/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "esp_types.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/idf_additions.h" #include "esp_log.h" #include "esp_check.h" #include "soc/gpio_periph.h" #include "soc/ledc_periph.h" #include "esp_clk_tree.h" #include "soc/soc_caps.h" #include "hal/ledc_hal.h" #include "hal/gpio_hal.h" #include "driver/ledc.h" #include "esp_rom_gpio.h" #include "esp_rom_sys.h" #include "clk_ctrl_os.h" #include "esp_private/periph_ctrl.h" #include "esp_memory_utils.h" static __attribute__((unused)) const char *LEDC_TAG = "ledc"; #define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str) #define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid") #define LEDC_CHECK_ISR(a, str, ret_val) ESP_RETURN_ON_FALSE_ISR(a, ret_val, LEDC_TAG, "%s", str) #define LEDC_ARG_CHECK_ISR(a, param) ESP_RETURN_ON_FALSE_ISR(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid") #define LEDC_CLK_NOT_FOUND 0 #define LEDC_SLOW_CLK_UNINIT -1 #define LEDC_TIMER_SPECIFIC_CLK_UNINIT -1 // Precision degree only affects RC_FAST, other clock sources' frequencies are fixed values // For targets that do not support RC_FAST calibration, can only use its approx. value. Precision degree other than // APPROX will trigger LOGW during the call to `esp_clk_tree_src_get_freq_hz`. #if SOC_CLK_RC_FAST_SUPPORT_CALIBRATION #define LEDC_CLK_SRC_FREQ_PRECISION ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED #else #define LEDC_CLK_SRC_FREQ_PRECISION ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX #endif #if !SOC_RCC_IS_INDEPENDENT #define LEDC_BUS_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC() #else #define LEDC_BUS_CLOCK_ATOMIC() #endif #if SOC_PERIPH_CLK_CTRL_SHARED #define LEDC_FUNC_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC() #else #define LEDC_FUNC_CLOCK_ATOMIC() #endif typedef enum { LEDC_FSM_IDLE, LEDC_FSM_HW_FADE, LEDC_FSM_ISR_CAL, LEDC_FSM_KILLED_PENDING, } ledc_fade_fsm_t; typedef struct { ledc_mode_t speed_mode; ledc_duty_direction_t direction; uint32_t target_duty; int cycle_num; int scale; ledc_fade_mode_t mode; SemaphoreHandle_t ledc_fade_sem; SemaphoreHandle_t ledc_fade_mux; ledc_cb_t ledc_fade_callback; void *cb_user_arg; volatile ledc_fade_fsm_t fsm; } ledc_fade_t; typedef struct { ledc_hal_context_t ledc_hal; /*!< LEDC hal context */ ledc_slow_clk_sel_t glb_clk; /*!< LEDC global clock selection */ bool timer_is_stopped[LEDC_TIMER_MAX]; /*!< Indicates whether each timer has been stopped */ bool glb_clk_is_acquired[LEDC_TIMER_MAX]; /*!< Tracks whether the global clock is being acquired by each timer */ #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX ledc_clk_src_t timer_specific_clk[LEDC_TIMER_MAX]; /*!< Tracks the timer-specific clock selection for each timer */ #endif } ledc_obj_t; static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0}; static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX]; static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL; static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED; static _lock_t s_ledc_mutex[LEDC_SPEED_MODE_MAX]; #define LEDC_VAL_NO_CHANGE (-1) #define LEDC_DUTY_NUM_MAX LEDC_LL_DUTY_NUM_MAX // Maximum steps per hardware fade #define LEDC_DUTY_DECIMAL_BIT_NUM (4) #define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF) #define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW" #define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST" #define DIM(array) (sizeof(array)/sizeof(*array)) #define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX) static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized"; static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed"; static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed"; //This value will be calibrated when in use. static uint32_t s_ledc_slow_clk_rc_fast_freq = 0; static const ledc_slow_clk_sel_t s_glb_clks[] = LEDC_LL_GLOBAL_CLOCKS; #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX static const ledc_clk_src_t s_timer_specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS; #endif static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel) { if (speed_mode == LEDC_LOW_SPEED_MODE) { ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel); } } static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel) { if (speed_mode == LEDC_LOW_SPEED_MODE) { ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel); } } //We know that RC_FAST is about 8M/20M, but don't know the actual value. So we need to do a calibration. static bool ledc_slow_clk_calibrate(void) { if (periph_rtc_dig_clk8m_enable()) { s_ledc_slow_clk_rc_fast_freq = periph_rtc_dig_clk8m_get_freq(); #if !SOC_CLK_RC_FAST_SUPPORT_CALIBRATION /* Workaround: RC_FAST calibration cannot be performed, we can only use its theoretic freq */ ESP_LOGD(LEDC_TAG, "Calibration cannot be performed, approximate RC_FAST_CLK : %"PRIu32" Hz", s_ledc_slow_clk_rc_fast_freq); #else ESP_LOGD(LEDC_TAG, "Calibrate RC_FAST_CLK : %"PRIu32" Hz", s_ledc_slow_clk_rc_fast_freq); #endif return true; } ESP_LOGE(LEDC_TAG, "Calibrate RC_FAST_CLK failed"); return false; } static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type) { if (type == LEDC_INTR_FADE_END) { ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true); } else { ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false); } return ESP_OK; } static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel) { ledc_fade_t *fade = s_ledc_fade_rec[mode][channel]; if (fade) { xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY); portENTER_CRITICAL(&ledc_spinlock); ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE); portEXIT_CRITICAL(&ledc_spinlock); } } static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel) { ledc_fade_t *fade = s_ledc_fade_rec[mode][channel]; if (fade) { xSemaphoreGive(fade->ledc_fade_sem); } } static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel) { ledc_fade_t *fade = s_ledc_fade_rec[mode][channel]; if (fade) { xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY); } } static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel) { ledc_fade_t *fade = s_ledc_fade_rec[mode][channel]; if (fade) { xSemaphoreGive(fade->ledc_fade_mux); } } static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel) { // The arguments are checked before internally calling this function. ledc_timer_t timer_sel; ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel); uint32_t max_duty; ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, &max_duty); return max_duty; } esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution, ledc_clk_src_t