/* * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #if CONFIG_IDF_TARGET_ESP32 #include "soc/dport_reg.h" #include #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/cache.h" #include "soc/extmem_reg.h" #include "soc/ext_mem_defs.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/cache.h" #include "soc/extmem_reg.h" #include "soc/ext_mem_defs.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/cache.h" #include "soc/extmem_reg.h" #include "soc/ext_mem_defs.h" #elif CONFIG_IDF_TARGET_ESP32C2 #include "esp32c2/rom/cache.h" #include "soc/extmem_reg.h" #include "soc/ext_mem_defs.h" #elif CONFIG_IDF_TARGET_ESP32C6 #include "esp32c6/rom/cache.h" #include "soc/extmem_reg.h" #include "soc/ext_mem_defs.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rom/cache.h" #include "soc/extmem_reg.h" #include "soc/ext_mem_defs.h" #elif CONFIG_IDF_TARGET_ESP32P4 #include "esp32p4/rom/cache.h" #endif #include "esp_rom_spiflash.h" #include "hal/cache_hal.h" #include "hal/cache_ll.h" #include #include "sdkconfig.h" #ifndef CONFIG_FREERTOS_UNICORE #include "esp_ipc.h" #endif #include "esp_attr.h" #include "esp_memory_utils.h" #include "esp_intr_alloc.h" #include "spi_flash_mmap.h" #include "spi_flash_override.h" #include "esp_private/spi_flash_os.h" #include "esp_private/freertos_idf_additions_priv.h" #include "esp_log.h" #include "esp_cpu.h" static __attribute__((unused)) const char *TAG = "cache"; /** * These two shouldn't be declared as static otherwise if `CONFIG_SPI_FLASH_ROM_IMPL` is enabled, * they won't get replaced by the rom version */ void spi_flash_disable_cache(uint32_t cpuid, uint32_t *saved_state); void spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state); // Used only on ROM impl. in idf, this param unused, cache status hold by hal static uint32_t s_flash_op_cache_state[2]; #ifndef CONFIG_FREERTOS_UNICORE static SemaphoreHandle_t s_flash_op_mutex; static volatile bool s_flash_op_can_start = false; static volatile bool s_flash_op_complete = false; #ifndef NDEBUG static volatile int s_flash_op_cpu = -1; #endif static inline bool esp_task_stack_is_sane_cache_disabled(void) { const void *sp = (const void *)esp_cpu_get_sp(); return esp_ptr_in_dram(sp) #if CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP || esp_ptr_in_rtc_dram_fast(sp) #endif ; } void spi_flash_init_lock(void) { s_flash_op_mutex = xSemaphoreCreateRecursiveMutex(); assert(s_flash_op_mutex != NULL); } void spi_flash_op_lock(void) { xSemaphoreTakeRecursive(s_flash_op_mutex, portMAX_DELAY); } void spi_flash_op_unlock(void) { xSemaphoreGiveRecursive(s_flash_op_mutex); } /* If you're going to modify this, keep in mind that while the flash caches of the pro and app cpu are separate, the psram cache is *not*. If one of the CPUs returns from a flash routine with its cache enabled but the other CPUs cache is not enabled yet, you will have problems when accessing psram from the former CPU. */ void IRAM_ATTR spi_flash_op_block_func(void *arg) { // Disable scheduler on this CPU #ifdef CONFIG_FREERTOS_SMP /* Note: FreeRTOS SMP has changed the behavior of scheduler suspension. But the vTaskPreemptionDisable() function should achieve the same affect as before (i.e., prevent the current task from being preempted). */ vTaskPreemptionDisable(NULL); #else vTaskSuspendAll(); #endif // CONFIG_FREERTOS_SMP // Restore interrupts that aren't located in IRAM esp_intr_noniram_disable(); uint32_t cpuid = (uint32_t) arg; // s_flash_op_complete flag is cleared on *this* CPU, otherwise the other // CPU may reset the flag