// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "esp_attr.h" #include "esp_sleep.h" #include "esp_private/esp_timer_impl.h" #include "esp_log.h" #include "esp32s2beta/clk.h" #include "esp_newlib.h" #include "esp_spi_flash.h" #include "esp32s2beta/rom/cache.h" #include "esp32s2beta/rom/rtc.h" #include "esp32s2beta/rom/uart.h" #include "esp32s2beta/rom/ets_sys.h" #include "soc/cpu.h" #include "soc/rtc.h" #include "soc/rtc_cntl_reg.h" #include "soc/apb_ctrl_reg.h" #include "soc/rtc_io_reg.h" #include "soc/spi_mem_reg.h" #include "soc/sens_reg.h" #include "soc/dport_reg.h" #include "driver/rtc_io.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "sdkconfig.h" // If light sleep time is less than that, don't power down flash #define FLASH_PD_MIN_SLEEP_TIME_US 2000 // Time from VDD_SDIO power up to first flash read in ROM code #define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700 // Extra time it takes to enter and exit light sleep and deep sleep // For deep sleep, this is until the wake stub runs (not the app). #ifdef CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS #define LIGHT_SLEEP_TIME_OVERHEAD_US (650 + 30 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ) #define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ) #else #define LIGHT_SLEEP_TIME_OVERHEAD_US (250 + 30 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ) #define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ) #endif // CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS // Minimal amount of time we can sleep for #define LIGHT_SLEEP_MIN_TIME_US 200 #define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \ (source == value)) /** * Internal structure which holds all requested deep sleep parameters */ typedef struct { esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX]; uint64_t sleep_duration; uint32_t wakeup_triggers : 11; uint32_t ext1_trigger_mode : 1; uint32_t ext1_rtc_gpio_mask : 18; uint32_t ext0_trigger_level : 1; uint32_t ext0_rtc_gpio_num : 5; uint32_t sleep_time_adjustment; uint64_t rtc_ticks_at_sleep_start; } sleep_config_t; static sleep_config_t s_config = { .pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO }, .wakeup_triggers = 0 }; /* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc() is not thread-safe. */ static _lock_t lock_rtc_memory_crc; static const char* TAG = "sleep"; static uint32_t get_power_down_flags(); static void ext0_wakeup_prepare(); static void ext1_wakeup_prepare(); static void timer_wakeup_prepare(); /* Wake from deep sleep stub See esp_deepsleep.h esp_wake_deep_sleep() comments for details. */ esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void) { _lock_acquire(&lock_rtc_memory_crc); uint32_t stored_crc = REG_READ(RTC_MEMORY_CRC_REG); set_rtc_memory_crc(); uint32_t calc_crc = REG_READ(RTC_MEMORY_CRC_REG); REG_WRITE(RTC_MEMORY_CRC_REG, stored_crc); _lock_release(&lock_rtc_memory_crc); if(stored_crc == calc_crc) { return (esp_deep_sleep_wake_stub_fn_t)REG_READ(RTC_ENTRY_ADDR_REG); } else { return NULL; } } void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub) { _lock_acquire(&lock_rtc_memory_crc); REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub); set_rtc_memory_crc(); _lock_release(&lock_rtc_memory_crc); } void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) { /* Clear MMU for CPU 0 */ _DPORT_REG_SET_BIT(DPORT_PRO_CACHE_IA_INT_EN_REG, DPORT_PRO_CACHE_INT_CLR); _DPORT_REG_SET_BIT(DPORT_PRO_CACHE_IA_INT_EN_REG, DPORT_PRO_CACHE_DBG_EN); } void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void); void esp_deep_sleep(uint64_t time_in_us) { esp_sleep_enable_timer_wakeup(time_in_us); esp_deep_sleep_start(); } static void IRAM_ATTR suspend_uarts() { for (int i = 0; i < 2; ++i) { REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF); uart_tx_wait_idle(i); } } static void IRAM_ATTR resume_uarts() { for (int i = 0; i < 2; ++i) { REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XOFF); REG_SET_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON); REG_CLR_BIT(UART_FLOW_CONF_REG(i), UART_FORCE_XON); } } static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags) { // Stop UART output so that output is not lost due to APB frequency change suspend_uarts(); // Save current frequency and switch to XTAL rtc_cpu_freq_t cpu_freq = rtc_clk_cpu_freq_get(); rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL); // Configure pins for external wakeup if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) { ext0_wakeup_prepare(); } if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) { ext1_wakeup_prepare(); } // Enable ULP wakeup if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) { //TODO, esp32s2 does not have this bit //SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_WAKEUP_FORCE_EN); } // Enter sleep rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags); rtc_sleep_init(config); // Configure