// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "esp_err.h" #include "esp_ipc.h" #include "esp_attr.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" static TaskHandle_t s_ipc_task_handle[portNUM_PROCESSORS]; static SemaphoreHandle_t s_ipc_mutex[portNUM_PROCESSORS]; // This mutex is used as a global lock for esp_ipc_* APIs static SemaphoreHandle_t s_ipc_sem[portNUM_PROCESSORS]; // Two semaphores used to wake each of ipc tasks static SemaphoreHandle_t s_ipc_ack[portNUM_PROCESSORS]; // Semaphore used to acknowledge that task was woken up, // or function has finished running static volatile esp_ipc_func_t s_func[portNUM_PROCESSORS]; // Function which should be called by high priority task static void * volatile s_func_arg[portNUM_PROCESSORS]; // Argument to pass into s_func typedef enum { IPC_WAIT_FOR_START, IPC_WAIT_FOR_END } esp_ipc_wait_t; static volatile esp_ipc_wait_t s_ipc_wait[portNUM_PROCESSORS];// This variable tells high priority task when it should give // s_ipc_ack semaphore: before s_func is called, or // after it returns #if CONFIG_APPTRACE_GCOV_ENABLE static volatile esp_ipc_func_t s_gcov_func = NULL; // Gcov dump starter function which should be called by high priority task static void * volatile s_gcov_func_arg; // Argument to pass into s_gcov_func #endif static void IRAM_ATTR ipc_task(void* arg) { const uint32_t cpuid = (uint32_t) arg; assert(cpuid == xPortGetCoreID()); while (true) { // Wait for IPC to be initiated. // This will be indicated by giving the semaphore corresponding to // this CPU. if (xSemaphoreTake(s_ipc_sem[cpuid], portMAX_DELAY) != pdTRUE) { // TODO: when can this happen? abort(); } #if CONFIG_APPTRACE_GCOV_ENABLE if (s_gcov_func) { (*s_gcov_func)(s_gcov_func_arg); s_gcov_func = NULL; } #endif if (s_func[cpuid]) { esp_ipc_func_t func = s_func[cpuid]; void* arg = s_func_arg[cpuid]; if (s_ipc_wait[cpuid] == IPC_WAIT_FOR_START) { xSemaphoreGive(s_ipc_ack[cpuid]); } (*func)(arg); if (s_ipc_wait[cpuid] == IPC_WAIT_FOR_END) { xSemaphoreGive(s_ipc_ack[cpuid]); } } } // TODO: currently this is unreachable code. Introduce esp_ipc_uninit // function which will signal to both tasks that they can shut down. // Not critical at this point, we don't have a use case for stopping // IPC yet. // Also need to delete the semaphore here. vTaskDelete(NULL); } /* * Initialize inter-processor call module. This function is called automatically * on CPU start and should not be called from the application. * * This function start two tasks, one on each CPU. These tasks are started * with high priority. These tasks are normally inactive, waiting until one of * the esp_ipc_call_* functions to be used. One of these tasks will be * woken up to execute the callback provided to esp_ipc_call_nonblocking or * esp_ipc_call_blocking. */ static void esp_ipc_init(void) __attribute__((constructor)); static void esp_ipc_init(void) { char task_name[15]; for (int i = 0; i < portNUM_PROCESSORS; ++i) { snprintf(task_name, sizeof(task_name), "ipc%d", i); s_ipc_mutex[i] = xSemaphoreCreateMutex(); s_ipc_ack[i] = xSemaphoreCreateBinary(); s_ipc_sem[i] = xSemaphoreCreateBinary(); portBASE_TYPE res = xTaskCreatePinnedToCore(ipc_task, task_name, CONFIG_ESP_IPC_TASK_STACK_SIZE, (void*) i, configMAX_PRIORITIES - 1, &s_ipc_task_handle[i], i); assert(res == pdTRUE); } } static esp_err_t esp_ipc_call_and_wait(uint32_t cpu_id, esp_ipc_func_t func, void* arg, esp_ipc_wait_t wait_for) { if (cpu_id >= portNUM_PROCESSORS) { return ESP_ERR_INVALID_ARG; } if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) { return ESP_ERR_INVALID_STATE; } #ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY TaskHandle_t task_handler = xTaskGetCurrentTaskHandle(); UBaseType_t priority_of_current_task = uxTaskPriorityGet(task_handler); UBaseType_t priority_of_running_ipc_task = uxTaskPriorityGet(s_ipc_task_handle[cpu_id]); if (priority_of_running_ipc_task < priority_of_current_task) { vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task); } xSemaphoreTake(s_ipc_mutex[cpu_id], portMAX_DELAY); vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task); #else xSemaphoreTake(s_ipc_mutex[0], portMAX_DELAY); #endif s_func[cpu_id] = func; s_func_arg[cpu_id] = arg; s_ipc_wait[cpu_id] = wait_for; xSemaphoreGive(s_ipc_sem[cpu_id]); xSemaphoreTake(s_ipc_ack[cpu_id], portMAX_DELAY); s_func[cpu_id] = NULL; #ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY xSemaphoreGive(s_ipc_mutex[cpu_id]); #else xSemaphoreGive(s_ipc_mutex[0]); #endif return ESP_OK; } esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg) { return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_START); } esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg) { return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_END); } // currently this is only called from gcov component #if CONFIG_APPTRACE_GCOV_ENABLE esp_err_t esp_ipc_start_gcov_from_isr(uint32_t cpu_id, esp_ipc_func_t func, void* arg) { if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) { return ESP_ERR_INVALID_STATE; } s_gcov_func = func; s_gcov_func_arg = arg; xSemaphoreGiveFromISR(s_ipc_sem[cpu_id], NULL); return ESP_OK; } #endif