back to false before IPC task has a chance to check it // (if it is preempted by an ISR taking non-trivial amount of time) s_flash_op_complete = false; s_flash_op_can_start = true; while (!s_flash_op_complete) { // busy loop here and wait for the other CPU to finish flash operation } // Flash operation is complete, re-enable cache spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]); // Restore interrupts that aren't located in IRAM esp_intr_noniram_enable(); #ifdef CONFIG_FREERTOS_SMP //Note: Scheduler suspension behavior changed in FreeRTOS SMP vTaskPreemptionEnable(NULL); #else // Re-enable scheduler xTaskResumeAll(); #endif // CONFIG_FREERTOS_SMP } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu(void) { assert(esp_task_stack_is_sane_cache_disabled()); spi_flash_op_lock(); const int cpuid = xPortGetCoreID(); const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0; #ifndef NDEBUG // For sanity check later: record the CPU which has started doing flash operation assert(s_flash_op_cpu == -1); s_flash_op_cpu = cpuid; #endif if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) { // Scheduler hasn't been started yet, it means that spi_flash API is being // called from the 2nd stage bootloader or from user_start_cpu0, i.e. from // PRO CPU. APP CPU is either in reset or spinning inside user_start_cpu1, // which is in IRAM. So it is safe to disable cache for the other_cpuid after // esp_intr_noniram_disable. assert(other_cpuid == 1); } else { // Temporarily raise current task priority to prevent a deadlock while // waiting for IPC task to start on the other CPU prvTaskSavedPriority_t SavedPriority; prvTaskPriorityRaise(&SavedPriority, configMAX_PRIORITIES - 1); // Signal to the spi_flash_op_block_task on the other CPU that we need it to // disable cache there and block other tasks from executing. s_flash_op_can_start = false; ESP_ERROR_CHECK(esp_ipc_call(other_cpuid, &spi_flash_op_block_func, (void *) other_cpuid)); while (!s_flash_op_can_start) { // Busy loop and wait for spi_flash_op_block_func to disable cache // on the other CPU } #ifdef CONFIG_FREERTOS_SMP //Note: Scheduler suspension behavior changed in FreeRTOS SMP vTaskPreemptionDisable(NULL); #else // Disable scheduler on the current CPU vTaskSuspendAll(); #endif // CONFIG_FREERTOS_SMP // Can now set the priority back to the normal one prvTaskPriorityRestore(&SavedPriority); // This is guaranteed to run on CPU because the other CPU is now // occupied by highest priority task assert(xPortGetCoreID() == cpuid); } // Kill interrupts that aren't located in IRAM esp_intr_noniram_disable(); // This CPU executes this routine, with non-IRAM interrupts and the scheduler // disabled. The other CPU is spinning in the spi_flash_op_block_func task, also // with non-iram interrupts and the scheduler disabled. None of these CPUs will // touch external RAM or flash this way, so we can safely disable caches. spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]); #if SOC_IDCACHE_PER_CORE //only needed if cache(s) is per core spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]); #endif } void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu(void) { const int cpuid = xPortGetCoreID(); #ifndef NDEBUG // Sanity check: flash operation ends on the same CPU as it has started assert(cpuid == s_flash_op_cpu); // More sanity check: if scheduler isn't started, only CPU0 can call this. assert(!(xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED && cpuid != 0)); s_flash_op_cpu = -1; #endif // Re-enable cache. After this, cache (flash and external RAM) should work again. spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]); #if SOC_IDCACHE_PER_CORE //only needed if cache(s) is per core const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0; spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]); #endif if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { // Signal to spi_flash_op_block_task that flash operation is complete s_flash_op_complete = true; } // Re-enable non-iram interrupts esp_intr_noniram_enable(); // Resume tasks on the current CPU, if the scheduler has started. // NOTE: enabling non-IRAM interrupts has to happen before this, // because once the scheduler has started, due to preemption the // current task can end up being moved to the other CPU. // But esp_intr_noniram_enable has to be called on the same CPU which // called esp_intr_noniram_disable if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { #ifdef CONFIG_FREERTOS_SMP //Note: Scheduler suspension behavior changed in FreeRTOS SMP vTaskPreemptionEnable(NULL); #else xTaskResumeAll(); #endif // CONFIG_FREERTOS_SMP } // Release API lock spi_flash_op_unlock(); } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os(void) { const uint32_t cpuid = xPortGetCoreID(); const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0; // do not care about other CPU, it was halted upon entering panic handler spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]); // Kill interrupts that aren't located in IRAM esp_intr_noniram_disable(); // Disable cache on this CPU as well spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]); } void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os(void) { const uint32_t cpuid = xPortGetCoreID(); // Re-enable cache on this CPU spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]); // Re-enable non-iram interrupts esp_intr_noniram_enable(); } #else // CONFIG_FREERTOS_UNICORE void spi_flash_init_lock(void) { } void spi_flash_op_lock(void) { #ifdef CONFIG_FREERTOS_SMP if (xTaskGetSchedulerState() == taskSCHEDULER_RUNNING) { //Note: Scheduler suspension behavior changed in FreeRTOS SMP vTaskPreemptionDisable(NULL); } #else vTaskSuspendAll(); #endif // CONFIG_FREERTOS_SMP } void spi_flash_op_unlock(void) { #ifdef CONFIG_FREERTOS_SMP if (xTaskGetSchedulerState() == taskSCHEDULER_RUNNING) { //Note: Scheduler suspension behavior changed in FreeRTOS SMP vTaskPreemptionEnable(NULL); } #else xTaskResumeAll(); #endif // CONFIG_FREERTOS_SMP } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu(void) { spi_flash_op_lock(); esp_intr_noniram_disable(); spi_flash_disable_cache(0, &s_flash_op_cache_state[0]); } void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu(void) { spi_flash_restore_cache(0, s_flash_op_cache_state[0]); esp_intr_noniram_enable(); spi_flash_op_unlock(); } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os(void) { // Kill interrupts that aren't located in IRAM esp_intr_noniram_disable(); // Disable cache on this CPU as well spi_flash_disable_cache(0, &s_flash_op_cache_state[0]); } void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os(void) { // Re-enable cache on this CPU spi_flash_restore_cache(0, s_flash_op_cache_state[0]); // Re-enable non-iram interrupts esp_intr_noniram_enable(); } #endif // CONFIG_FREERTOS_UNICORE void IRAM_ATTR spi_flash_enable_cache(uint32_t cpuid) { #if CONFIG_IDF_TARGET_ESP32 uint32_t cache_value = cache_ll_l1_get_enabled_bus(cpuid); // Re-enable cache on this CPU spi_flash_restore_cache(cpuid, cache_value); #else