timer wakeup if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) && s_config.sleep_duration > 0) { timer_wakeup_prepare(); } uint32_t result = rtc_sleep_start(s_config.wakeup_triggers, 0,0); // Restore CPU frequency rtc_clk_cpu_freq_set(cpu_freq); // re-enable UART output resume_uarts(); return result; } void IRAM_ATTR esp_deep_sleep_start() { // record current RTC time s_config.rtc_ticks_at_sleep_start = rtc_time_get(); esp_sync_counters_rtc_and_frc(); // Configure wake stub if (esp_get_deep_sleep_wake_stub() == NULL) { esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep); } // Decide which power domains can be powered down uint32_t pd_flags = get_power_down_flags(); // Correct the sleep time s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US; // Enter sleep esp_sleep_start(RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | pd_flags); // Because RTC is in a slower clock domain than the CPU, it // can take several CPU cycles for the sleep mode to start. while (1) { ; } } static void rtc_wdt_enable(int time_ms) { WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE); WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1); REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_SYS_RESET_LENGTH, 7); REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_CPU_RESET_LENGTH, 7); REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_RESET_RTC); WRITE_PERI_REG(RTC_CNTL_WDTCONFIG1_REG, rtc_clk_slow_freq_get_hz() * time_ms / 1000); SET_PERI_REG_MASK(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN | RTC_CNTL_WDT_PAUSE_IN_SLP); WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0); } static void rtc_wdt_disable() { WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE); WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1); REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_OFF); REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN); WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0); } /** * Helper function which handles entry to and exit from light sleep * Placed into IRAM as flash may need some time to be powered on. */ static esp_err_t esp_light_sleep_inner(uint32_t pd_flags, uint32_t flash_enable_time_us, rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline)); static esp_err_t esp_light_sleep_inner(uint32_t pd_flags, uint32_t flash_enable_time_us, rtc_vddsdio_config_t vddsdio_config) { // Enter sleep esp_err_t err = esp_sleep_start(pd_flags); // If VDDSDIO regulator was controlled by RTC registers before sleep, // restore the configuration. if (vddsdio_config.force) { rtc_vddsdio_set_config(vddsdio_config); } // If SPI flash was powered down, wait for it to become ready if (pd_flags & RTC_SLEEP_PD_VDDSDIO) { // Wait for the flash chip to start up ets_delay_us(flash_enable_time_us); } return err; } esp_err_t esp_light_sleep_start() { static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED; portENTER_CRITICAL(&light_sleep_lock); /* We will be calling esp_timer_impl_advance inside DPORT access critical * section. Make sure the code on the other CPU is not holding esp_timer * lock, otherwise there will be deadlock. */ esp_timer_impl_lock(); s_config.rtc_ticks_at_sleep_start = rtc_time_get(); uint64_t frc_time_at_start = esp_timer_get_time(); DPORT_STALL_OTHER_CPU_START(); // Decide which power domains can be powered down uint32_t pd_flags = get_power_down_flags(); // Amount of time to subtract from actual sleep time. // This is spent on entering and leaving light sleep. s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US; // Decide if VDD_SDIO needs to be powered down; // If it needs to be powered down, adjust sleep time. const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US; #ifndef CONFIG_ESP32S2_SPIRAM_SUPPORT const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US, flash_enable_time_us + LIGHT_SLEEP_TIME_OVERHEAD_US + LIGHT_SLEEP_MIN_TIME_US); if (s_config.sleep_duration > vddsdio_pd_sleep_duration) { pd_flags |= RTC_SLEEP_PD_VDDSDIO; s_config.sleep_time_adjustment += flash_enable_time_us; } #endif //CONFIG_ESP32S2_SPIRAM_SUPPORT rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config(); // Safety net: enable WDT in case exit from light sleep fails rtc_wdt_enable(1000); // Enter sleep, then wait for flash to be ready on wakeup esp_err_t err = esp_light_sleep_inner(pd_flags, flash_enable_time_us, vddsdio_config); // FRC1 has been clock gated for the duration of the sleep, correct for that. uint64_t rtc_ticks_at_end = rtc_time_get(); uint64_t frc_time_at_end = esp_timer_get_time(); uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start, esp_clk_slowclk_cal_get()); uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start; int64_t time_diff = rtc_time_diff - frc_time_diff; /* Small negative values (up to 1 RTC_SLOW clock period) are possible, * for very small values of sleep_duration. Ignore