range, copy input to internal ram */ if (!s_check_dma_capable(input)) { input_needs_realloc = true; } if (!s_check_dma_capable(output)) { output_needs_realloc = true; } /* If either input or output is unaccessible to the DMA then they need to be reallocated */ if (input_needs_realloc || output_needs_realloc) { return esp_aes_process_dma_ext_ram(ctx, input, output, len, stream_out, input_needs_realloc, output_needs_realloc); } /* Set up dma descriptors for input and output considering the 16 byte alignment requirement for EDMA */ lldesc_num = lldesc_get_required_num_constrained(block_bytes, LLDESC_MAX_NUM_PER_DESC_16B_ALIGNED); /* Allocate both in and out descriptors to save a malloc/free per function call */ block_desc = heap_caps_calloc(lldesc_num * 2, sizeof(lldesc_t), MALLOC_CAP_DMA); if (block_desc == NULL) { mbedtls_platform_zeroize(output, len); ESP_LOGE(TAG, "Failed to allocate memory"); return -1; } block_in_desc = block_desc; block_out_desc = block_desc + lldesc_num; lldesc_setup_link(block_in_desc, input, block_bytes, 0); //Limit max inlink descriptor length to be 16 byte aligned, require for EDMA lldesc_setup_link_constrained(block_out_desc, output, block_bytes, LLDESC_MAX_NUM_PER_DESC_16B_ALIGNED, 0); /* Setup in/out start descriptors */ lldesc_append(&in_desc_head, block_in_desc); lldesc_append(&out_desc_head, block_out_desc); out_desc_tail = &block_out_desc[lldesc_num - 1]; } /* Any leftover bytes which are appended as an additional DMA list */ if (stream_bytes > 0) { memset(&s_stream_in_desc, 0, sizeof(lldesc_t)); memset(&s_stream_out_desc, 0, sizeof(lldesc_t)); memset(s_stream_in, 0, AES_BLOCK_BYTES); memset(s_stream_out, 0, AES_BLOCK_BYTES); memcpy(s_stream_in, input + block_bytes, stream_bytes); lldesc_setup_link(&s_stream_in_desc, s_stream_in, AES_BLOCK_BYTES, 0); lldesc_setup_link(&s_stream_out_desc, s_stream_out, AES_BLOCK_BYTES, 0); /* Link with block descriptors */ lldesc_append(&in_desc_head, &s_stream_in_desc); lldesc_append(&out_desc_head, &s_stream_out_desc); out_desc_tail = &s_stream_out_desc; } #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT) /* Only use interrupt for long AES operations */ if (len > AES_DMA_INTR_TRIG_LEN) { use_intr = true; if (esp_aes_isr_initialise() == ESP_FAIL) { ESP_LOGE(TAG, "ESP-AES ISR initialisation failed"); ret = -1; goto cleanup; } } else #endif { aes_hal_interrupt_enable(false); } if (esp_aes_dma_start(in_desc_head, out_desc_head) != ESP_OK) { ESP_LOGE(TAG, "esp_aes_dma_start failed, no DMA channel available"); ret = -1; goto cleanup; } aes_hal_transform_dma_start(blocks); if (esp_aes_dma_wait_complete(use_intr, out_desc_tail) < 0) { ESP_LOGE(TAG, "esp_aes_dma_wait_complete failed"); ret = -1; goto cleanup; } #if (CONFIG_SPIRAM && SOC_PSRAM_DMA_CAPABLE) if (block_bytes > 0) { if (esp_ptr_external_ram(output)) { Cache_Invalidate_Addr((uint32_t)output, block_bytes); } } #endif aes_hal_transform_dma_finish(); if (stream_bytes > 0) { memcpy(output + block_bytes, s_stream_out, stream_bytes); memcpy(stream_out, s_stream_out, AES_BLOCK_BYTES); } cleanup: if (ret != 0) { mbedtls_platform_zeroize(output, len); } free(block_desc); return ret; } #if SOC_AES_SUPPORT_GCM /* Encrypt/decrypt with AES-GCM the input using DMA * The function esp_aes_process_dma_gcm zeroises the output buffer in the case of following conditions: * 1. If key is not written in the hardware * 2. Memory allocation failures * 3. If AES interrupt is enabled and ISR initialisation fails * 4. Failure in any of the AES operations */ int esp_aes_process_dma_gcm(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, lldesc_t *aad_desc, size_t aad_len) { lldesc_t *in_desc_head = NULL, *out_desc_head = NULL, *len_desc = NULL; lldesc_t *out_desc_tail = NULL; /* pointer to the final output descriptor */ lldesc_t stream_in_desc, stream_out_desc; lldesc_t *block_desc = NULL, *block_in_desc = NULL, *block_out_desc = NULL; size_t lldesc_num; uint32_t len_buf[4] = {}; uint8_t stream_in[16] = {}; uint8_t stream_out[16] = {}; unsigned stream_bytes = len % AES_BLOCK_BYTES; // bytes which aren't in a full block unsigned block_bytes = len - stream_bytes; // bytes which are in a full block unsigned blocks = (block_bytes / AES_BLOCK_BYTES) + ((stream_bytes > 0) ? 