spi_flash_restore_cache(0, 0); // TODO cache_value should be non-zero #endif } void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t *saved_state) { cache_hal_suspend(CACHE_TYPE_ALL); } void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state) { cache_hal_resume(CACHE_TYPE_ALL); } bool IRAM_ATTR spi_flash_cache_enabled(void) { return cache_hal_is_cache_enabled(CACHE_TYPE_ALL); } #if CONFIG_IDF_TARGET_ESP32S2 IRAM_ATTR void esp_config_instruction_cache_mode(void) { cache_size_t cache_size; cache_ways_t cache_ways; cache_line_size_t cache_line_size; #if CONFIG_ESP32S2_INSTRUCTION_CACHE_8KB Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID); cache_size = CACHE_SIZE_8KB; #else Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_ICACHE_HIGH, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID); cache_size = CACHE_SIZE_16KB; #endif cache_ways = CACHE_4WAYS_ASSOC; #if CONFIG_ESP32S2_INSTRUCTION_CACHE_LINE_16B cache_line_size = CACHE_LINE_SIZE_16B; #else cache_line_size = CACHE_LINE_SIZE_32B; #endif ESP_EARLY_LOGI(TAG, "Instruction cache \t: size %dKB, %dWays, cache line size %dByte", cache_size == CACHE_SIZE_8KB ? 8 : 16, 4, cache_line_size == CACHE_LINE_SIZE_16B ? 16 : 32); Cache_Suspend_ICache(); Cache_Set_ICache_Mode(cache_size, cache_ways, cache_line_size); Cache_Invalidate_ICache_All(); Cache_Resume_ICache(0); } IRAM_ATTR void esp_config_data_cache_mode(void) { cache_size_t cache_size; cache_ways_t cache_ways; cache_line_size_t cache_line_size; #if CONFIG_ESP32S2_INSTRUCTION_CACHE_8KB #if CONFIG_ESP32S2_DATA_CACHE_8KB Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID); cache_size = CACHE_SIZE_8KB; #else Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_DCACHE_HIGH, CACHE_MEMORY_INVALID); cache_size = CACHE_SIZE_16KB; #endif #else #if CONFIG_ESP32S2_DATA_CACHE_8KB Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_ICACHE_HIGH, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_INVALID); cache_size = CACHE_SIZE_8KB; #else Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_ICACHE_HIGH, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_DCACHE_HIGH); cache_size = CACHE_SIZE_16KB; #endif #endif cache_ways = CACHE_4WAYS_ASSOC; #if CONFIG_ESP32S2_DATA_CACHE_LINE_16B cache_line_size = CACHE_LINE_SIZE_16B; #else cache_line_size = CACHE_LINE_SIZE_32B; #endif ESP_EARLY_LOGI(TAG, "Data cache \t\t: size %dKB, %dWays, cache line size %dByte", cache_size == CACHE_SIZE_8KB ? 8 : 16, 4, cache_line_size == CACHE_LINE_SIZE_16B ? 16 : 32); Cache_Set_DCache_Mode(cache_size, cache_ways, cache_line_size); Cache_Invalidate_DCache_All(); } static IRAM_ATTR void esp_enable_cache_flash_wrap(bool icache, bool dcache) { uint32_t i_autoload, d_autoload; if (icache) { i_autoload = Cache_Suspend_ICache(); } if (dcache) { d_autoload = Cache_Suspend_DCache(); } REG_SET_BIT(EXTMEM_PRO_CACHE_WRAP_AROUND_CTRL_REG, EXTMEM_PRO_CACHE_FLASH_WRAP_AROUND); if (icache) { Cache_Resume_ICache(i_autoload); } if (dcache) { Cache_Resume_DCache(d_autoload); } } #if (CONFIG_IDF_TARGET_ESP32S2 && CONFIG_SPIRAM) static IRAM_ATTR void esp_enable_cache_spiram_wrap(bool icache, bool dcache) { uint32_t i_autoload, d_autoload; if (icache) { i_autoload = Cache_Suspend_ICache(); } if (dcache) { d_autoload = Cache_Suspend_DCache(); } REG_SET_BIT(EXTMEM_PRO_CACHE_WRAP_AROUND_CTRL_REG, EXTMEM_PRO_CACHE_SRAM_RD_WRAP_AROUND); if (icache) { Cache_Resume_ICache(i_autoload); } if (dcache) { Cache_Resume_DCache(d_autoload); } } #endif esp_err_t esp_enable_cache_wrap(bool icache_wrap_enable, bool dcache_wrap_enable) { int