those to keep esp_timer * monotonic. */ if (time_diff > 0) { esp_timer_impl_advance(time_diff); } esp_set_time_from_rtc(); esp_timer_impl_unlock(); DPORT_STALL_OTHER_CPU_END(); rtc_wdt_disable(); portEXIT_CRITICAL(&light_sleep_lock); return err; } void system_deep_sleep(uint64_t) __attribute__((alias("esp_deep_sleep"))); esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source) { // For most of sources it is enough to set trigger mask in local // configuration structure. The actual RTC wake up options // will be updated by esp_sleep_start(). if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) { s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN; s_config.sleep_duration = 0; } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) { s_config.ext0_rtc_gpio_num = 0; s_config.ext0_trigger_level = 0; s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN; } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) { s_config.ext1_rtc_gpio_mask = 0; s_config.ext1_trigger_mode = 0; s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN; } else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) { s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN; } else { ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source); return ESP_ERR_INVALID_STATE; } return ESP_OK; } esp_err_t esp_sleep_enable_ulp_wakeup() { return ESP_ERR_NOT_SUPPORTED; } esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us) { s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN; s_config.sleep_duration = time_in_us; return ESP_OK; } static void timer_wakeup_prepare() { uint32_t period = esp_clk_slowclk_cal_get(); int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment; if (sleep_duration < 0) { sleep_duration = 0; } int64_t rtc_count_delta = rtc_time_us_to_slowclk(sleep_duration, period); rtc_sleep_set_wakeup_time(s_config.rtc_ticks_at_sleep_start + rtc_count_delta); } esp_err_t esp_sleep_enable_touchpad_wakeup() { if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) { ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0"); return ESP_ERR_INVALID_STATE; } s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN; return ESP_OK; } touch_pad_t esp_sleep_get_touchpad_wakeup_status() { if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) { return TOUCH_PAD_MAX; } uint32_t touch_mask = REG_GET_FIELD(RTC_CNTL_TOUCH_CTRL1_REG, RTC_CNTL_TOUCH_MEAS_NUM); assert(touch_mask != 0 && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero"); return (touch_pad_t) (__builtin_ffs(touch_mask) - 1); } esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level) { if (level < 0 || level > 1) { return ESP_ERR_INVALID_ARG; } if (!RTC_GPIO_IS_VALID_GPIO(gpio_num)) { return ESP_ERR_INVALID_ARG; } if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) { ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP"); return ESP_ERR_INVALID_STATE; } s_config.ext0_rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num; s_config.ext0_trigger_level = level; s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN; return ESP_OK; } static void ext0_wakeup_prepare() { int rtc_gpio_num = s_config.ext0_rtc_gpio_num; // Set GPIO to be used for wakeup REG_SET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL, rtc_gpio_num); // Set level which will trigger wakeup SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1, s_config.ext0_trigger_level, RTC_CNTL_EXT_WAKEUP0_LV_S); // Find GPIO descriptor in the rtc_gpio_desc table and configure the pad for (size_t gpio_num = 0; gpio_num < GPIO_PIN_COUNT; ++gpio_num) { const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio_num]; if (desc->rtc_num == rtc_gpio_num) { REG_SET_BIT(desc->reg, desc->mux); SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func); REG_SET_BIT(desc->reg, desc->ie); break; } } } esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode) { if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) { return ESP_ERR_INVALID_ARG; } // Translate bit map of GPIO numbers into the bit map of RTC IO numbers uint32_t rtc_gpio_mask = 0; for (int gpio = 0; mask; ++gpio, mask >>= 1) { if ((mask & 1) == 0) { continue; } if (!RTC_GPIO_IS_VALID_GPIO(gpio)) { ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio); return ESP_ERR_INVALID_ARG; } rtc_gpio_mask |= BIT(rtc_gpio_desc[gpio].rtc_num); } s_config.ext1_rtc_gpio_mask = rtc_gpio_mask; s_config.ext1_trigger_mode = mode; s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN; return ESP_OK; } static void ext1_wakeup_prepare() { // Configure all RTC IOs selected as ext1 wakeup inputs uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask; for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) { int rtc_pin = rtc_gpio_desc[gpio].rtc_num; if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) { continue; } const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio]; // Route pad to RTC