clk_src) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL(&ledc_spinlock); ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider); #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX /* Clock source can only be configured on targets which support timer-specific source clock. */ ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src); // TODO: acquire clk_src, and release old clk_src if initialized and different than new one [clk_tree] p_ledc_obj[speed_mode]->timer_specific_clk[timer_sel] = clk_src; #endif ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution); ledc_ls_timer_update(speed_mode, timer_sel); portEXIT_CRITICAL(&ledc_spinlock); return ESP_OK; } static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val, int duty_val, ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale) { if (hpoint_val >= 0) { ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val); } if (duty_val >= 0) { ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val); } ledc_hal_set_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 0, duty_direction, duty_cycle, duty_scale, duty_num); #if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, 1); #endif return ESP_OK; } esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL(&ledc_spinlock); ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel); ledc_ls_channel_update(speed_mode, channel); portEXIT_CRITICAL(&ledc_spinlock); return ESP_OK; } esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL(&ledc_spinlock); ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel); portEXIT_CRITICAL(&ledc_spinlock); return ESP_OK; } esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL(&ledc_spinlock); p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] = true; ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel); portEXIT_CRITICAL(&ledc_spinlock); return ESP_OK; } esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL(&ledc_spinlock); p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] = false; ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel); portEXIT_CRITICAL(&ledc_spinlock); return ESP_OK; } esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle) { esp_err_t ret; LEDC_ARG_CHECK(fn, "fn"); portENTER_CRITICAL(&ledc_spinlock); ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); portEXIT_CRITICAL(&ledc_spinlock); return ret; } static bool ledc_speed_mode_ctx_create(ledc_mode_t speed_mode) { bool new_ctx = false; // Prevent p_ledc_obj malloc concurrently _lock_acquire(&s_ledc_mutex[speed_mode]); if (!p_ledc_obj[speed_mode]) { ledc_obj_t *ledc_new_mode_obj = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (ledc_new_mode_obj) { new_ctx = true; ledc_hal_init(&(ledc_new_mode_obj->ledc_hal), speed_mode); ledc_new_mode_obj->glb_clk = LEDC_SLOW_CLK_UNINIT; #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX memset(ledc_new_mode_obj->timer_specific_clk, LEDC_TIMER_SPECIFIC_CLK_UNINIT, sizeof(ledc_clk_src_t) * LEDC_TIMER_MAX); #endif p_ledc_obj[speed_mode] = ledc_new_mode_obj; LEDC_BUS_CLOCK_ATOMIC() { ledc_ll_enable_bus_clock(true); ledc_ll_enable_reset_reg(false); } } } _lock_release(&s_ledc_mutex[speed_mode]); return new_ctx; } static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision) { /** * In order to find the right divisor, we need to divide the source clock * frequency by the desired frequency. However, two things to note here: * - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL * part. The higher bits represent the integer part, this is why we need * to right shift the source frequency. * - The `precision` parameter represents the granularity of the clock. It * **must** be a power of 2. It means that the resulted divisor is * a multiplier of `precision`. * * Let's take a concrete example, we need to generate a 5KHz clock out of * a 80MHz clock (APB). * If the precision is 1024 (10 bits), the resulted multiplier is: * (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0) * Let's ignore the fractional part to simplify the explanation, so we get * a result of 15 (0xf). * This can be interpreted as: every 15 "precision" ticks, the resulted * clock will go high, where one precision tick is made out of 1024 source * clock ticks. * Thus, every `15 * 1024` source clock ticks, the resulted clock will go * high. * * NOTE: We are also going to round up the value when necessary, thanks to: * (freq_hz * precision / 2) */ return (((uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS) + freq_hz * precision / 2) / (freq_hz * precision); } static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t *clk_target) { uint32_t ret = LEDC_CLK_NOT_FOUND; uint32_t clk_freq = 0; /* This function will go through all the following clock sources to look * for a valid divisor which generates the requested frequency. */ for (int i = 0; i < DIM(s_glb_clks); i++) { /* Before calculating the divisor, we need to have the RC_FAST frequency. * If it hasn't been measured yet, try calibrating it now. */ if (s_glb_clks[i] == LEDC_SLOW_CLK_RC_FAST && s_ledc_slow_clk_rc_fast_freq == 0 && !ledc_slow_clk_calibrate()) { ESP_LOGD(LEDC_TAG, "Unable to retrieve RC_FAST clock frequency, skipping it"); continue; } esp_clk_tree_src_get_freq_hz((soc_module_clk_t)s_glb_clks[i], LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq); uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision); /* If the divisor is valid, we can return this value. */ if (!LEDC_IS_DIV_INVALID(div_param)) { *clk_target = s_glb_clks[i]; ret = div_param; break; } } return ret; } #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision, ledc_clk_src_t *clk_source) { uint32_t ret = LEDC_CLK_NOT_FOUND; uint32_t clk_freq = 0; for (int i = 0; i < DIM(s_timer_specific_clks); i++) { esp_clk_tree_src_get_freq_hz((soc_module_clk_t)s_timer_specific_clks[i], LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq); uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision); /* If the divisor is valid, we can return this value. */ if (!LEDC_IS_DIV_INVALID(div_param)) { *clk_source = s_timer_specific_clks[i]; ret = div_param; break; } } #if SOC_LEDC_SUPPORT_HS_MODE /* On board that support LEDC high-speed mode, APB clock becomes a timer- * specific clock when in high speed mode. Check if it is necessary here * to test APB. */ if (speed_mode == LEDC_HIGH_SPEED_MODE && ret == LEDC_CLK_NOT_FOUND) { /* No divider was found yet, try with APB! */ esp_clk_tree_src_get_freq_hz((soc_module_clk_t)LEDC_APB_CLK, LEDC_CLK_SRC_FREQ_PRECISION, &clk_freq); uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision); if (!LEDC_IS_DIV_INVALID(div_param)) { *clk_source = LEDC_APB_CLK; ret = div_param; } } #endif return ret; } #endif /** * @brief Try to find the clock with its divisor giving the frequency requested * by the caller. */ static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision, ledc_clk_src_t *clk_source, ledc_slow_clk_sel_t *clk_target) { uint32_t ret = LEDC_CLK_NOT_FOUND; #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX /* If the SoC presents timer-specific clock(s), try to achieve the given frequency * thanks to it/them. * clk_source parameter will returned by this function. */ uint32_t div_param_timer = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source); if (div_param_timer != LEDC_CLK_NOT_FOUND) { /* The divider is valid, no need try any other clock, return directly. */ ret = div_param_timer; } #endif /* On ESP32, only low speed channel can use the global clocks. For other * chips, there are no high speed channels. */ if (ret == LEDC_CLK_NOT_FOUND && speed_mode == LEDC_LOW_SPEED_MODE) { uint32_t div_param_global = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target); if (div_param_global != LEDC_CLK_NOT_FOUND) { *clk_source = LEDC_SCLK; ret = div_param_global; } } return ret; } /** * @brief Function setting the LEDC timer divisor with the given source clock, * frequency and resolution. If the clock configuration passed is * LEDC_AUTO_CLK, the clock will be determined automatically (if possible). */ static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution) { uint32_t div_param = 0; const uint32_t precision = (0x1 << duty_resolution); /* The clock sources are not initialized on purpose. To produce compiler warning if used but the selector functions * don't set them properly. */ /* Timer-specific mux. Set to timer-specific clock or LEDC_SCLK if a global clock is used. */ ledc_clk_src_t timer_clk_src; /* Global clock mux. Should be set when LEDC_SCLK is used in LOW_SPEED_MODE. Otherwise left uninitialized. */ ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_UNINIT; if (clk_cfg == LEDC_AUTO_CLK) { /* User hasn't specified the speed, we should try to guess it. */ div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk); } else if (clk_cfg == LEDC_USE_RC_FAST_CLK) { /* User specified source clock(RC_FAST_CLK) for low speed channel. * Make sure the speed mode is correct. */ ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RC_FAST clock can only be used in low speed mode"); /* Before calculating the divisor, we need to have the RC_FAST frequency. * If it hasn't been measured yet, try calibrating it now. */ if (s_ledc_slow_clk_rc_fast_freq == 0 && ledc_slow_clk_calibrate() == false) { goto error; } /* Set the global clock source */ timer_clk_src = LEDC_SCLK; glb_clk = LEDC_SLOW_CLK_RC_FAST; /* We have the RC_FAST clock frequency now. */ div_param = ledc_calculate_divisor(s_ledc_slow_clk_rc_fast_freq, freq_hz, precision); if (LEDC_IS_DIV_INVALID(div_param)) { div_param = LEDC_CLK_NOT_FOUND; } } else { #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) { /* Currently we can convert a timer-specific clock to a source clock that * easily because their values are identical in the enumerations (on purpose) * If we decide to change the values in the future, we should consider defining * a macro/function to convert timer-specific clock to clock source .*/ timer_clk_src = (ledc_clk_src_t) clk_cfg; } else #endif { timer_clk_src = LEDC_SCLK; #if SOC_LEDC_SUPPORT_REF_TICK assert(clk_cfg != LEDC_USE_REF_TICK); // REF_TICK is NOT a global clock, it is a timer-specific clock #endif glb_clk = (ledc_slow_clk_sel_t)clk_cfg; } uint32_t src_clk_freq = 0; esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_cfg, LEDC_CLK_SRC_FREQ_PRECISION, &src_clk_freq); div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision); if (LEDC_IS_DIV_INVALID(div_param)) { div_param = LEDC_CLK_NOT_FOUND; } } if (div_param == LEDC_CLK_NOT_FOUND) { goto error; } /* The following debug message makes more sense for AUTO mode. */ ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%"PRIx32, timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param); /* The following block configures the global clock. * Thus, in theory, this only makes sense when configuring the LOW_SPEED timer and the source clock is LEDC_SCLK (as * HIGH_SPEED timers won't be clocked by the global clock). However, there are some limitations due to HW design. */ if (speed_mode == LEDC_LOW_SPEED_MODE) { #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX /* On ESP32 and ESP32-S2, when the source clock of LOW_SPEED timer is a timer-specific one (i.e. REF_TICK), the * global clock MUST be set to APB_CLK. For HIGH_SPEED timers, this is not necessary. */ if (timer_clk_src != LEDC_SCLK) { glb_clk = LEDC_SLOW_CLK_APB; } #else /* On later chips, there is only one type of timer/channel (referred as LOW_SPEED in the code), which can only be * clocked by the global clock. So there's no limitation on the global clock, except that it must be set. */ assert(timer_clk_src == LEDC_SCLK); #endif // Arriving here, variable glb_clk must have been assigned to one of the ledc_slow_clk_sel_t enum values assert(glb_clk != LEDC_SLOW_CLK_UNINIT); portENTER_CRITICAL(&ledc_spinlock); if (p_ledc_obj[speed_mode]->glb_clk != LEDC_SLOW_CLK_UNINIT && p_ledc_obj[speed_mode]->glb_clk != glb_clk) { for (int i = 0; i < LEDC_TIMER_MAX; i++) { if (i != timer_num && p_ledc_obj[speed_mode]->glb_clk_is_acquired[i]) { portEXIT_CRITICAL(&ledc_spinlock); ESP_RETURN_ON_FALSE(false, ESP_FAIL, LEDC_TAG, "timer clock conflict, already is %d but attempt to %d", p_ledc_obj[speed_mode]->glb_clk, glb_clk); } } } p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_num] = true; if (p_ledc_obj[speed_mode]->glb_clk != glb_clk) { // TODO: release old glb_clk (if not UNINIT), and acquire new glb_clk [clk_tree] p_ledc_obj[speed_mode]->glb_clk = glb_clk; LEDC_FUNC_CLOCK_ATOMIC() { ledc_ll_enable_clock(p_ledc_obj[speed_mode]->ledc_hal.dev, true); ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk); } } portEXIT_CRITICAL(&ledc_spinlock); ESP_LOGD(LEDC_TAG, "In slow speed mode, global clk set: %d", glb_clk); /* keep ESP_PD_DOMAIN_RC_FAST on during light sleep */ extern void esp_sleep_periph_use_8m(bool use_or_not); esp_sleep_periph_use_8m(glb_clk == LEDC_SLOW_CLK_RC_FAST); } /* The divisor is correct, we can write in the hardware. */ ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src); return ESP_OK; error: ESP_LOGE(LEDC_TAG, "requested frequency %d and duty resolution %d can not be achieved, try reducing freq_hz or