icache_wrap_size = 0, dcache_wrap_size = 0; int flash_wrap_sizes[2] = {-1, -1}, spiram_wrap_sizes[2] = {-1, -1}; int flash_wrap_size = 0, spiram_wrap_size = 0; int flash_count = 0, spiram_count = 0; int i; bool flash_spiram_wrap_together, flash_support_wrap = true, spiram_support_wrap = true; uint32_t drom0_in_icache = 1;//always 1 in esp32s2 #if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32P4 drom0_in_icache = 0; #endif if (icache_wrap_enable) { #if CONFIG_ESP32S2_INSTRUCTION_CACHE_LINE_16B || CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_16B icache_wrap_size = FLASH_WRAP_SIZE_16B; #else icache_wrap_size = FLASH_WRAP_SIZE_32B; #endif } if (dcache_wrap_enable) { #if CONFIG_ESP32S2_DATA_CACHE_LINE_16B || CONFIG_ESP32S3_DATA_CACHE_LINE_16B dcache_wrap_size = FLASH_WRAP_SIZE_16B; #else dcache_wrap_size = FLASH_WRAP_SIZE_32B; #endif } uint32_t instruction_use_spiram = 0; uint32_t rodata_use_spiram = 0; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS extern uint32_t esp_spiram_instruction_access_enabled(void); instruction_use_spiram = esp_spiram_instruction_access_enabled(); #endif #if CONFIG_SPIRAM_RODATA extern uint32_t esp_spiram_rodata_access_enabled(void); rodata_use_spiram = esp_spiram_rodata_access_enabled(); #endif if (instruction_use_spiram) { spiram_wrap_sizes[0] = icache_wrap_size; } else { flash_wrap_sizes[0] = icache_wrap_size; } if (rodata_use_spiram) { if (drom0_in_icache) { spiram_wrap_sizes[0] = icache_wrap_size; } else { spiram_wrap_sizes[1] = dcache_wrap_size; flash_wrap_sizes[1] = dcache_wrap_size; } } else { if (drom0_in_icache) { flash_wrap_sizes[0] = icache_wrap_size; } else { flash_wrap_sizes[1] = dcache_wrap_size; } } #if (CONFIG_IDF_TARGET_ESP32S2 && CONFIG_SPIRAM) spiram_wrap_sizes[1] = dcache_wrap_size; #endif for (i = 0; i < 2; i++) { if (flash_wrap_sizes[i] != -1) { flash_count++; flash_wrap_size = flash_wrap_sizes[i]; } } for (i = 0; i < 2; i++) { if (spiram_wrap_sizes[i] != -1) { spiram_count++; spiram_wrap_size = spiram_wrap_sizes[i]; } } if (flash_count + spiram_count <= 2) { flash_spiram_wrap_together = false; } else { flash_spiram_wrap_together = true; } ESP_EARLY_LOGI(TAG, "flash_count=%d, size=%d, spiram_count=%d, size=%d,together=%d", flash_count, flash_wrap_size, spiram_count, spiram_wrap_size, flash_spiram_wrap_together); if (flash_count > 1 && flash_wrap_sizes[0] != flash_wrap_sizes[1]) { ESP_EARLY_LOGW(TAG, "Flash wrap with different length %d and %d, abort wrap.", flash_wrap_sizes[0], flash_wrap_sizes[1]); if (spiram_wrap_size == 0) { return ESP_FAIL; } if (flash_spiram_wrap_together) { ESP_EARLY_LOGE(TAG, "Abort spiram wrap because flash wrap length not fixed."); return ESP_FAIL; } } if (spiram_count > 1 && spiram_wrap_sizes[0] != spiram_wrap_sizes[1]) { ESP_EARLY_LOGW(TAG, "SPIRAM wrap with different length %d and %d, abort wrap.", spiram_wrap_sizes[0], spiram_wrap_sizes[1]); if (flash_wrap_size == 0) { return ESP_FAIL; } if (flash_spiram_wrap_together) { ESP_EARLY_LOGW(TAG, "Abort flash wrap because spiram wrap length not fixed."); return ESP_FAIL; } } if (flash_spiram_wrap_together && flash_wrap_size != spiram_wrap_size) { ESP_EARLY_LOGW(TAG, "SPIRAM has different wrap length with flash, %d and %d, abort wrap.", spiram_wrap_size, flash_wrap_size); return ESP_FAIL; } #ifdef CONFIG_ESPTOOLPY_FLASHMODE_QIO flash_support_wrap = true; spi_flash_wrap_probe(); if (!spi_flash_support_wrap_size(flash_wrap_size)) { flash_support_wrap = false; ESP_EARLY_LOGW(TAG, "Flash do not support wrap size %d.", flash_wrap_size); } #else ESP_EARLY_LOGW(TAG, "Flash is not in QIO mode, do not support wrap."); #endif #if (CONFIG_IDF_TARGET_ESP32S2 && CONFIG_SPIRAM) extern bool psram_support_wrap_size(uint32_t wrap_size); if (!psram_support_wrap_size(spiram_wrap_size)) { spiram_support_wrap = false; ESP_EARLY_LOGW(TAG, "SPIRAM do not support wrap size %d.", spiram_wrap_size); } #endif if (flash_spiram_wrap_together && !