// Copyright 2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The HAL layer for ADC (ESP32-C3 specific part) #include "hal/adc_hal.h" #include "hal/adc_types.h" /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ void adc_hal_digi_init(void) { adc_hal_init(); adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT); } void adc_hal_digi_deinit(void) { adc_ll_digi_trigger_disable(); // boss adc_ll_digi_dma_disable(); adc_ll_digi_clear_pattern_table(ADC_NUM_1); adc_ll_digi_clear_pattern_table(ADC_NUM_2); adc_ll_digi_filter_reset(ADC_NUM_1); adc_ll_digi_filter_reset(ADC_NUM_2); adc_ll_digi_reset(); adc_ll_digi_controller_clk_disable(); adc_hal_deinit(); } static inline void adc_set_init_code(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { uint32_t cal_val = adc_hal_calibration(adc_n, channel, atten, true, false); adc_hal_set_calibration_param(adc_n, cal_val); } void adc_hal_digi_controller_config(const adc_digi_config_t *cfg) { /* If enable digtal controller, adc xpd should always on. */ adc_ll_set_power_manage(ADC_POWER_SW_ON); /* Single channel mode or multi channel mode. */ adc_ll_digi_set_convert_mode(cfg->conv_mode); if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) { if (cfg->adc1_pattern_len) { adc_ll_digi_clear_pattern_table(ADC_NUM_1); adc_ll_digi_set_pattern_table_len(ADC_NUM_1, cfg->adc1_pattern_len); for (int i = 0; i < cfg->adc1_pattern_len; i++) { adc_ll_digi_set_pattern_table(ADC_NUM_1, i, cfg->adc1_pattern[i]); adc_set_init_code(ADC_NUM_1, cfg->adc1_pattern[i].channel, cfg->adc1_pattern[i].atten); } } } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) { if (cfg->adc2_pattern_len) { adc_ll_digi_clear_pattern_table(ADC_NUM_2); adc_ll_digi_set_pattern_table_len(ADC_NUM_2, cfg->adc2_pattern_len); for (int i = 0; i < cfg->adc2_pattern_len; i++) { adc_ll_digi_set_pattern_table(ADC_NUM_2, i, cfg->adc2_pattern[i]); adc_set_init_code(ADC_NUM_2, cfg->adc2_pattern[i].channel, cfg->adc2_pattern[i].atten); } } } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) { adc_ll_set_controller(ADC_NUM_1, ADC_CTRL_DIG); } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) { adc_ll_set_controller(ADC_NUM_2, ADC_CTRL_DIG); } adc_ll_digi_set_output_format(cfg->format); if (cfg->conv_limit_en) { adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num); adc_ll_digi_convert_limit_enable(); } else { adc_ll_digi_convert_limit_disable(); } adc_ll_digi_set_trigger_interval(cfg->interval); adc_hal_digi_clk_config(&cfg->dig_clk); adc_ll_digi_dma_set_eof_num(cfg->dma_eof_num); } /** * Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock. * Enable clock and select clock source for ADC digital controller. * Expression: controller_clk = APLL/APB * (div_num + div_b / div_a). * * @note ADC and DAC digital controller share the same frequency divider. * Please set a reasonable frequency division factor to meet the sampling frequency of the ADC and the output frequency of the DAC. * * @param clk Refer to ``adc_digi_clk_t``. */ void adc_hal_digi_clk_config(const adc_digi_clk_t *clk) { adc_ll_digi_controller_clk_div(clk->div_num, clk->div_b, clk->div_a); adc_ll_digi_controller_clk_enable(clk->use_apll); } /** * Enable digital controller to trigger the measurement. */ void adc_hal_digi_enable(void) { adc_ll_digi_dma_enable(); adc_ll_digi_trigger_enable(); } /** * Disable digital controller to trigger the measurement. */ void adc_hal_digi_disable(void) { adc_ll_digi_trigger_disable(); adc_ll_digi_dma_disable(); } /** * Config monitor of adc digital controller. * * @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. * @param config Refer to `adc_digi_monitor_t`. */ void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config) { adc_ll_digi_monitor_set_mode(adc_n, config->mode); adc_ll_digi_monitor_set_thres(adc_n, config->threshold); } /*--------------------------------------------------------------- Common setting ---------------------------------------------------------------*/ /** * Config ADC2 module arbiter. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC2 data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * @note Default priority: Wi-Fi > RTC > Digital; * * @param config Refer to `adc_arbiter_t`. */ void adc_hal_arbiter_config(adc_arbiter_t *config) { adc_ll_set_arbiter_work_mode(config->mode); adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri); } /*--------------------------------------------------------------- ADC calibration setting ---------------------------------------------------------------*/ #define ADC_HAL_CAL_OFFSET_RANGE (4096) #define ADC_HAL_CAL_TIMES (10) static uint16_t s_adc_cali_param[ADC_NUM_MAX][ADC_ATTEN_MAX] = { {0}, {0} }; static uint32_t adc_hal_read_self_cal(adc_ll_num_t adc_n, int channel) { adc_ll_rtc_start_convert(adc_n, channel); while (adc_ll_rtc_convert_is_done(adc_n) != true); return (uint32_t)adc_ll_rtc_get_convert_value(adc_n); } uint32_t adc_hal_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd, bool force_cal) { if (!force_cal) { if (s_adc_cali_param[adc_n][atten]) { return (uint32_t)s_adc_cali_param[adc_n][atten]; } } uint32_t code_list[ADC_HAL_CAL_TIMES] = {0}; uint32_t code_sum = 0; uint32_t code_h = 0; uint32_t code_l = 0; uint32_t chk_code = 0; uint32_t dout = 0; adc_hal_set_power_manage(ADC_POWER_SW_ON); if (adc_n == ADC_NUM_2) { adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config); } adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller // adc_hal_arbiter_config(adc_arbiter_t *config) adc_ll_calibration_prepare(adc_n, channel, internal_gnd); /* Enable/disable internal connect GND (for calibration). */ if (internal_gnd) { adc_ll_rtc_disable_channel(adc_n, channel); adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param. } else { adc_ll_rtc_enable_channel(adc_n, channel); adc_ll_set_atten(adc_n, channel, atten); } for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) { code_h = ADC_HAL_CAL_OFFSET_RANGE; code_l = 0; chk_code = (code_h + code_l) / 2; adc_ll_set_calibration_param(adc_n, chk_code); dout = adc_hal_read_self_cal(adc_n, channel); while (code_h - code_l > 1) { if (dout == 0) { code_h = chk_code; } else { code_l = chk_code; } chk_code = (code_h + code_l) / 2; adc_ll_set_calibration_param(adc_n, chk_code); dout = adc_hal_read_self_cal(adc_n, channel); if ((code_h - code_l == 1)) { chk_code += 1; adc_ll_set_calibration_param(adc_n, chk_code); dout = adc_hal_read_self_cal(adc_n, channel); } } code_list[rpt] = chk_code; code_sum += chk_code; } code_l = code_list[0]; code_h = code_list[0]; for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) { if (code_l > code_list[i]) { code_l = code_list[i]; } if (code_h < code_list[i]) { code_h = code_list[i]; } } chk_code = code_h + code_l; dout = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4) ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1; adc_ll_set_calibration_param(adc_n, dout); adc_ll_calibration_finish(adc_n); s_adc_cali_param[adc_n][atten] = (uint16_t)dout; return dout; }