duty_resolution. div_param=%"PRIu32, freq_hz, duty_resolution, div_param); return ESP_FAIL; } static esp_err_t ledc_timer_del(ledc_mode_t speed_mode, ledc_timer_t timer_sel) { LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); bool is_configured = true; bool is_deleted = false; portENTER_CRITICAL(&ledc_spinlock); #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX if (p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] == false && p_ledc_obj[speed_mode]->timer_specific_clk[timer_sel] == LEDC_TIMER_SPECIFIC_CLK_UNINIT) #else if (p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] == false) #endif { is_configured = false; } else if (p_ledc_obj[speed_mode]->timer_is_stopped[timer_sel] == true) { is_deleted = true; p_ledc_obj[speed_mode]->glb_clk_is_acquired[timer_sel] = false; // TODO: release timer specific clk and global clk if possible [clk_tree] } portEXIT_CRITICAL(&ledc_spinlock); ESP_RETURN_ON_FALSE(is_configured && is_deleted, ESP_ERR_INVALID_STATE, LEDC_TAG, "timer hasn't been configured, or it is still running, please stop it with ledc_timer_pause first"); return ESP_OK; } esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf) { LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf"); uint32_t freq_hz = timer_conf->freq_hz; uint32_t duty_resolution = timer_conf->duty_resolution; uint32_t timer_num = timer_conf->timer_num; uint32_t speed_mode = timer_conf->speed_mode; LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num"); if (timer_conf->deconfigure) { return ledc_timer_del(speed_mode, timer_num); } LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RC_FAST_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RC_FAST_CLK"); if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) { ESP_LOGE(LEDC_TAG, "freq_hz=%"PRIu32" duty_resolution=%"PRIu32, freq_hz, duty_resolution); return ESP_ERR_INVALID_ARG; } if (!ledc_speed_mode_ctx_create(speed_mode) && !p_ledc_obj[speed_mode]) { return ESP_ERR_NO_MEM; } esp_err_t ret = ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution); if (ret == ESP_OK) { /* Make sure timer is running and reset the timer. */ ledc_timer_resume(speed_mode, timer_num); ledc_timer_rst(speed_mode, timer_num); } return ret; } esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel) { LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel"); LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num"); LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO); gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0); return ESP_OK; } esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf) { LEDC_ARG_CHECK(ledc_conf, "ledc_conf"); uint32_t speed_mode = ledc_conf->speed_mode; int gpio_num = ledc_conf->gpio_num; uint32_t ledc_channel = ledc_conf->channel; uint32_t timer_select = ledc_conf->timer_sel; uint32_t intr_type = ledc_conf->intr_type; uint32_t duty = ledc_conf->duty; uint32_t hpoint = ledc_conf->hpoint; bool output_invert = ledc_conf->flags.output_invert; LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel"); LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num"); LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select"); LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type"); esp_err_t ret = ESP_OK; bool new_speed_mode_ctx_created = ledc_speed_mode_ctx_create(speed_mode); if (!new_speed_mode_ctx_created && !p_ledc_obj[speed_mode]) { return ESP_ERR_NO_MEM; } #if !(CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32P4) // On such targets, the default ledc core(global) clock does not connect to any clock source // Set channel configurations and update bits before core clock is on could lead to error // Therefore, we should connect the core clock to a real clock source to make it on before any ledc register operation // It can be switched to the other desired clock sources to meet the output pwm freq requirement later at timer configuration // So we consider the glb_clk still as LEDC_SLOW_CLK_UNINIT else if (new_speed_mode_ctx_created) { portENTER_CRITICAL(&ledc_spinlock); if (p_ledc_obj[speed_mode]->glb_clk == LEDC_SLOW_CLK_UNINIT) { ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), LEDC_LL_GLOBAL_CLK_DEFAULT); } portEXIT_CRITICAL(&ledc_spinlock); } #endif /*set channel parameters*/ /* channel parameters decide how the waveform looks like in one period */ /* set channel duty and hpoint value, duty range is [0, (2**duty_res)], hpoint range is [0, (2**duty_res)-1] */ /* Note: On ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2, ESP32C6, ESP32H2, ESP32P4, due to a hardware bug, * 100% duty cycle (i.e. 2**duty_res) is not reachable when the binded timer selects the maximum duty * resolution. For example, the max duty resolution on ESP32C3 is 14-bit width, then set duty to (2**14) * will mess up the duty calculation in hardware. */ ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint); /*update duty settings*/ ledc_update_duty(speed_mode, ledc_channel); /*bind the channel with the timer*/ ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select); /*set interrupt type*/ portENTER_CRITICAL(&ledc_spinlock); ledc_enable_intr_type(speed_mode, ledc_channel, intr_type); portEXIT_CRITICAL(&ledc_spinlock); ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %"PRIu32"|GPIO %02u|Duty %04"PRIu32"|Time %"PRIu32, ledc_channel, gpio_num, duty, timer_select); /*set LEDC signal in gpio matrix*/ gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO); gpio_set_level(gpio_num, output_invert); gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0); return ret; } static void _ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel) { ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true); ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true); ledc_ls_channel_update(speed_mode, channel); } esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel) { LEDC_ARG_CHECK_ISR(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK_ISR(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_CHECK_ISR(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL_SAFE(&ledc_spinlock); _ledc_update_duty(speed_mode, channel); portEXIT_CRITICAL_SAFE(&ledc_spinlock); return ESP_OK; } esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level) { LEDC_ARG_CHECK_ISR(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK_ISR(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_CHECK_ISR(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL_SAFE(&ledc_spinlock); ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level); ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false); ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false); ledc_ls_channel_update(speed_mode, channel); portEXIT_CRITICAL_SAFE(&ledc_spinlock); return ESP_OK; } esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction, uint32_t step_num, uint32_t duty_cycle_num, uint32_t duty_scale) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction"); LEDC_ARG_CHECK(step_num <= LEDC_LL_DUTY_NUM_MAX, "step_num"); LEDC_ARG_CHECK(duty_cycle_num <= LEDC_LL_DUTY_CYCLE_MAX, "duty_cycle_num"); LEDC_ARG_CHECK(duty_scale <= LEDC_LL_DUTY_SCALE_MAX, "duty_scale"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); _ledc_fade_hw_acquire(speed_mode, channel); portENTER_CRITICAL(&ledc_spinlock); ledc_duty_config(speed_mode, channel, //uint32_t chan_num, LEDC_VAL_NO_CHANGE, duty, //uint32_t duty_val, fade_direction, //uint32_t increase, step_num, //uint32_t duty_num, duty_cycle_num, //uint32_t duty_cycle, duty_scale //uint32_t duty_scale ); portEXIT_CRITICAL(&ledc_spinlock); _ledc_fade_hw_release(speed_mode, channel); return ESP_OK; } esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); /* The channel configuration should not be changed before the fade operation is done. */ _ledc_fade_hw_acquire(speed_mode, channel); portENTER_CRITICAL(&ledc_spinlock); ledc_duty_config(speed_mode, channel, //uint32_t chan_num, hpoint, //uint32_t hpoint_val, duty, //uint32_t duty_val, 1, //uint32_t increase, 1, //uint32_t duty_num, 1, //uint32_t duty_cycle, 0 //uint32_t duty_scale ); portEXIT_CRITICAL(&ledc_spinlock); _ledc_fade_hw_release(speed_mode, channel); return ESP_OK; } esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); /* The channel configuration should not be changed before the fade operation is done. */ _ledc_fade_hw_acquire(speed_mode, channel); portENTER_CRITICAL(&ledc_spinlock); ledc_duty_config(speed_mode, channel, //uint32_t chan_num, LEDC_VAL_NO_CHANGE, duty, //uint32_t duty_val, 1, //uint32_t increase, 1, //uint32_t duty_num, 1, //uint32_t duty_cycle, 0 //uint32_t duty_scale ); portEXIT_CRITICAL(&ledc_spinlock); _ledc_fade_hw_release(speed_mode, channel); return ESP_OK; } uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); uint32_t duty = 0; ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty); return duty; } int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel) { LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL); LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); uint32_t hpoint = 0; ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint); return hpoint; } esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK; uint32_t duty_resolution = 0; ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg); ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution); return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution); } uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); portENTER_CRITICAL(&ledc_spinlock); uint32_t clock_divider = 0; uint32_t duty_resolution = 0; ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK; ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider); ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution); ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg); uint32_t precision = (0x1 << duty_resolution); uint32_t src_clk_freq = 0; esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_cfg, LEDC_CLK_SRC_FREQ_PRECISION, &src_clk_freq); portEXIT_CRITICAL(&ledc_spinlock); if (clock_divider == 0) { ESP_LOGW(LEDC_TAG, "LEDC timer not configured, call ledc_timer_config to set timer frequency"); return 0; } return (((uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS) + precision * clock_divider / 2) / (precision * clock_divider); } static inline uint32_t ilog2(uint32_t i) { assert(i > 0); uint32_t log = 0; while (i >>= 1) { ++log; } return log; } // https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf#ledpwm uint32_t ledc_find_suitable_duty_resolution(uint32_t src_clk_freq, uint32_t timer_freq) { // Highest resolution is calculated when LEDC_CLK_DIV = 1 (i.e. div_param = 1 << LEDC_LL_FRACTIONAL_BITS) uint32_t div = (src_clk_freq + timer_freq / 2) / timer_freq; // rounded uint32_t duty_resolution = MIN(ilog2(div), SOC_LEDC_TIMER_BIT_WIDTH); uint32_t div_param = ledc_calculate_divisor(src_clk_freq, timer_freq, 1 << duty_resolution); if (LEDC_IS_DIV_INVALID(div_param)) { div = src_clk_freq / timer_freq; // truncated duty_resolution = MIN(ilog2(div), SOC_LEDC_TIMER_BIT_WIDTH); div_param = ledc_calculate_divisor(src_clk_freq, timer_freq, 1 << duty_resolution); if (LEDC_IS_DIV_INVALID(div_param)) { duty_resolution = 0; } } return duty_resolution; } static inline void IRAM_ATTR ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel) { uint32_t i = __builtin_ffs((*fade_end_status)) - 1; (*fade_end_status) &= ~(1 << i); *channel = i; } static void IRAM_ATTR ledc_fade_isr(void *arg) { bool cb_yield = false; BaseType_t HPTaskAwoken = pdFALSE; uint32_t speed_mode = 0; uint32_t channel = 0; uint32_t intr_status = 0; ledc_fade_fsm_t state; for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) { if (p_ledc_obj[speed_mode] == NULL) { continue; } ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status); while (intr_status) { ledc_calc_fade_end_channel(&intr_status, &channel); // clear interrupt ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel); if (s_ledc_fade_rec[speed_mode][channel] == NULL) { //fade object not initialized yet. continue; } // Switch fade state to ISR_CAL if current state is HW_FADE bool already_stopped = false; portENTER_CRITICAL_ISR(&ledc_spinlock); state = s_ledc_fade_rec[speed_mode][channel]->fsm; assert(state != LEDC_FSM_ISR_CAL && state != LEDC_FSM_KILLED_PENDING); if (state == LEDC_FSM_HW_FADE) { s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_ISR_CAL; } else if (state == LEDC_FSM_IDLE) { // interrupt seen, but has already been stopped by task already_stopped = true; } portEXIT_CRITICAL_ISR(&ledc_spinlock); if (already_stopped) { continue; } bool set_to_idle = false; int cycle = 0; int delta = 0; int step = 0; int next_duty = 0; uint32_t duty_cur = 0; ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur); uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty; #if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED // If a multi-fade is done, check that target duty computed in sw is equal to the duty at the end of the fade uint32_t range_num; ledc_hal_get_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &range_num); if (range_num > 1) { assert(duty_cur == duty_tar); } #endif int scale = s_ledc_fade_rec[speed_mode][channel]->scale; if (duty_cur == duty_tar || scale == 0) { // Target duty has reached set_to_idle = true; } else { // Calculate new duty config parameters delta = (s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE) ? (duty_cur - duty_tar) : (duty_tar - duty_cur); if (delta > scale) { next_duty = duty_cur; step = (delta / scale > LEDC_DUTY_NUM_MAX) ? LEDC_DUTY_NUM_MAX : (delta / scale); cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num; } else { next_duty = duty_tar; step = 1; cycle = 1; scale = 0; } } bool finished = false; portENTER_CRITICAL_ISR(&ledc_spinlock); state = s_ledc_fade_rec[speed_mode][channel]->fsm; assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_HW_FADE); if (set_to_idle || state == LEDC_FSM_KILLED_PENDING) { // Either fade has completed or has been killed, skip HW duty config finished = true; s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE; } else if (state == LEDC_FSM_ISR_CAL) { // Loading new fade to start ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, next_duty, s_ledc_fade_rec[speed_mode][channel]->direction, step, cycle, scale); s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_HW_FADE; ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true); ledc_ls_channel_update(speed_mode, channel); } portEXIT_CRITICAL_ISR(&ledc_spinlock); if (finished) { xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken); ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback; if (fade_cb) { ledc_cb_param_t param = { .event = LEDC_FADE_END_EVT, .speed_mode = speed_mode, .channel = channel, .duty = duty_cur }; cb_yield |= fade_cb(¶m, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg); } } } } if (HPTaskAwoken == pdTRUE || cb_yield) { portYIELD_FROM_ISR(); } } static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel) { if (s_ledc_fade_rec[speed_mode][channel]) { if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) { vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux); s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL; } if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) { vSemaphoreDeleteWithCaps(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem); s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL; } free(s_ledc_fade_rec[speed_mode][channel]); s_ledc_fade_rec[speed_mode][channel] = NULL; } return ESP_OK; } static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel) { if (s_ledc_fade_isr_handle == NULL) { ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install"); return ESP_FAIL; } if (s_ledc_fade_rec[speed_mode][channel] == NULL) { // Always malloc internally since LEDC ISR is always placed in IRAM s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (s_ledc_fade_rec[speed_mode][channel] == NULL) { ledc_fade_channel_deinit(speed_mode, channel); return ESP_ERR_NO_MEM; } s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryWithCaps(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex(); xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem); s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE; } if (s_ledc_fade_rec[speed_mode][channel] && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) { return ESP_OK; } else { ledc_fade_channel_deinit(speed_mode, channel); return ESP_FAIL; } } static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num) { portENTER_CRITICAL(&ledc_spinlock); uint32_t duty_cur = 0; ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur); // When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow. if (duty_cur == ledc_get_max_duty(speed_mode, channel)) { duty_cur -= 1; } s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode; s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty; s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num; s_ledc_fade_rec[speed_mode][channel]->scale = scale; int step_num = 0; int dir = LEDC_DUTY_DIR_DECREASE; if (scale > 0) { if (duty_cur > target_duty) { s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE; step_num = (duty_cur - target_duty) / scale; step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num; } else { s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE; dir = LEDC_DUTY_DIR_INCREASE; step_num = (target_duty - duty_cur) / scale; step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num; } } portEXIT_CRITICAL(&ledc_spinlock); if (scale > 0 && step_num > 0) { portENTER_CRITICAL(&ledc_spinlock); ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale); portEXIT_CRITICAL(&ledc_spinlock); ESP_LOGD(LEDC_TAG, "cur duty: %"PRIu32"; target: %"PRIu32", step: %d, cycle: %d; scale: %d; dir: %d", duty_cur, target_duty, step_num, cycle_num, scale, dir); } else { // Directly set duty to the target, does not care on the dir portENTER_CRITICAL(&ledc_spinlock); ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, 1, 1, 1, 0); portEXIT_CRITICAL(&ledc_spinlock); ESP_LOGD(LEDC_TAG, "Set to target duty: %"PRIu32, target_duty); } return ESP_OK; } static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms) { ledc_timer_t timer_sel; uint32_t duty_cur = 0; ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel); ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur); uint32_t freq = ledc_get_freq(speed_mode, timer_sel); uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty; if (duty_delta == 0) { return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0); } uint32_t total_cycles = max_fade_time_ms * freq / 1000; if (total_cycles == 0) { ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR); return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0); } int scale, cycle_num; if (total_cycles > duty_delta) { scale = 1; cycle_num = total_cycles / duty_delta; if (cycle_num > LEDC_LL_DUTY_CYCLE_MAX) { ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR); cycle_num = LEDC_LL_DUTY_CYCLE_MAX; } } else { cycle_num = 1; scale = duty_delta / total_cycles; if (scale > LEDC_LL_DUTY_SCALE_MAX) { ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR); scale = LEDC_LL_DUTY_SCALE_MAX; } } return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num); } static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode) { ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel]; fade->mode = fade_mode; // Clear interrupt status of channel ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel); // Enable interrupt for channel portENTER_CRITICAL(&ledc_spinlock); ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END); // Set fade state to HW_FADE state for starting the fade assert(fade->fsm == LEDC_FSM_IDLE); fade->fsm = LEDC_FSM_HW_FADE; portEXIT_CRITICAL(&ledc_spinlock); // Trigger the fade ledc_update_duty(speed_mode, channel); if (fade_mode == LEDC_FADE_WAIT_DONE) { // Waiting for fade done _ledc_fade_hw_acquire(speed_mode, channel); // Release hardware to support next time fade configure _ledc_fade_hw_release(speed_mode, channel); } } esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); _ledc_fade_hw_acquire(speed_mode, channel); _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms); _ledc_fade_hw_release(speed_mode, channel); return ESP_OK; } esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale"); LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num"); LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); _ledc_fade_hw_acquire(speed_mode, channel); _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num); _ledc_fade_hw_release(speed_mode, channel); return ESP_OK; } esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode) { LEDC_CHECK(s_ledc_fade_rec[speed_mode][channel] != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); _ledc_fade_hw_acquire(speed_mode, channel); _ledc_fade_start(speed_mode, channel, fade_mode); return ESP_OK; } // ESP32 does not support this functionality, fade cannot be overwritten with new duty config #if SOC_LEDC_SUPPORT_FADE_STOP esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel]; ledc_fade_fsm_t state = fade->fsm; bool wait_for_idle = false; assert(state != LEDC_FSM_KILLED_PENDING); if (state == LEDC_FSM_IDLE) { // if there is no fade going on, do nothing return ESP_OK; } // Fade state is either HW_FADE or ISR_CAL (there is a fade in process) portENTER_CRITICAL(&ledc_spinlock); // Disable ledc channel interrupt first ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_DISABLE); // Config duty to the duty cycle at this moment uint32_t duty_cur = ledc_get_duty(speed_mode, channel); ledc_duty_config(speed_mode, channel, //uint32_t chan_num, LEDC_VAL_NO_CHANGE, duty_cur, //uint32_t duty_val, 1, //uint32_t increase, 1, //uint32_t duty_num, 1, //uint32_t duty_cycle, 0 //uint32_t duty_scale ); _ledc_update_duty(speed_mode, channel); state = fade->fsm; assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_KILLED_PENDING); if (state == LEDC_FSM_HW_FADE) { fade->fsm = LEDC_FSM_IDLE; } else if (state == LEDC_FSM_ISR_CAL) { fade->fsm = LEDC_FSM_KILLED_PENDING; wait_for_idle = true; } portEXIT_CRITICAL(&ledc_spinlock); if (wait_for_idle) { // Wait for ISR return, which gives the semaphore and switches state to IDLE _ledc_fade_hw_acquire(speed_mode, channel); assert(fade->fsm == LEDC_FSM_IDLE); } _ledc_fade_hw_release(speed_mode, channel); return ESP_OK; } #endif esp_err_t ledc_fade_func_install(int intr_alloc_flags) { LEDC_CHECK(s_ledc_fade_isr_handle == NULL, "fade function already installed", ESP_ERR_INVALID_STATE); //OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle); } void ledc_fade_func_uninstall(void) { if (s_ledc_fade_isr_handle) { esp_intr_free(s_ledc_fade_isr_handle); s_ledc_fade_isr_handle = NULL; } int channel, mode; for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) { for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) { ledc_fade_channel_deinit(mode, channel); } } return; } esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(cbs, "callback"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); if (cbs->fade_cb && !esp_ptr_in_iram(cbs->fade_cb)) { ESP_LOGW(LEDC_TAG, "fade callback not in IRAM"); } if (user_arg && !esp_ptr_internal(user_arg)) { ESP_LOGW(LEDC_TAG, "user context not in internal RAM"); } s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb; s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg; return ESP_OK; } /* * The functions below are thread-safe version of APIs for duty and fade control. * These APIs can be called from different tasks. */ esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty"); LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); _ledc_fade_hw_acquire(speed_mode, channel); portENTER_CRITICAL(&ledc_spinlock); ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 1, 1, 0); _ledc_update_duty(speed_mode, channel); portEXIT_CRITICAL(&ledc_spinlock); _ledc_fade_hw_release(speed_mode, channel); return ESP_OK; } esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty"); _ledc_op_lock_acquire(speed_mode, channel); _ledc_fade_hw_acquire(speed_mode, channel); _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms); _ledc_fade_start(speed_mode, channel, fade_mode); _ledc_op_lock_release(speed_mode, channel); return ESP_OK; } esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale"); LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num"); LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty"); _ledc_op_lock_acquire(speed_mode, channel); _ledc_fade_hw_acquire(speed_mode, channel); _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num); _ledc_fade_start(speed_mode, channel, fade_mode); _ledc_op_lock_release(speed_mode, channel); return ESP_OK; } #if SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED static esp_err_t _ledc_set_multi_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len) { uint32_t max_duty = ledc_get_max_duty(speed_mode, channel); LEDC_ARG_CHECK(start_duty <= max_duty, "start_duty"); portENTER_CRITICAL(&ledc_spinlock); ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, start_duty); for (int i = 0; i < list_len; i++) { ledc_fade_param_config_t fade_param = fade_params_list[i]; ledc_hal_set_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, i, fade_param.dir, fade_param.cycle_num, fade_param.scale, fade_param.step_num); } ledc_hal_set_range_number(&(p_ledc_obj[speed_mode]->ledc_hal), channel, list_len); portEXIT_CRITICAL(&ledc_spinlock); // Calculate target duty, and take account for overflow uint32_t target_duty = start_duty; for (int i = 0; i < list_len; i++) { uint32_t delta_duty = (fade_params_list[i].step_num * fade_params_list[i].scale) % (max_duty + 1); if (fade_params_list[i].dir == LEDC_DUTY_DIR_INCREASE) { target_duty += delta_duty; if (target_duty > max_duty) { target_duty -= max_duty + 1; } } else { if (delta_duty > target_duty) { target_duty += max_duty + 1; } target_duty -= delta_duty; } } // Set interrupt exit criteria s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty; s_ledc_fade_rec[speed_mode][channel]->scale = fade_params_list[list_len - 1].scale; return ESP_OK; } esp_err_t ledc_set_multi_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(list_len <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "list_len"); LEDC_ARG_CHECK(fade_params_list, "fade_params_list"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); _ledc_fade_hw_acquire(speed_mode, channel); esp_err_t