(flash_support_wrap && spiram_support_wrap)) { ESP_EARLY_LOGW(TAG, "Flash and SPIRAM should support wrap together."); return ESP_FAIL; } if (flash_support_wrap && flash_wrap_size > 0) { ESP_EARLY_LOGI(TAG, "Flash wrap enabled, size = %d.", flash_wrap_size); spi_flash_wrap_enable(flash_wrap_size); esp_enable_cache_flash_wrap((flash_wrap_sizes[0] > 0), (flash_wrap_sizes[1] > 0)); } #if (CONFIG_IDF_TARGET_ESP32S2 && CONFIG_SPIRAM) extern esp_err_t psram_enable_wrap(uint32_t wrap_size); if (spiram_support_wrap && spiram_wrap_size > 0) { ESP_EARLY_LOGI(TAG, "SPIRAM wrap enabled, size = %d.", spiram_wrap_size); psram_enable_wrap(spiram_wrap_size); esp_enable_cache_spiram_wrap((spiram_wrap_sizes[0] > 0), (spiram_wrap_sizes[1] > 0)); } #endif return ESP_OK; } #endif #if CONFIG_IDF_TARGET_ESP32S3 IRAM_ATTR void esp_config_instruction_cache_mode(void) { cache_size_t cache_size; cache_ways_t cache_ways; cache_line_size_t cache_line_size; #if CONFIG_ESP32S3_INSTRUCTION_CACHE_16KB Cache_Occupy_ICache_MEMORY(CACHE_MEMORY_IBANK0, CACHE_MEMORY_INVALID); cache_size = CACHE_SIZE_HALF; #else Cache_Occupy_ICache_MEMORY(CACHE_MEMORY_IBANK0, CACHE_MEMORY_IBANK1); cache_size = CACHE_SIZE_FULL; #endif #if CONFIG_ESP32S3_INSTRUCTION_CACHE_4WAYS cache_ways = CACHE_4WAYS_ASSOC; #else cache_ways = CACHE_8WAYS_ASSOC; #endif #if CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_16B cache_line_size = CACHE_LINE_SIZE_16B; #elif CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_32B cache_line_size = CACHE_LINE_SIZE_32B; #else cache_line_size = CACHE_LINE_SIZE_64B; #endif ESP_EARLY_LOGI(TAG, "Instruction cache: size %dKB, %dWays, cache line size %dByte", cache_size == CACHE_SIZE_HALF ? 16 : 32, cache_ways == CACHE_4WAYS_ASSOC ? 4 : 8, cache_line_size == CACHE_LINE_SIZE_16B ? 16 : (cache_line_size == CACHE_LINE_SIZE_32B ? 32 : 64)); Cache_Set_ICache_Mode(cache_size, cache_ways, cache_line_size); Cache_Invalidate_ICache_All(); extern void Cache_Enable_ICache(uint32_t autoload); Cache_Enable_ICache(0); } IRAM_ATTR void esp_config_data_cache_mode(void) { cache_size_t cache_size; cache_ways_t cache_ways; cache_line_size_t cache_line_size; #if CONFIG_ESP32S3_DATA_CACHE_32KB Cache_Occupy_DCache_MEMORY(CACHE_MEMORY_DBANK1, CACHE_MEMORY_INVALID); cache_size = CACHE_SIZE_HALF; #else Cache_Occupy_DCache_MEMORY(CACHE_MEMORY_DBANK0, CACHE_MEMORY_DBANK1); cache_size = CACHE_SIZE_FULL; #endif #if CONFIG_ESP32S3_DATA_CACHE_4WAYS cache_ways = CACHE_4WAYS_ASSOC; #else cache_ways = CACHE_8WAYS_ASSOC; #endif #if CONFIG_ESP32S3_DATA_CACHE_LINE_16B cache_line_size = CACHE_LINE_SIZE_16B; #elif CONFIG_ESP32S3_DATA_CACHE_LINE_32B cache_line_size = CACHE_LINE_SIZE_32B; #else cache_line_size = CACHE_LINE_SIZE_64B; #endif // ESP_EARLY_LOGI(TAG, "Data cache: size %dKB, %dWays, cache line size %dByte", cache_size == CACHE_SIZE_HALF ? 32 : 64, cache_ways == CACHE_4WAYS_ASSOC ? 4 : 8, cache_line_size == CACHE_LINE_SIZE_16B ? 16 : (cache_line_size == CACHE_LINE_SIZE_32B ? 