1 : 0); bool use_intr = false; int ret = 0; /* If no key is written to hardware yet, either the user hasn't called mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't know which mode to use - or a fault skipped the key write to hardware. Treat this as a fatal error and zero the output block. */ if (ctx->key_in_hardware != ctx->key_bytes) { mbedtls_platform_zeroize(output, len); return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH; } /* Set up dma descriptors for input and output */ lldesc_num = lldesc_get_required_num(block_bytes); /* Allocate both in and out descriptors to save a malloc/free per function call, add 1 for length descriptor */ block_desc = heap_caps_calloc( (lldesc_num * 2) + 1, sizeof(lldesc_t), MALLOC_CAP_DMA); if (block_desc == NULL) { mbedtls_platform_zeroize(output, len); ESP_LOGE(TAG, "Failed to allocate memory"); return -1; } block_in_desc = block_desc; len_desc = block_desc + lldesc_num; block_out_desc = block_desc + lldesc_num + 1; if (aad_desc != NULL) { lldesc_append(&in_desc_head, aad_desc); } if (block_bytes > 0) { lldesc_setup_link(block_in_desc, input, block_bytes, 0); lldesc_setup_link(block_out_desc, output, block_bytes, 0); lldesc_append(&in_desc_head, block_in_desc); lldesc_append(&out_desc_head, block_out_desc); out_desc_tail = &block_out_desc[lldesc_num - 1]; } /* Any leftover bytes which are appended as an additional DMA list */ if (stream_bytes > 0) { memcpy(stream_in, input + block_bytes, stream_bytes); lldesc_setup_link(&stream_in_desc, stream_in, AES_BLOCK_BYTES, 0); lldesc_setup_link(&stream_out_desc, stream_out, AES_BLOCK_BYTES, 0); lldesc_append(&in_desc_head, &stream_in_desc); lldesc_append(&out_desc_head, &stream_out_desc); out_desc_tail = &stream_out_desc; } len_buf[1] = __builtin_bswap32(aad_len * 8); len_buf[3] = __builtin_bswap32(len * 8); len_desc->length = sizeof(len_buf); len_desc->size = sizeof(len_buf); len_desc->owner = 1; len_desc->eof = 1; len_desc->buf = (uint8_t *)len_buf; lldesc_append(&in_desc_head, len_desc); #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT) /* Only use interrupt for long AES operations */ if (len > AES_DMA_INTR_TRIG_LEN) { use_intr = true; if (esp_aes_isr_initialise() == ESP_FAIL) { ESP_LOGE(TAG, "ESP-AES ISR initialisation failed"); ret = -1; goto cleanup; } } else #endif { aes_hal_interrupt_enable(false); } /* Start AES operation */ if (esp_aes_dma_start(in_desc_head, out_desc_head) != ESP_OK) { ESP_LOGE(TAG, "esp_aes_dma_start failed, no DMA channel available"); ret = -1; goto cleanup; } aes_hal_transform_dma_gcm_start(blocks); if (esp_aes_dma_wait_complete(use_intr, out_desc_tail) < 0) { ESP_LOGE(TAG, "esp_aes_dma_wait_complete failed"); ret = -1; goto cleanup; } aes_hal_transform_dma_finish(); if (stream_bytes > 0) { memcpy(output + block_bytes, stream_out, stream_bytes); } cleanup: if (ret != 0) { mbedtls_platform_zeroize(output, len); } free(block_desc); return ret; } #endif //SOC_AES_SUPPORT_GCM static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input, unsigned char *output ) { if (!ctx) { ESP_LOGE(TAG, "No AES context supplied"); return -1; } if (!input) { ESP_LOGE(TAG, "No input supplied"); return -1; } if (!output) { ESP_LOGE(TAG, "No output supplied"); return -1; } return 0; } /* * AES-ECB single block encryption */ int esp_internal_aes_encrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL); esp_aes_release_hardware(); return r; } void esp_aes_encrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { esp_internal_aes_encrypt(ctx, input, output); } /* * AES-ECB single block decryption */ int esp_internal_aes_decrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL); esp_aes_release_hardware(); return r; } void esp_aes_decrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { esp_internal_aes_decrypt(ctx, input, output); } /* * AES-ECB block encryption/decryption */ int esp_aes_crypt_ecb(esp_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16] ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL); esp_aes_release_hardware(); return r; } /* * AES-CBC buffer encryption/decryption */ int esp_aes_crypt_cbc(esp_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int r = -1; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } /* For CBC input length should be multiple of * AES BLOCK BYTES * */ if ( (length % AES_BLOCK_BYTES) || (length == 0) ) { return ERR_ESP_AES_INVALID_INPUT_LENGTH; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC); aes_hal_set_iv(iv); r = esp_aes_process_dma(ctx, input, output, length, NULL); if (r != 0) { goto cleanup; } aes_hal_read_iv(iv); cleanup: esp_aes_release_hardware(); return r; } /* * AES-CFB8 buffer encryption/decryption */ int esp_aes_crypt_cfb8(esp_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int r = -1; unsigned char c; unsigned char ov[17]; size_t block_bytes = length - (length % AES_BLOCK_BYTES); if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } /* The DMA engine will only output correct IV if it runs full blocks of input in CFB8 mode */ esp_aes_acquire_hardware(); if (block_bytes > 0) { ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8); aes_hal_set_iv(iv); r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL); if (r != 0) { goto cleanup; } aes_hal_read_iv(iv); length -= block_bytes; input += block_bytes; output += block_bytes; } // Process remaining bytes block-at-a-time in ECB mode if (length > 0) { ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, MBEDTLS_AES_ENCRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB); while ( length-- ) { memcpy( ov, iv, 16 ); r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL); if (r != 0) { goto cleanup; } if ( mode == MBEDTLS_AES_DECRYPT ) { ov[16] = *input; } c = *output++ = ( iv[0] ^ *input++ ); if ( mode == MBEDTLS_AES_ENCRYPT ) { ov[16] = c; } memcpy( iv, ov + 1, 16 ); } } r = 0; cleanup: esp_aes_release_hardware(); return r; } /* * AES-CFB128 buffer encryption/decryption */ int esp_aes_crypt_cfb128(esp_aes_context *ctx, int mode, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { uint8_t c; size_t stream_bytes = 0; size_t n; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv_off) { ESP_LOGE(TAG, "No IV offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } n = *iv_off; /* First process the *iv_off bytes * which are pending from the previous call to this API */ while (n > 0 && length > 0) { if (mode == MBEDTLS_AES_ENCRYPT) { iv[n] = *output++ = *input++ ^ iv[n]; } else { c = *input++; *output++ = c ^ iv[n]; iv[n] = c; } n = (n + 1) % AES_BLOCK_BYTES; length--; } if (length > 0) { stream_bytes = length % AES_BLOCK_BYTES; esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128); aes_hal_set_iv(iv); int r = esp_aes_process_dma(ctx, input, output, length, iv); if (r != 0) { esp_aes_release_hardware(); return r; } if (stream_bytes == 0) { // if we didn't need the partial 'stream block' then the new IV is in the IV register aes_hal_read_iv(iv); } else { // if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it), // In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next // block uses ciphertext as its IV input) // // Note: It may be more efficient to not process the partial block via DMA in this case. if (mode == MBEDTLS_AES_DECRYPT) { memcpy(iv, input + length - stream_bytes, stream_bytes); } } esp_aes_release_hardware(); } *iv_off = n + stream_bytes; return 0; } /* * AES-OFB (Output Feedback Mode) buffer encryption/decryption */ int esp_aes_crypt_ofb(esp_aes_context *ctx, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { size_t n; size_t stream_bytes = 0; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv_off) { ESP_LOGE(TAG, "No IV offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } n = *iv_off; /* If there is an offset then use the output of the previous AES block (the updated IV) to calculate the new output */ while (n > 0 && length > 0) { *output++ = (*input++ ^ iv[n]); n = (n + 1) & 0xF; length--; } if (length > 0) { stream_bytes = (length % AES_BLOCK_BYTES); esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB); aes_hal_set_iv(iv); int r = esp_aes_process_dma(ctx, input, output, length, iv); if (r != 0) { esp_aes_release_hardware(); return r; } aes_hal_read_iv(iv); esp_aes_release_hardware(); } *iv_off = n + stream_bytes; return 0; } /* * AES-CTR buffer encryption/decryption */ int esp_aes_crypt_ctr(esp_aes_context *ctx, size_t length, size_t *nc_off, unsigned char nonce_counter[16], unsigned char stream_block[16], const unsigned char *input, unsigned char *output ) { size_t n; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!stream_block) { ESP_LOGE(TAG, "No stream supplied"); return -1; } if (!nonce_counter) { ESP_LOGE(TAG, "No nonce supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!nc_off) { ESP_LOGE(TAG, "No nonce offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } n = *nc_off; if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } /* Process any unprocessed bytes left in stream block from last operation */ while (n > 0 && length > 0) { *output++ = (unsigned char)(*input++ ^ stream_block[n]); n = (n + 1) & 0xF; length--; } if (length > 0) { esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT); aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR); aes_hal_set_iv(nonce_counter); int r = esp_aes_process_dma(ctx, input, output, length, stream_block); if (r != 0) { esp_aes_release_hardware(); return r; } aes_hal_read_iv(nonce_counter); esp_aes_release_hardware(); } *nc_off = n + (length % AES_BLOCK_BYTES); return 0; } static bool s_check_dma_capable(const void *p) { bool is_capable = false; #if CONFIG_SPIRAM is_capable |= esp_ptr_dma_ext_capable(p); #endif is_capable |= esp_ptr_dma_capable(p); return is_capable; }