/* * SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "esp_efuse_utility.h" #include "soc/efuse_periph.h" #include "esp32/clk.h" #include "esp_log.h" #include "assert.h" #include "sdkconfig.h" #include static const char *TAG = "efuse"; #ifdef CONFIG_EFUSE_VIRTUAL extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK]; #endif // CONFIG_EFUSE_VIRTUAL /*Range addresses to read blocks*/ const esp_efuse_range_addr_t range_read_addr_blocks[] = { {EFUSE_BLK0_RDATA0_REG, EFUSE_BLK0_RDATA6_REG}, // range address of EFUSE_BLK0 {EFUSE_BLK1_RDATA0_REG, EFUSE_BLK1_RDATA7_REG}, // range address of EFUSE_BLK1 {EFUSE_BLK2_RDATA0_REG, EFUSE_BLK2_RDATA7_REG}, // range address of EFUSE_BLK2 {EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3 }; /*Range addresses to write blocks*/ const esp_efuse_range_addr_t range_write_addr_blocks[] = { {EFUSE_BLK0_WDATA0_REG, EFUSE_BLK0_WDATA6_REG}, // range address of EFUSE_BLK0 {EFUSE_BLK1_WDATA0_REG, EFUSE_BLK1_WDATA7_REG}, // range address of EFUSE_BLK1 {EFUSE_BLK2_WDATA0_REG, EFUSE_BLK2_WDATA7_REG}, // range address of EFUSE_BLK2 {EFUSE_BLK3_WDATA0_REG, EFUSE_BLK3_WDATA7_REG} // range address of EFUSE_BLK3 }; #define EFUSE_CONF_WRITE 0x5A5A /* eFuse_pgm_op_ena, force no rd/wr disable. */ #define EFUSE_CONF_READ 0x5AA5 /* eFuse_read_op_ena, release force. */ #define EFUSE_CMD_PGM 0x02 /* Command to program. */ #define EFUSE_CMD_READ 0x01 /* Command to read. */ #ifndef CONFIG_EFUSE_VIRTUAL // Update Efuse timing configuration static esp_err_t esp_efuse_set_timing(void) { uint32_t apb_freq_mhz = esp_clk_apb_freq() / 1000000; uint32_t clk_sel0, clk_sel1, dac_clk_div; if (apb_freq_mhz <= 26) { clk_sel0 = 250; clk_sel1 = 255; dac_clk_div = 52; } else if (apb_freq_mhz <= 40) { clk_sel0 = 160; clk_sel1 = 255; dac_clk_div = 80; } else { clk_sel0 = 80; clk_sel1 = 128; dac_clk_div = 100; } REG_SET_FIELD(EFUSE_DAC_CONF_REG, EFUSE_DAC_CLK_DIV, dac_clk_div); REG_SET_FIELD(EFUSE_CLK_REG, EFUSE_CLK_SEL0, clk_sel0); REG_SET_FIELD(EFUSE_CLK_REG, EFUSE_CLK_SEL1, clk_sel1); return ESP_OK; } #endif // ifndef CONFIG_EFUSE_VIRTUAL // Efuse read operation: copies data from physical efuses to efuse read registers. void esp_efuse_utility_clear_program_registers(void) { REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_READ); } // Burn values written to the efuse write registers void esp_efuse_utility_burn_efuses(void) { #ifdef CONFIG_EFUSE_VIRTUAL ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses"); for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) { esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block); if (scheme == EFUSE_CODING_SCHEME_3_4) { uint8_t buf[COUNT_EFUSE_REG_PER_BLOCK * 4] = { 0 }; int i = 0; for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) { *((uint32_t*)buf + i) = REG_READ(addr_wr_block); } int j = 0; uint32_t out_buf[COUNT_EFUSE_REG_PER_BLOCK] = { 0 }; for (int k = 0; k < 4; ++k, ++j) { memcpy((uint8_t*)out_buf + j * 6, &buf[k * 8], 6); } for (int k = 0; k < COUNT_EFUSE_REG_PER_BLOCK; ++k) { REG_WRITE(range_write_addr_blocks[num_block].start + k * 4, out_buf[k]); } } int subblock = 0; for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) { virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block); } } #else esp_efuse_set_timing(); // Permanently update values written to the efuse write registers REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_WRITE); REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_PGM); while (REG_READ(EFUSE_CMD_REG) != 0) {}; REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_READ); REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_READ); while (REG_READ(EFUSE_CMD_REG) != 0) {}; #endif // CONFIG_EFUSE_VIRTUAL esp_efuse_utility_reset(); } esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len) { if (in_bytes == NULL || out_words == NULL || in_bytes_len % 6 != 0) { return ESP_ERR_INVALID_ARG; } while (in_bytes_len > 0) { uint8_t out[8]; uint8_t xor = 0; uint8_t mul = 0; for (int i = 0; i < 6; i++) { xor ^= in_bytes[i]; mul += (i + 1) * __builtin_popcount(in_bytes[i]); } memcpy(out, in_bytes, 6); // Data bytes out[6] = xor; out[7] = mul; memcpy(out_words, out, 8); in_bytes_len -= 6; in_bytes += 6; out_words += 2; } return ESP_OK; } static bool read_w_data_and_check_fill(esp_efuse_block_t num_block, uint32_t *buf_w_data) { bool blk_is_filled = false; int i = 0; for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) { buf_w_data[i] = REG_READ(addr_wr_block); if (buf_w_data[i] != 0) { REG_WRITE(addr_wr_block, 0); blk_is_filled = true; } } return blk_is_filled; } static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data) { int i = 0; for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++i) { buf_r_data[i] = esp_efuse_utility_read_reg(num_block, i); } } // After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values. // This function reads EFUSE_BLKx_WDATAx_REG registers, applies coding scheme and writes encoded values back to EFUSE_BLKx_WDATAx_REG. esp_err_t esp_efuse_utility_apply_new_coding_scheme() { uint8_t buf_w_data[COUNT_EFUSE_REG_PER_BLOCK * 4]; uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4]; uint32_t reg[COUNT_EFUSE_REG_PER_BLOCK]; // start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE. for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) { esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block); // check and apply a new coding scheme. if (scheme != EFUSE_CODING_SCHEME_NONE) { memset(buf_w_data, 0, sizeof(buf_w_data)); memset((uint8_t*)reg, 0, sizeof(reg)); if (read_w_data_and_check_fill(num_block, (uint32_t*)buf_w_data) == true) { read_r_data(num_block, (uint32_t*)buf_r_data); if (scheme == EFUSE_CODING_SCHEME_3_4) { if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) { return ESP_ERR_CODING; } for (int i = 0; i < 24; ++i) { if (buf_w_data[i] != 0) { int st_offset_buf = (i / 6) * 6; // check that place is free. for (int n = st_offset_buf; n < st_offset_buf + 6; ++n) { if (buf_r_data[n] != 0) { ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden."); return ESP_ERR_CODING; } } esp_err_t err = esp_efuse_utility_apply_34_encoding(&buf_w_data[st_offset_buf], reg, 6); if (err != ESP_OK) { return err; } int num_reg = (st_offset_buf / 6) * 2; for (int r = 0; r < 2; r++) { REG_WRITE(range_write_addr_blocks[num_block].start + (num_reg + r) * 4, reg[r]); } i = st_offset_buf + 5; } } } else if (scheme == EFUSE_CODING_SCHEME_REPEAT) { uint32_t* buf_32 = (uint32_t*)buf_w_data; for (int i = 4; i < 8; ++i) { if (*(buf_32 + i) != 0) { return ESP_ERR_CODING; } } for (int i = 0; i < 4; ++i) { if (buf_32[i] != 0) { REG_WRITE(range_write_addr_blocks[num_block].start + i * 4, buf_32[i]); REG_WRITE(range_write_addr_blocks[num_block].start + (i + 4) * 4, buf_32[i]); } } } } } } return ESP_OK; }