32 : 64)); Cache_Set_DCache_Mode(cache_size, cache_ways, cache_line_size); Cache_Invalidate_DCache_All(); } static IRAM_ATTR void esp_enable_cache_flash_wrap(bool icache, bool dcache) { uint32_t i_autoload, d_autoload; if (icache) { i_autoload = Cache_Suspend_ICache(); } if (dcache) { d_autoload = Cache_Suspend_DCache(); } REG_SET_BIT(EXTMEM_CACHE_WRAP_AROUND_CTRL_REG, EXTMEM_CACHE_FLASH_WRAP_AROUND); if (icache) { Cache_Resume_ICache(i_autoload); } if (dcache) { Cache_Resume_DCache(d_autoload); } } #if (CONFIG_IDF_TARGET_ESP32S3 && CONFIG_SPIRAM) static IRAM_ATTR void esp_enable_cache_spiram_wrap(bool icache, bool dcache) { uint32_t i_autoload, d_autoload; if (icache) { i_autoload = Cache_Suspend_ICache(); } if (dcache) { d_autoload = Cache_Suspend_DCache(); } REG_SET_BIT(EXTMEM_CACHE_WRAP_AROUND_CTRL_REG, EXTMEM_CACHE_SRAM_RD_WRAP_AROUND); if (icache) { Cache_Resume_ICache(i_autoload); } if (dcache) { Cache_Resume_DCache(d_autoload); } } #endif esp_err_t esp_enable_cache_wrap(bool icache_wrap_enable, bool dcache_wrap_enable) { int icache_wrap_size = 0, dcache_wrap_size = 0; int flash_wrap_sizes[2] = {-1, -1}, spiram_wrap_sizes[2] = {-1, -1}; int flash_wrap_size = 0, spiram_wrap_size = 0; int flash_count = 0, spiram_count = 0; int i; bool flash_spiram_wrap_together, flash_support_wrap = false, spiram_support_wrap = true; uint32_t drom0_in_icache = 0;//always 0 in chip7.2.4 if (icache_wrap_enable) { #if CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_16B icache_wrap_size = FLASH_WRAP_SIZE_16B; #elif CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_32B icache_wrap_size = FLASH_WRAP_SIZE_32B; #else icache_wrap_size = FLASH_WRAP_SIZE_64B; #endif } if (dcache_wrap_enable) { #if CONFIG_ESP32S3_DATA_CACHE_LINE_16B dcache_wrap_size = FLASH_WRAP_SIZE_16B; #elif CONFIG_ESP32S3_DATA_CACHE_LINE_32B dcache_wrap_size = FLASH_WRAP_SIZE_32B; #else dcache_wrap_size = FLASH_WRAP_SIZE_64B; #endif } uint32_t instruction_use_spiram = 0; uint32_t rodata_use_spiram = 0; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS extern uint32_t esp_spiram_instruction_access_enabled(void); instruction_use_spiram = esp_spiram_instruction_access_enabled(); #endif #if CONFIG_SPIRAM_RODATA extern uint32_t esp_spiram_rodata_access_enabled(void); rodata_use_spiram = esp_spiram_rodata_access_enabled(); #endif if (instruction_use_spiram) { spiram_wrap_sizes[0] = icache_wrap_size; } else { flash_wrap_sizes[0] = icache_wrap_size; } if (rodata_use_spiram) { if (drom0_in_icache) { spiram_wrap_sizes[0] = icache_wrap_size; } else { spiram_wrap_sizes[1] = dcache_wrap_size; } } else { if (drom0_in_icache) { flash_wrap_sizes[0] = icache_wrap_size; } else { flash_wrap_sizes[1] = dcache_wrap_size; } } #if (CONFIG_IDF_TARGET_ESP32S3 && CONFIG_SPIRAM) spiram_wrap_sizes[1] = dcache_wrap_size; #endif for (i = 0; i < 2; i++) { if (flash_wrap_sizes[i] != -1) { flash_count++; flash_wrap_size = flash_wrap_sizes[i]; } } for (i = 0; i < 2; i++) { if (spiram_wrap_sizes[i] != -1) { spiram_count++; spiram_wrap_size = spiram_wrap_sizes[i]; } } if (flash_count + spiram_count <= 2) { flash_spiram_wrap_together = false; } else { flash_spiram_wrap_together = true; } if (flash_count > 1 && flash_wrap_sizes[0] != flash_wrap_sizes[1]) { ESP_EARLY_LOGW(TAG, "Flash wrap with different length %d and %d, abort wrap.", flash_wrap_sizes[0], flash_wrap_sizes[1]); if (spiram_wrap_size == 0) { return ESP_FAIL; } if (flash_spiram_wrap_together) { ESP_EARLY_LOGE(TAG, "Abort spiram wrap because flash wrap length not fixed."); return ESP_FAIL; } } if (spiram_count > 1 && spiram_wrap_sizes[0] != spiram_wrap_sizes[1]) { ESP_EARLY_LOGW(TAG, "SPIRAM wrap with different length %d and %d, abort wrap.", spiram_wrap_sizes[0], spiram_wrap_sizes[1]); if (flash_wrap_size == 0) { return ESP_FAIL; } if (flash_spiram_wrap_together) { ESP_EARLY_LOGW(TAG, "Abort flash wrap because spiram wrap length not fixed."); return ESP_FAIL; } } if (flash_spiram_wrap_together && flash_wrap_size != spiram_wrap_size) { ESP_EARLY_LOGW(TAG, "SPIRAM has different wrap length with flash, %d and %d, abort wrap.", spiram_wrap_size, flash_wrap_size); return ESP_FAIL; } #ifdef CONFIG_ESPTOOLPY_FLASHMODE_QIO flash_support_wrap = true; spi_flash_wrap_probe(); if (!spi_flash_support_wrap_size(flash_wrap_size)) { flash_support_wrap = false; ESP_EARLY_LOGW(TAG, "Flash do not support wrap size %d.", flash_wrap_size); } #else ESP_EARLY_LOGW(TAG, "Flash is not in QIO mode, do not support wrap."); #endif #if (CONFIG_IDF_TARGET_ESP32S3 && CONFIG_SPIRAM) extern bool psram_support_wrap_size(uint32_t wrap_size); if (!psram_support_wrap_size(spiram_wrap_size)) { spiram_support_wrap = false; ESP_EARLY_LOGW(TAG, "SPIRAM do not support wrap size %d.", spiram_wrap_size); } #endif if (flash_spiram_wrap_together && !(flash_support_wrap && spiram_support_wrap)) { ESP_EARLY_LOGW(TAG, "Flash and SPIRAM should support wrap together."); return ESP_FAIL; } if (flash_support_wrap && flash_wrap_size > 0) { ESP_EARLY_LOGI(TAG, "Flash wrap enabled, size = %d.", flash_wrap_size); spi_flash_wrap_enable(flash_wrap_size); esp_enable_cache_flash_wrap((flash_wrap_sizes[0] > 0), (flash_wrap_sizes[1] > 0)); } #if (CONFIG_IDF_TARGET_ESP32S3 && CONFIG_SPIRAM) extern esp_err_t psram_enable_wrap(uint32_t wrap_size); if (spiram_support_wrap && spiram_wrap_size > 0) { ESP_EARLY_LOGI(TAG, "SPIRAM wrap enabled, size = %d.", spiram_wrap_size); psram_enable_wrap(spiram_wrap_size); esp_enable_cache_spiram_wrap((spiram_wrap_sizes[0] > 0), (spiram_wrap_sizes[1] > 0)); } #endif return ESP_OK; } #endif #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 static IRAM_ATTR void esp_enable_cache_flash_wrap(bool icache) { uint32_t i_autoload; if (icache) { i_autoload = Cache_Suspend_ICache(); } REG_SET_BIT(EXTMEM_CACHE_WRAP_AROUND_CTRL_REG, EXTMEM_CACHE_FLASH_WRAP_AROUND); if (icache) { Cache_Resume_ICache(i_autoload); } } esp_err_t esp_enable_cache_wrap(bool icache_wrap_enable) { int flash_wrap_size = 0; bool flash_support_wrap = false; if (icache_wrap_enable) { flash_wrap_size = 32; } #ifdef CONFIG_ESPTOOLPY_FLASHMODE_QIO flash_support_wrap = true; spi_flash_wrap_probe(); if (!spi_flash_support_wrap_size(flash_wrap_size)) { flash_support_wrap = false; ESP_EARLY_LOGW(TAG, "Flash do not support wrap size %d.", flash_wrap_size); } #else ESP_EARLY_LOGW(TAG, "Flash is not in QIO mode, do not support wrap."); #endif // CONFIG_ESPTOOLPY_FLASHMODE_QIO if (flash_support_wrap && flash_wrap_size > 0) { ESP_EARLY_LOGI(TAG, "Flash wrap enabled, size = %d.", flash_wrap_size); spi_flash_wrap_enable(flash_wrap_size); esp_enable_cache_flash_wrap((flash_wrap_size > 0)); } return ESP_OK; } #endif // CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 #if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-5670 void esp_config_l2_cache_mode(void) { cache_size_t cache_size; cache_line_size_t cache_line_size; #if CONFIG_ESP32P4_L2_CACHE_128KB cache_size = CACHE_SIZE_128K; #elif CONFIG_ESP32P4_L2_CACHE_256KB cache_size = CACHE_SIZE_256K; #else cache_size = CACHE_SIZE_512K; #endif #if CONFIG_ESP32P4_L2_CACHE_LINE_64B cache_line_size = CACHE_LINE_SIZE_64B; #else cache_line_size = CACHE_LINE_SIZE_128B; #endif Cache_Set_L2_Cache_Mode(cache_size, 8, cache_line_size); Cache_Invalidate_All(CACHE_MAP_L2_CACHE); } #endif