/* Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if we add more types of external RAM memory, this can be made into a more intelligent dispatcher. */ /* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_err.h" #include "esp32s3/spiram.h" #include "spiram_psram.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "soc/soc.h" #include "esp_heap_caps_init.h" #include "soc/soc_memory_layout.h" #include "soc/dport_reg.h" #include "esp32s3/rom/cache.h" #include "soc/ext_mem_defs.h" #include "soc/extmem_reg.h" /** * @note consider abstract these cache register operations, so as to make `spiram.c` not needed to be IRAM-SAFE. * This file only contains abstract operations. */ #define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL #define MMU_PAGE_SIZE 0x10000 #if CONFIG_SPIRAM static const char *TAG = "spiram"; #if CONFIG_SPIRAM_SPEED_40M #define PSRAM_SPEED PSRAM_CACHE_S40M #else //#if CONFIG_SPIRAM_SPEED_80M #define PSRAM_SPEED PSRAM_CACHE_S80M #endif static bool s_spiram_inited = false; //These variables are in bytes static uint32_t s_allocable_vaddr_start; static uint32_t s_allocable_vaddr_end; static DRAM_ATTR uint32_t s_mapped_vaddr_start; static DRAM_ATTR uint32_t s_mapped_size; /** * Initially map all psram physical address to virtual address. * If psram physical size is larger than virtual address range, then only map the virtual address range. */ void IRAM_ATTR esp_spiram_init_cache(void) { esp_err_t ret = psram_get_available_size(&s_mapped_size); if (ret != ESP_OK) { abort(); } if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) < s_mapped_size) { //Decide these logics when there's a real PSRAM with larger size ESP_EARLY_LOGE(TAG, "Virtual address not enough for PSRAM!"); abort(); } s_mapped_vaddr_start = SOC_EXTRAM_DATA_HIGH - s_mapped_size; Cache_Suspend_DCache(); Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, s_mapped_vaddr_start, 0, 64, s_mapped_size >> 16, 0); REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS); #if !CONFIG_FREERTOS_UNICORE REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE1_BUS); #endif Cache_Resume_DCache(0); //Currently no non-heap stuff on ESP32S3 s_allocable_vaddr_start = s_mapped_vaddr_start; s_allocable_vaddr_end = SOC_EXTRAM_DATA_HIGH; } /* Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been initialized (in a two-core system) or after the heap allocator has taken ownership of the memory. */ bool esp_spiram_test(void) { volatile int *spiram = (volatile int *)s_mapped_vaddr_start; size_t s = s_mapped_size; size_t p; int errct = 0; int initial_err = -1; for (p = 0; p < (s / sizeof(int)); p += 8) { spiram[p] = p ^ 0xAAAAAAAA; } for (p = 0; p < (s / sizeof(int)); p += 8) { if (spiram[p] != (p ^ 0xAAAAAAAA)) { errct++; if (errct == 1) { initial_err = p * 4; } if (errct < 4) { ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA); } } } if (errct) { ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW); return false; } else { ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK"); return true; } } //TODO IDF-4318 // static uint32_t pages_for_flash = 0; static uint32_t instruction_in_spiram = 0; static uint32_t rodata_in_spiram = 0; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS static int instr_flash2spiram_offs = 0; static uint32_t instr_start_page = 0; static uint32_t instr_end_page = 0; #endif #if CONFIG_SPIRAM_RODATA static int rodata_flash2spiram_offs = 0; static uint32_t rodata_start_page = 0; static uint32_t rodata_end_page = 0; #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA static uint32_t page0_mapped = 0; static uint32_t page0_page = INVALID_PHY_PAGE; #endif uint32_t esp_spiram_instruction_access_enabled(void) { return instruction_in_spiram; } uint32_t esp_spiram_rodata_access_enabled(void) { return rodata_in_spiram; } #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS esp_err_t esp_spiram_enable_instruction_access(void) { //TODO IDF-4318, `pages_for_flash` will be overwritten, however it influences the psram size to be added to the heap allocator. abort(); } #endif #if CONFIG_SPIRAM_RODATA esp_err_t esp_spiram_enable_rodata_access(void) { //TODO IDF-4318, `pages_for_flash` will be overwritten, however it influences the psram size to be added to the heap allocator. abort(); } #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS void instruction_flash_page_info_init(void) { uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE; instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START); instr_start_page &= MMU_VALID_VAL_MASK; instr_end_page = instr_start_page + instr_page_cnt - 1; } uint32_t IRAM_ATTR instruction_flash_start_page_get(void) { return instr_start_page; } uint32_t IRAM_ATTR instruction_flash_end_page_get(void) { return instr_end_page; } int IRAM_ATTR instruction_flash2spiram_offset(void) { return instr_flash2spiram_offs; } #endif #if CONFIG_SPIRAM_RODATA void rodata_flash_page_info_init(void) { uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - ((uint32_t)&_rodata_reserved_start & ~ (MMU_PAGE_SIZE - 1)) + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE; rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START); rodata_start_page &= MMU_VALID_VAL_MASK; rodata_end_page = rodata_start_page + rodata_page_cnt - 1; } uint32_t IRAM_ATTR rodata_flash_start_page_get(void) { return rodata_start_page; } uint32_t IRAM_ATTR rodata_flash_end_page_get(void) { return rodata_end_page; } int IRAM_ATTR rodata_flash2spiram_offset(void) { return rodata_flash2spiram_offs; } #endif esp_err_t esp_spiram_init(void) { esp_err_t r; uint32_t psram_physical_size = 0; r = psram_enable(PSRAM_SPEED, PSRAM_MODE); if (r != ESP_OK) { #if CONFIG_SPIRAM_IGNORE_NOTFOUND ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out."); #endif return r; } s_spiram_inited = true; r = psram_get_physical_size(&psram_physical_size); if (r != ESP_OK) { abort(); } #if (CONFIG_SPIRAM_SIZE != -1) if (psram_physical_size != CONFIG_SPIRAM_SIZE) { ESP_EARLY_LOGE(TAG, "Expected %dMB chip but found %dMB chip. Bailing out..", (CONFIG_SPIRAM_SIZE / 1024 / 1024), (psram_physical_size / 1024 / 1024)); return ESP_ERR_INVALID_SIZE; } #endif ESP_EARLY_LOGI(TAG, "Found %dMB SPI RAM device", psram_physical_size / (1024 * 1024)); ESP_EARLY_LOGI(TAG, "Speed: %dMHz", CONFIG_SPIRAM_SPEED); ESP_EARLY_LOGI(TAG, "Initialized, cache is in %s mode.", \ (PSRAM_MODE == PSRAM_VADDR_MODE_EVENODD) ? "even/odd (2-core)" : \ (PSRAM_MODE == PSRAM_VADDR_MODE_LOWHIGH) ? "low/high (2-core)" : \ (PSRAM_MODE == PSRAM_VADDR_MODE_NORMAL) ? "normal (1-core)" : "ERROR"); return ESP_OK; } /** * Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, * so there's no need to explicitly specify them. */ esp_err_t esp_spiram_add_to_heapalloc(void) { ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (s_allocable_vaddr_end - s_allocable_vaddr_start) / 1024); return heap_caps_add_region(s_allocable_vaddr_start, s_allocable_vaddr_end - 1); } static uint8_t *dma_heap; esp_err_t esp_spiram_reserve_dma_pool(size_t size) { if (size == 0) { return ESP_OK; //no-op } ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size / 1024); dma_heap = heap_caps_malloc(size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL); if (!dma_heap) { return ESP_ERR_NO_MEM; } uint32_t caps[] = {MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT}; return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap + size - 1); } size_t esp_spiram_get_size(void) { if (!s_spiram_inited) { ESP_EARLY_LOGE(TAG, "SPI RAM not initialized"); abort(); } uint32_t size = 0; //in bytes esp_err_t ret = psram_get_available_size(&size); if (ret == ESP_OK) { return size; } else { return 0; } } /* Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first, otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this. */ void IRAM_ATTR esp_spiram_writeback_cache(void) { extern void Cache_WriteBack_All(void); Cache_WriteBack_All(); } /** * @brief If SPI RAM(PSRAM) has been initialized * * @return true SPI RAM has been initialized successfully * @return false SPI RAM hasn't been initialized or initialized failed */ bool esp_spiram_is_initialized(void) { return s_spiram_inited; } uint8_t esp_spiram_get_cs_io(void) { return psram_get_cs_io(); } #endif