REG_SET_BIT(desc->reg, desc->mux); SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func); // set input enable in sleep mode REG_SET_BIT(desc->reg, desc->ie); // Pad configuration depends on RTC_PERIPH state in sleep mode if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) { // RTC_PERIPH will be powered down, so RTC_IO_ registers will // loose their state. Lock pad configuration. // Pullups/pulldowns also need to be disabled. REG_CLR_BIT(desc->reg, desc->pulldown); REG_CLR_BIT(desc->reg, desc->pullup); } // Keep track of pins which are processed to bail out early rtc_gpio_mask &= ~BIT(rtc_pin); } // Clear state from previous wakeup REG_SET_BIT(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_STATUS_CLR); // Set pins to be used for wakeup REG_SET_FIELD(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_SEL, s_config.ext1_rtc_gpio_mask); // Set logic function (any low, all high) SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1, s_config.ext1_trigger_mode, RTC_CNTL_EXT_WAKEUP1_LV_S); } uint64_t esp_sleep_get_ext1_wakeup_status() { if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) { return 0; } uint32_t status = REG_GET_FIELD(RTC_CNTL_EXT_WAKEUP1_STATUS_REG, RTC_CNTL_EXT_WAKEUP1_STATUS); // Translate bit map of RTC IO numbers into the bit map of GPIO numbers uint64_t gpio_mask = 0; for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) { if (!RTC_GPIO_IS_VALID_GPIO(gpio)) { continue; } int rtc_pin = rtc_gpio_desc[gpio].rtc_num; if ((status & BIT(rtc_pin)) == 0) { continue; } gpio_mask |= 1ULL << gpio; } return gpio_mask; } esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause() { if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET) { return ESP_SLEEP_WAKEUP_UNDEFINED; } uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE); if (wakeup_cause & RTC_EXT0_TRIG_EN) { return ESP_SLEEP_WAKEUP_EXT0; } else if (wakeup_cause & RTC_EXT1_TRIG_EN) { return ESP_SLEEP_WAKEUP_EXT1; } else if (wakeup_cause & RTC_TIMER_TRIG_EN) { return ESP_SLEEP_WAKEUP_TIMER; } else if (wakeup_cause & RTC_TOUCH_TRIG_EN) { return ESP_SLEEP_WAKEUP_TOUCHPAD; } else if (wakeup_cause & RTC_ULP_TRIG_EN) { return ESP_SLEEP_WAKEUP_ULP; } else { return ESP_SLEEP_WAKEUP_UNDEFINED; } } esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain, esp_sleep_pd_option_t option) { if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) { return ESP_ERR_INVALID_ARG; } s_config.pd_options[domain] = option; return ESP_OK; } static uint32_t get_power_down_flags() { // Where needed, convert AUTO options to ON. Later interpret AUTO as OFF. // RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP // is used and RTC_SLOW_MEM is Auto. // If there is any data placed into .rtc.data or .rtc.bss segments, and // RTC_SLOW_MEM is Auto, keep it powered up as well. // These labels are defined in the linker script: extern int _rtc_data_start, _rtc_data_end, _rtc_bss_start, _rtc_bss_end; if ((s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO) && (&_rtc_data_end > &_rtc_data_start || &_rtc_bss_end > &_rtc_bss_start || (s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) { s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON; } // RTC_FAST_MEM is needed for deep sleep stub. // If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub // can run. // In the new chip revision, deep sleep stub will be optional, // and this can be changed. if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) { s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON; } // RTC_PERIPH is needed for EXT0 wakeup. // If RTC_PERIPH is auto, and EXT0 isn't enabled, power down RTC_PERIPH. if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) { if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) { s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON; } else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) { // In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH // prevents ULP timer and touch FSMs from working correctly. s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF; } } if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) { s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF; } const char* option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */}; ESP_LOGD(TAG, "RTC_PERIPH: %s, RTC_SLOW_MEM: %s, RTC_FAST_MEM: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]], option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]], option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]); // Prepare flags based on the selected options uint32_t pd_flags = 0; if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM; } if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM; } if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) { pd_flags |= RTC_SLEEP_PD_RTC_PERIPH; } // if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] != ESP_PD_OPTION_ON) { // pd_flags |= RTC_SLEEP_PD_XTAL; // } return pd_flags; }