ret = _ledc_set_multi_fade(speed_mode, channel, start_duty, fade_params_list, list_len); _ledc_fade_hw_release(speed_mode, channel); return ret; } esp_err_t ledc_set_multi_fade_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, const ledc_fade_param_config_t *fade_params_list, uint32_t list_len, ledc_fade_mode_t fade_mode) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(list_len <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "list_len"); LEDC_ARG_CHECK(fade_params_list, "fade_params_list"); LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL); _ledc_op_lock_acquire(speed_mode, channel); _ledc_fade_hw_acquire(speed_mode, channel); esp_err_t ret = _ledc_set_multi_fade(speed_mode, channel, start_duty, fade_params_list, list_len); if (ret != ESP_OK) { _ledc_fade_hw_release(speed_mode, channel); } else { _ledc_fade_start(speed_mode, channel, fade_mode); } _ledc_op_lock_release(speed_mode, channel); return ret; } esp_err_t ledc_fill_multi_fade_param_list(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty, uint32_t end_duty, uint32_t linear_phase_num, uint32_t max_fade_time_ms, uint32_t (* gamma_correction_operator)(uint32_t), uint32_t fade_params_list_size, ledc_fade_param_config_t *fade_params_list, uint32_t *hw_fade_range_num) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(linear_phase_num > 0 && linear_phase_num <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "linear_phase_num"); LEDC_ARG_CHECK(gamma_correction_operator, "gamma_correction_operator"); LEDC_ARG_CHECK(fade_params_list_size <= SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "fade_params_list_size"); LEDC_ARG_CHECK(fade_params_list, "fade_params_list"); LEDC_ARG_CHECK(hw_fade_range_num, "hw_fade_range_num"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); uint32_t max_duty = ledc_get_max_duty(speed_mode, channel); LEDC_ARG_CHECK(start_duty <= max_duty && end_duty <= max_duty, "duty"); esp_err_t ret = ESP_OK; ledc_timer_t timer_sel; ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel); uint32_t freq = ledc_get_freq(speed_mode, timer_sel); uint32_t dir = (end_duty > start_duty) ? LEDC_DUTY_DIR_INCREASE : LEDC_DUTY_DIR_DECREASE; uint32_t total_cycles = max_fade_time_ms * freq / 1000; // If no duty change is need, then simplify the case if (start_duty == end_duty) { total_cycles = 1; linear_phase_num = 1; } uint32_t avg_cycles_per_phase = total_cycles / linear_phase_num; if (avg_cycles_per_phase == 0) { ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR); avg_cycles_per_phase = 1; } int sgn = (dir == LEDC_DUTY_DIR_INCREASE) ? 1 : (-1); int32_t delta_brightness_per_phase = sgn * ((sgn * (end_duty - start_duty)) / linear_phase_num); // First phase start and end values uint32_t gamma_corrected_phase_head = gamma_correction_operator(start_duty); uint32_t gamma_corrected_phase_tail = 0; int32_t phase_tail = start_duty + delta_brightness_per_phase; // Compute raw fade parameters for each linear phase uint32_t total_fade_range = 0; // To record the required hw fade ranges uint32_t surplus_cycles_last_phase = 0; for (int i = 0; i < linear_phase_num; i++) { uint32_t cycle, scale, step; gamma_corrected_phase_tail = gamma_correction_operator(phase_tail); uint32_t duty_delta = (dir == LEDC_DUTY_DIR_INCREASE) ? (gamma_corrected_phase_tail - gamma_corrected_phase_head) : (gamma_corrected_phase_head - gamma_corrected_phase_tail); uint32_t cycles_per_phase = avg_cycles_per_phase + surplus_cycles_last_phase; if (duty_delta == 0) { scale = 0; cycle = (cycles_per_phase > LEDC_LL_DUTY_CYCLE_MAX) ? LEDC_LL_DUTY_CYCLE_MAX : cycles_per_phase; step = 1; } else if (cycles_per_phase > duty_delta) { scale = 1; step = duty_delta; cycle = cycles_per_phase / duty_delta; if (cycle > LEDC_LL_DUTY_CYCLE_MAX) { ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR); cycle = LEDC_LL_DUTY_CYCLE_MAX; } } else { cycle = 1; scale = duty_delta / cycles_per_phase; if (scale > LEDC_LL_DUTY_SCALE_MAX) { ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR); scale = LEDC_LL_DUTY_SCALE_MAX; } step = duty_delta / scale; } // Prepare for next phase calculation phase_tail = phase_tail + delta_brightness_per_phase; if (dir == LEDC_DUTY_DIR_INCREASE) { gamma_corrected_phase_head += step * scale; } else { gamma_corrected_phase_head -= step * scale; } surplus_cycles_last_phase = cycles_per_phase - step * cycle; // If next phase is the last one, then account for all remaining duty and cycles if (i == linear_phase_num - 2) { phase_tail = end_duty; surplus_cycles_last_phase += total_cycles - avg_cycles_per_phase * linear_phase_num; } // Fill into the fade parameter list // One linear phase might need multiple hardware fade ranges do { if (total_fade_range >= fade_params_list_size) { ret = ESP_FAIL; break; } fade_params_list[total_fade_range].dir = dir; fade_params_list[total_fade_range].cycle_num = cycle; fade_params_list[total_fade_range].scale = scale; fade_params_list[total_fade_range].step_num = (step > LEDC_LL_DUTY_NUM_MAX) ? LEDC_LL_DUTY_NUM_MAX : step; step -= fade_params_list[total_fade_range].step_num; total_fade_range += 1; } while (step > 0); if (ret != ESP_OK) { break; } } uint32_t remaining_duty_delta = (dir == LEDC_DUTY_DIR_INCREASE) ? (gamma_corrected_phase_tail - gamma_corrected_phase_head) : (gamma_corrected_phase_head - gamma_corrected_phase_tail); if (remaining_duty_delta) { total_fade_range += 1; } ESP_RETURN_ON_FALSE(total_fade_range <= fade_params_list_size, ESP_FAIL, LEDC_TAG, "hw fade ranges required exceeds the space offered to fill the fade params." " Please allocate more space, or split into smaller multi-fades, or reduce linear_phase_num"); if (remaining_duty_delta) { fade_params_list[total_fade_range].dir = dir; fade_params_list[total_fade_range].step_num = 1; fade_params_list[total_fade_range].cycle_num = 1; fade_params_list[total_fade_range].scale = remaining_duty_delta; } *hw_fade_range_num = total_fade_range; return ret; } esp_err_t ledc_read_fade_param(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t range, uint32_t *dir, uint32_t *cycle, uint32_t *scale, uint32_t *step) { LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode"); LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel"); LEDC_ARG_CHECK(range < SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX, "range"); LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE); ledc_hal_get_fade_param(&(p_ledc_obj[speed_mode]->ledc_hal), channel, range, dir, cycle, scale, step); return ESP_OK; } #endif // SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED